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ABSTRACT 26 

Is there a prevalent pattern among interaction networks: nestedness or modularity? Must 27 

consumers always trade-off generalism for average performance in resource 28 

exploitation? These two questions have been addressed in various systems, with 29 

contradictory results. A recent integrative hypothesis combines both questions within a 30 

common theoretical framework, proposing that ecological specialization is structured by 31 

different prevailing processes in smaller and larger network units. This should produce 32 

both a compound interaction network, formed by internally nested modules, and a scale-33 

dependence on the relationship between consumer performance and generalism. Here, 34 

we confirm both predictions in a large dataset on host-parasite interactions. We show 35 

that modules indeed constrain nestedness at the whole network level, and that the 36 

relationship between parasite generalism and performance on their hosts changed from 37 

negative at large to positive at small scales. Our results shed light on both debates, and 38 

provide some clues to their integration and solution.        39 
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INTRODUCTION 49 

Darwin’s “tangled bank” of species interactions is one of the most complex phenomena 50 

in nature. In the past decades, ecologists have imported analytical tools from network 51 

science (Barabási 2016) to disentangle this complexity (Bascompte & Jordano 2013). 52 

Despite the progress made in describing pervasive patterns and underlying mechanisms 53 

(Vazquez et al. 2009), some aspects of the architecture of ecological networks remain 54 

controversial, begging for further investigation (Dormann et al. 2017). One of those 55 

unanswered questions concerns what should be the predominant topology among 56 

ecological networks: nestedness or modularity (Thebault & Fontaine 2010). 57 

By adapting the biogeographic concept of nestedness (Atmar & Patterson 1993) to 58 

interaction matrices, Bascompte et al. (2003) showed that several plant-animal networks 59 

have a nested topology, with the interactions of specialists tending to be subsets of the 60 

interactions of generalists. Later studies also found nestedness in many other mutualistic 61 

(Ollerton et al. 2003, 2007; Guimaraes et al. 2006) and antagonistic networks (Vázquez 62 

et al. 2007; Graham et al. 2009). Meanwhile, another topology, modularity, has also 63 

been widely reported (Olesen et al. 2007; Dupont & Olesen 2009; Mello et al. 2011; 64 

Krasnov et al. 2012). Since a modular network is one composed of modules of species 65 

that interact more frequently with one another than with other species of the same 66 

network, forbidden interactions between modules should constrain nestedness. 67 

Therefore, the two topologies seem to be mutually exclusive. Nevertheless, some 68 

ecological networks present high scores of both nestedness and modularity, and a 69 

positive relationship between these two topologies has even been reported (Fortuna et 70 

al. 2010). 71 

Thus, a new question arose: how can a network be both modular and nested at the same 72 

time? A possible answer states that a dual nested-modular structure would arise if each 73 
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topology predominates at different structural scales of the network (Lewinsohn et al. 74 

2006). Specifically, the authors suggested that some plant-animal networks are modular 75 

at the scale of the entire network, but their modules are internally nested. This kind of 76 

multi-scale architecture was named a compound (or combined) topology. Later, some 77 

empirical studies found evidence of compound topologies in pollination (Bezerra et al. 78 

2009), seed dispersal (Sarmento et al. 2014), and phage-bacteria networks (Flores et al. 79 

2013). In addition, theoretical studies confirmed this topology in simulated host-parasite 80 

networks (Beckett & Williams 2013; Leung & Weitz 2016). 81 

Recently, an “integrative hypothesis of specialization” (IHS) was advanced, which 82 

proposed a mechanism by which a compound topology might emerge in ecological 83 

networks (Pinheiro et al. 2016). If its logic is correct, this hypothesis would also help to 84 

solve another important ecological controversy: what is the expected relationship 85 

between the resource range (generalism) of a given consumer and its average 86 

performance in exploring these resources (Futuyma & Moreno 1988)? The IHS states 87 

that this relationship should change with scale, from negative across the network as a 88 

whole to positive within each module, which should lead to the emergence of an 89 

interaction network formed by internally nested modules. The rationale of the IHS is 90 

briefly described in Box 1 and Fig. 1. 91 

Despite their potential to help solve two important ecological debates, and to improve 92 

our understanding of the structure of ecological communities, neither the compound 93 

topology nor the IHS has been widely tested. Here, we address these two issues in an 94 

extensive host-parasite data set composed of flea-mammal interactions in 15 Palearctic 95 

regions. Since this data set was collected at large phylogenetic and geographic scales, it 96 

is a good model to test the relationship between generalism and performance, and also 97 

the existence of a compound topology. 98 
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 99 

Figure 1: The integrative hypothesis of specialization. Explanations are given in Box1. 100 
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First, we adapted the method described by Flores et al. (2013) and developed a general 101 

framework to test nestedness at different network scales. Then, we tested whether the 102 

flea-mammal networks have a compound topology. This question was addressed in both 103 

the global network (formed by pooling together interactions reported in different 104 

regions) and the local networks (formed by interactions reported for each region). 105 

Second, we tested whether the relationship between host range (generalism) and 106 

performance in fleas is scale-dependent, changing from positive within clusters of 107 

similar resources (within each module) to negative between clusters (between modules). 108 

This second question was addressed using only the local networks, since constraints in 109 

the global network are mainly geographic (two species need to co-occur in the same site 110 

to interact with one another) and would not reflect trade-offs in specialization. Our 111 

results shed light on both debates, and provide some clues to their integration and 112 

solution. 113 

METHODS 114 

Data set 115 

We used an extensive host-parasite data set that has been analyzed in several studies on 116 

ecological interactions (e.g, Krasnov et al. 2004, 2008; Vázquez et al. 2007; Fortuna et 117 

al. 2010). It is composed of dozens of flea-mammal interaction matrices sampled all 118 

around the world, from which we selected 15 Palearctic regions (see Table S1 in 119 

Appendix S2) to maximize two parameters: the size of the matrix (at least 10 parasite 120 

species and 10 host species per region), and the number of hosts sampled (more than 121 

1,000 individual mammals per region). 122 

The global matrix with all 15 regions pooled has a size of 263 species (nodes: 161 fleas 123 

and 102 mammals), and contains 1,200 interaction records (links). The local networks 124 

have an average size of 45.06 ± 12.64 species (mean ± standard deviation), with 26.26 ± 125 
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9.42 fleas and 18.8 ± 4.79 mammals, and contain on average 129.6 ± 57.22 interaction 126 

records (Appendix S2: Table S1). 127 

Furthermore, the global matrix and some local matrices produced networks with more 128 

than one component, i.e., a cluster of species totally separated from the other nodes of 129 

the network. In most of these networks, there is a giant component comprising most of 130 

the network nodes and one or few minor components, each one including a small 131 

number of nodes. The analyses below, at global and local scales, were carried out by 132 

using only the respective binary version of the largest component of each matrix. 133 

Network topology 134 

Modularity 135 

The first step to test for a compound topology is to unfold the modular structure of the 136 

network. We did this computing the Barber modularity (Q) (Barber 2007)  optimized by 137 

the DIRTLPAwb+ algorithm (Beckett 2016) , through the computeModules function of 138 

the bipartite package (Dormann et al. 2008) for R (R Development Core Team 2017). 139 

Modularity (Q) varies from 0 to 1, and the algorithm reveals also the number and 140 

composition of the modules found in the network.  141 

Nestedness 142 

A nested matrix has its interactions arranged in a particular way: the interactions of the 143 

least connected species are proper subsets of the interactions of the more connected 144 

species (Ulrich et al. 2009). NODF is a metric that aims to synthesize this pattern in a 145 

single number (Almeida-Neto et al. 2008). In its default procedure, a NODF score is 146 

computed for each pair of species (independently for consumers and resources, i.e., 147 

rows and columns of the interaction matrix) and, then, averaged to calculate the NODF 148 

score of the whole matrix. This procedure implicitly assumes that nestedness is evenly 149 
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distributed in the matrix. However, as pointed out by the authors of NODF themselves, 150 

it is important to “explore whether nestedness is a general pattern of the community or 151 

derives from some particular species subsets” (Almeida-Neto et al. 2008). If different 152 

species subsets of the matrix have different degrees of nestedness, an overall NODF is 153 

not an appropriate summary of the matrix structure (Gotelli & Ulrich 2012). It turns out 154 

that this is exactly the case if the network has a compound topology, where nestedness 155 

between pairs of species of the same module should be much higher than nestedness 156 

between pairs of species of different modules. 157 

In order to solve this problem, we adapted the method described in Flores et al. (2013), 158 

and averaged nestedness independently between pairs of species of the same module 159 

(NODFSM), and between pairs of species of different modules (NODFDM), and 160 

compared those values with those expected by species degrees under two scenarios (null 161 

models): in the absence of a modular structure (free null model) and in the presence of a 162 

modular structure (restricted null model). The rationale behind using these two null 163 

models is explained below, while the detailed instructions for performing both null 164 

models are presented in Appendix S1. 165 

Predictions 166 

If nestedness and modularity coexist at large network scales as two sides of the same 167 

coin, we expected nestedness between species of different modules (NODFDM) to be 168 

equal to or higher than expected by their degrees (i.e., the free null model). Otherwise, if 169 

modularity constrains nestedness between pairs of species of different modules, we 170 

expect NODFDM to be smaller than expected by their degrees. 171 

Notice, however, that NODF between pairs of species of the same module (NODFSM) 172 

will be higher than expected by species degrees whether or not modules are internally 173 

nested. This would happen since, by definition, species of the same module share more 174 
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interactions with one another than expected by their degrees, regardless of those 175 

interactions being nested or not. Hence, a NODFSM value higher than expected by the 176 

free null model is a necessary, but not sufficient condition, for a network to have a 177 

compound topology. This is the reason why we need the restricted null model – which 178 

also conserves the modular structure of the original matrix when generating the null 179 

matrices (Additional Information 1) –, to test whether NODFSM is higher than expected 180 

given the modular structure.  On the one hand, if the network is formed by modules that 181 

are not internally nested, NODFSM should be higher than expected by the free null 182 

model, but lower than expected by the restricted null model. On the other hand, if the 183 

network is formed by internally nested modules (i.e., a compound topology), NODFSM 184 

should be higher than expected by both the free and restricted null models. 185 

But why did we not individualize each module and, then, test its nestedness 186 

independently? Although this would be a valid procedure to test NODFSM,  it would not 187 

allow to test whether interactions between pairs of species of different modules 188 

(NODFDM) are more nested than expected given the constraints imposed by the 189 

modules. This can be done by comparing the observed NODFDM with that expected by 190 

the restricted null model. 191 

Z-Score 192 

For each main component of the 16 networks (the global network and 15 local 193 

networks), we generated 1,000 random matrices using the free null model and another 194 

1,000 matrices using the restricted null model. Next, for each random matrix, we 195 

computed its overall NODF and decomposed it into NODFSM and NODFDM using the 196 

observed partitions of their corresponding real network. 197 

Finally, for all combination of matrices (16 in total: 1 global and 15 local), null models 198 

(2: free and restricted), and NODF metrics (3: NODF, NODFSM and NODFDM), a Z-199 
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score was calculated as Z = [Valueobs – mean(Valuesim)] / σ(Valuesim), where Valueobs is 200 

the observed value of the metric and Valuesim represents the values of the metric in the 201 

randomized matrices. Observed and expected modularity values were also compared 202 

using Z-scores, but only for the free null model, as it does not make sense to compare 203 

observed and expected modularities with a null model that fixes the modules. 204 

Nestedness and modularity standardized by null models will be called relative 205 

nestedness and relative modularity, respectively. For simplicity, they will be represented 206 

here as ZF or ZR, depending on the null model, followed by the metric name (e.g, ZFQ 207 

and ZFNODFSM represent, respectively, relative modularity and relative nestedness 208 

between pairs of species of the same module, when standardized by the free null model). 209 

Our goal was to see how modularity and nestedness interact with each other in a 210 

continuous way. Therefore, in all analyses we used the original Z-scores, without 211 

classifying them as significant and non-significant. 212 

Matrix plotting 213 

The interaction matrices were reorganized to maximize between- and within-module 214 

nestedness as done in previous studies (Flores et al. 2013, 2016). Briefly, we first 215 

reordered the matrix rows and columns by degree without disrupting its modular 216 

structure and, then, permuted the modules in order to find the arrangement of modules 217 

which maximizes the overall NODF of the matrix. This procedure facilitates the 218 

visualization of a compound topology, if one exists. 219 

Specialization versus performance at different scales 220 

Performance index 221 

In the host-parasite literature, the performance of a parasite in a host is usually 222 

quantified indirectly through some metric assumed to reflect it: e.g, prevalence, 223 
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intensity, or abundance (Poulin 2007). We chose abundance: the average number of 224 

individual fleas per individual mammal (calculated including infected and uninfected 225 

hosts). This choice is justified as abundance is considered a good measure of 226 

performance in host-parasite systems (Krasnov et al. 2006), since it integrates intensity 227 

of infestation and prevalence in a single metric (abundance = intensity of infestation 228 

times prevalence), measuring different aspects of parasite performance. While intensity 229 

of infestation is the average number of individual parasites per infected individual host, 230 

prevalence is the proportion of infected individuals in the host population. 231 

Generalism within modules and between modules 232 

For each flea species, specialization within and between modules was measured through 233 

its cartographic position in the network: its within-module degree (Z, which should not 234 

be confused with the Z-score of the null models) and participation coefficient (P) 235 

(Guimerà & Amaral 2005). 236 

These two metrics define the functional role of a species in a network, and they are 237 

respectively related to the number of interactions a species makes with other species of 238 

its own module and with species of other modules. Z and P values were calculated 239 

independently for each local network. 240 

Mixed models 241 

We used mixed models (Bolker et al. 2009) to test whether flea performances are 242 

positively correlated with their within-module degrees (Z) and negatively correlated 243 

with their participation coefficients (P). Linear mixed models (LMMs) were built by the 244 

lmer function of the lme4 package (Bates et al. 2015), and fitted by restricted maximum 245 

likelihood (REML). 246 

We used the log-transformed abundance of each parasite species in each host species in 247 
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each region as the response variable, Z and P values for each flea species in each region 248 

as the explanatory variables, and host species, parasite species and region as crossed 249 

random factors. We decided to use parasite abundances per host species, rather than 250 

average it between all hosts exploited by a flea, to control for host characteristics known 251 

to affect abundance (e.g., carrying capacity, susceptibility, and richness of parasite 252 

fauna) (Krasnov et al. 2005). Averaging would also decrease the power of the analysis 253 

(Hopkins 1982; Schank & Koehnle 2009). 254 

In addition, as pointed out in Box1 (see also Fig. 4 in Pinheiro et al. (2016)), in local 255 

networks composed of very similar resources, we should not expect to find either a 256 

negative relationship between abundance and P or modules. In those networks, the 257 

modules recovered by the DIRTLPAwb+ algorithm will be spurious, not imposing 258 

constraints to interactions, and the measured NODFDM should be higher than expected 259 

by species degrees (the free null model). To test this prediction, we included an 260 

interaction between ZFNODFDM and the fixed factors of the model (P and Z). We expect 261 

ZFNODFDM not to have an influence on the effect of Z on abundance, but to influence 262 

the effect of P. Specifically, we expected that the effect of P on abundance should be 263 

negative only in local networks in which the modular structure constrains nestedness 264 

between pairs of species of different modules, that is, in local networks with negative 265 

values of ZFNODFDM. 266 

We used backward stepwise regression to select fixed and random effects, following the 267 

procedure suggested by Bolker et al. (2009). We used the anova function of the stats 268 

package to perform a likelihood ratio (LR) test on the random effects (to which the 269 

models are refitted with maximum likelihood) and, then, used the Anova function of the 270 

car package to perform Wald X
2
 tests on the fixed effects. To tell apart the variance 271 

explained by either the fixed or random factors in the minimal selected model, we used 272 
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the r.squaredGLMM function of the MuMIn package for R to compute both marginal 273 

and conditional R squared (Nakagawa & Schielzeth 2013). The confidence intervals of 274 

the parameters were obtained by bootstraping using the confint.merMod function of 275 

lme4 package. The confidence interval of the conditional effect of P given ZFNODFDM 276 

was also computed by simulation using the interplot function of interplot package. 277 

RESULTS 278 

Topology 279 

Global network 280 

The global network presented higher modularity (ZFQ = 51.13) and overall nestedness 281 

equal (ZFNODF = 0.39) to that expected by the free null model. However, the observed 282 

scores of nestedness were much higher between pairs of species of the same module 283 

than between pairs of species of different modules (NODFSM = 45.47, NODFDM = 9.85). 284 

In addition, as expected if the modules constrain nestedness between species of different 285 

modules, NODFDM was smaller than expected by the free null model (ZFNODFDM = -286 

13.46) (Fig. 2a), but equal to expected by the restricted null model (ZRNODFDM = 0.22) 287 

(Fig. 2b). Finally, nestedness between pairs of species at the same module was higher 288 

than expected by both null models (ZFNODFSM = 53.89, ZRNODFSM = 22.08) (Fig. 2a-289 

b). 290 

Those results strongly support the hypothesis that the global flea-mammal network has 291 

a compound topology, which can be easily seen when we plot the interaction matrix 292 

maximizing nestedness without disrupting its modular structure (Fig 3). 293 

Local networks 294 

Nestedness and modularity varied widely among local networks, which, in general, 295 

were more nested (ZFNODF = 2.03 ± 1.94) than modular (ZFQ = 0.36 ± 1.31) (Fig. 4a).  296 
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 297 

Figure 2: Observed values (dots) of NODF, NODFSM, and NODFDM in the global network contrasted 298 

with the values expected by species degrees (distributions) in the absence (a: free null model) or presence 299 

(b: restricted null model) of a modular structure. NODF: overall nestedness. NODFSM: nestedness 300 

between pairs of species of the same module. NODFDM: nestedness between pairs of species of different 301 

modules. As expected if the global network has a compound topology, NODFSM is higher than expected 302 

by both null models, and NODFDM is smaller than expected by the free null model and equal to that 303 

expected by the restricted null model. 304 

However, some relationships between these two topologies were evident. First, both 305 

observed and relative overall nestedness (NODF) (Fig. 4a, c and e; and Appendix S2: 306 

Table S2) decreased as modularity increased. Second, the same pattern was true for 307 

nestedness between pairs of species of different modules (NODFDM) (Fig. 4a,c and e; 308 

and Appendix S2: Table S2). Third, although nestedness between pairs of species of the 309 

same module (NODFSM) was not significantly related to modularity in any case 310 

(Appendix S2: Table S2), the ZFNODFSM showed a trend to increase with ZFQ (Fig. 4c). 311 

In addition, as for the global networks, observed and relative values of NODFSM were 312 

higher than those of NODFDM (Fig. 4b,d and f), and the difference between them 313 

increased with modularity. Finally, NODFSM values were higher than expected by both 314 

null models, while NODFDM values were smaller than expected by the free null model 315 
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but equal to that expected by the restricted null model (Fig. 4b,d and f). 316 

 317 

Fig. 3: Interaction matrix reorganized to maximize between- and within-module nestedness 318 

without disrupting the modular structure of the network. Interactions within modules (delimited 319 

by boxes) are showed in black, while those outside modules are showed in gray. Flea species 320 

are represented in rows and mammals in columns. The compound topology of the global 321 

network is evident. 322 

Specialization versus performance 323 

Random factors explained a significant portion of the variance in flea abundance 324 

(Appendix S2: Table S3). In addition, as expected, only the within module degree (Z), 325 

participation coefficient (P), and the interaction between P and ZFNODFDM significantly 326 

affects flea abundances. Neither ZFNODFDM nor its interaction with Z was retained in 327 

the minimum selected model (Appendix S2: Table S4 and Table S5).   328 

 329 
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 330 

Figure 4: Relationship between observed and relative (ZF and ZR) scores of nestedness 331 

components (NODF, NODFSM and NODFDM) and modularity in local networks. ZF and ZR 332 

represent the relative score of a metric (nestedness or modularity) standardized by the score 333 

expected in the absence (the free null model) or in the presence (restricted null model) of the 334 

modular structure, respectively. NODF (green): overall nestedness. NODFSM (purple): 335 

nestedness between pairs of species of the same module. NODFDM (orange): nestedness between 336 
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pairs of species of different modules. Left panels (a, c and e): relationship between observed and 337 

relative nestedness and modularity scores. Right panels (b, d and f): box plots of observed and 338 

relative nestedness scores. Notice that relative modularity is always standardized by modularity 339 

expected by the free null model, both in c and e. Lines show significant relationships (p<0.05). 340 

On the one hand, flea abundances were always positively correlated with within-module 341 

degree (Z) (Fig. 5). On the other hand, as expected, the relationship between flea 342 

abundance and participation coefficient (P) changed from positive to negative as the 343 

NODFDM becomes smaller than expected by the free null model, crossing zero at 344 

ZFNODFDM ≈ -2 (Fig. 5). In addition, the predicted positive effect of participation 345 

coefficient (P) on flea performance was higher than that of within-module degree (Z) 346 

when NODFDM becomes equal to or higher than expected by the free null model. 347 

Finally, although the complete models explained a large amount of data variance, the 348 

fixed factors were responsible for only a very small fraction of the explanation (R
2

(m) = 349 

0.086, R
2

(c) = 0.53). 350 

DISCUSSION 351 

In the present study, we provide strong support for the integrative hypothesis of 352 

specialization (Pinheiro et al. 2016) using a continent-wide host-parasite network. We 353 

confirmed both (i) the emergence of a compound topology in the local and global 354 

networks (Fig. 2, 3 and 4); and (ii) the scale-dependence of the relationship between 355 

specialization and performance (Fig.  5). Our results unite two long-standing debates in 356 

the ecological literature within the same theoretical framework and provide clues to 357 

their solution. 358 

Nestedness versus modularity 359 

What is the predominant topology in ecological networks: nestedness or modularity?  In 360 
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the past decades, conflicting results have been reported, leaving us with three possible 361 

scenarios. First, different systems, taxa, and interaction types lead to networks with 362 

different topologies. For instance, it has already been suggested that antagonistic 363 

networks tend to be modular, while mutualistic networks tend to be nested (Thebault & 364 

Fontaine 2010). Second, both topologies coexist as two sides of the same coin (Fortuna 365 

et al. 2010), with the nested structure superimposed over the modular structure. Third, 366 

alternative topologies should become manifest at different network scales, resulting in a 367 

compound topology (Lewinsohn et al. 2006). Our results provide strong support for the 368 

third scenario. 369 

At first glance – considering only that the global and some local flea-mammal networks 370 

presented scores of nestedness and modularity higher than or equal to those expected by 371 

their species degrees (free null model) (Fig. 2a and Fig. 4c-d) – one could conclude that 372 

those two topologies coexist in the flea-mammal networks as two emergent properties 373 

of the same underlying phenomenon. However, the observed and relative values of 374 

modularity and overall nestedness were negatively correlated in the local networks (Fig. 375 

4a,c and e). And while nestedness between pairs of species of the same module was 376 

higher than expected by the species degrees (NODFSM), the opposite was true for 377 

nestedness between pairs of species of different modules (NODFDM) (Fig. 4d). In 378 

addition, the difference between these two sets of nestedness increased with modularity 379 

(Fig. 4a,c and e). Together, those results strongly suggest that modularity constrains 380 

nestedness at large topological scales of this host-parasite system. 381 

 382 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2017. ; https://doi.org/10.1101/236687doi: bioRxiv preprint 

https://doi.org/10.1101/236687
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

 383 

Figure 5: The predicted effects of within-module degree (Z) and participation coefficient (P) on 384 

flea performances (abundance) for different values of ZFNODFDM (relative nestedness between 385 

pairs of species at different modules in a given local network when compared to that expected 386 

by the restricted null model). Lines show the predicted effects of P and Z on abundance (and its 387 

95% confidence intervals), while dots indicate the fifteen local networks. As expected by the 388 

IHS, the effect of P changes from negative to positive (becoming higher than the positive effect 389 

of Z) as nestedness between species in different modules increases. The effect of Z on 390 

abundance in a given local network is independent of ZFNODFDM. 391 

However, as pointed out in the Methods section, to say that the modules constrain 392 

nestedness between species of different modules and increase nestedness between 393 

species of the same module is a truism, a logical consequence of the definition of 394 

modules itself. In ecological terms, it is like saying that species preferences 395 

(specialization) constrain resource breadth processes (Brown 1984), which is trivial. A 396 

much more interesting issue would be to evaluate if interactions are more nested than 397 
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expected given the species preferences, which are reflected in the network modular 398 

structure. This raises two questions. 399 

First, is nestedness between pairs of species of the same module higher than expected 400 

given that they have similar dietary preferences, i.e, that they belong to the same 401 

module? By comparing the observed NODFSM to that expected by the species degrees in 402 

the presence of a modular structure (the restricted null model), we showed that this is 403 

true for the flea-mammal network, which is formed by internally nested modules (Fig. 404 

3). 405 

Second, is nestedness between pairs of species of different modules higher than 406 

expected given that they have dissimilar dietary preferences, i.e, that they belong to 407 

different modules? That is, when a consumer ci of module A pervades the modular 408 

structure and consumes resources from module B, will ci consume the most consumed 409 

resources of module B? By comparing NODFDM to that expected by the restricted null 410 

model, we show that this is also the case in the studied host-parasite system, since both 411 

in the global (Fig. 2b) and the local networks (Fig. 4f) the interactions between species 412 

of different modules were equally nested as expected by the restricted null model. 413 

This scenario (NODFSM and NODFDM equal to or higher than expected given the 414 

modular structure) suggests that, once the constraints imposed by modules are 415 

overcome, the same processes that structure interactions within modules also structure 416 

the few interactions outside them. This does not necessarily need to be true, since 417 

competitive exclusion would predominate over resource availabilities outside the 418 

modules. For example, if parasites have poor performances in hosts that do not belong 419 

to their modules, diffused competition would prohibit parasites of module B to 420 

successfully establish themselves in the most exploited hosts of module A. If this 421 

happened, parasites would become supertramps (Diamond 1975) when exploiting hosts 422 
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of other modules, and an antinested pattern of interactions would emerge between pairs 423 

of species of different modules (Poulin & Guégan 2000). Although it is not true in the 424 

flea-mammal network, it is an interesting question to be addressed in other systems. 425 

Understanding the processes governing the spillover of species interactions between 426 

modules has important practical implications.  It may help, for example, to predict 427 

which species are the most likely to invade new habitats or which parasite species are 428 

most likely to emerge in new hosts (Pimm 1991). 429 

The hypotheses of trade-offs and resource breadth 430 

What is the expected relationship between the resource range of a species and its 431 

average performance at exploiting these resources (Futuyma & Moreno 1988)? As in 432 

the case of network topology, conflicting results have been reported, and two scenarios 433 

are possible. First, the relationship between resource breadth and average performance 434 

varies among systems, taxa, places, and interaction types.  Second, this relationship 435 

should change at different community scales, from negative at larger scales to positive 436 

at smaller scales, as predicted by the IHS (Pinheiro et al. 2016). 437 

Our results provide strong support for the second scenario (Fig 5). In local networks 438 

where modules represent a significant restriction to interactions, the relationship 439 

between flea abundance and generalism changed from positive within to negative 440 

among modules, as predicted by the IHS. In addition, the effect of P on abundance 441 

became more negative as the modular structure imposed more constraints on the 442 

interactions. Therefore, if the community (or, at least, the part we sampled) is composed 443 

of more than one module, a multi-scale relationship between specialization and 444 

performance should emerge. Otherwise, if the community is composed of very similar 445 

resources (i.e., just one internally nested module), we expect a simple positive 446 

relationship between generalism and performance. A further step would be to test if the 447 
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contradictory results reported by previous studies which addressed the relationship 448 

between performance and generalism would also be explained by differences in the 449 

scale of each community studied. While some of them focused on different populations 450 

of the same resource species (e.g, Szollõsi et al. 2011) others sampled entire resource 451 

communities (Poulin 1998; Hellgren et al. 2009). 452 

Fort et al. (2016) showed that higher abundance implies greater generalism in 453 

ecological networks, and not the contrary (but see Dorman et al. (2017)). That is, 454 

abundant species (the most available ones) are generalist because they have higher 455 

probability of finding potential interaction partners. This makes sense in the context of 456 

the IHS: the species with higher performances in exploiting a given set of similar 457 

resources reach higher abundances and, then, interact freely with a large number of that 458 

resources in the absence of trade-offs. Alternatively, although the nestedness between 459 

pairs of species of different modules was equal to the expected one given the modular 460 

structure in most of the local networks, the negative relationship between P and 461 

abundance suggests that generalism between modules has a negative effect on 462 

abundance, due to trade-offs. Therefore, although a species that is a hub in its own 463 

module would eventually spill over on the most connected species of other modules, if 464 

this species evolves adaptations to interact with a broad spectrum of dissimilar species, 465 

which makes it a hub in the entire network, this would have a negative impact on its 466 

performance. 467 

Concluding remarks 468 

Some authors have pointed out that discontinuities are much more common in nature 469 

than previously thought. In addition, recent theoretical models (Holt 2006; Scheffer & 470 

van Nes 2006) suggest that, contrary to the principle of limiting similarity (Macarthur & 471 

Levins 1967), a balance between neutral and niche processes might generate self-472 
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organized clusters of similar species, which have been called emergent groups (Hérault 473 

2007). The IHS and the compound topology are in complete agreement with this view. 474 

In fact, the idea that trade-offs generate modules, while a coupling between the 475 

availabilities of resources and consumers determines the dynamics inside each module, 476 

generating nestedness, suggests that there is a balance between niche processes at large 477 

scales and neutral processes at small scales. 478 

Finally, we are not proposing that every ecological network should, necessarily, have a 479 

compound topology. Although it is likely that all nested matrices are modular at a larger 480 

scale, because any interactions should be constrained at some point, not all modules 481 

need to be internally nested. Several other patterns might be observed within a module, 482 

each resulting from different underlying mechanisms (Presley et al. 2010). The methods 483 

and the conceptual framework developed in our study provide tools to investigate these 484 

patterns. 485 

BOX 1 - The integrative hypothesis of specialization 486 

Earlier coined the “integrative hypothesis of parasite specialization” (IHPS) (Pinheiro et 487 

al. 2016), the hypothesis was proposed in the context of host-parasite interactions as a 488 

solution to an old controversy in the parasitological literature: what is the expected 489 

relationship between generalism and performance of parasites (Poulin 2007)? 490 

However, since its assumptions are broad enough to apply to other interactions systems, 491 

we describe it here as valid for any consumer-resource system and call it “the 492 

integrative hypothesis of specialization” (IHS). The IHS states that consumer-resource 493 

interactions are structured by a balance between resource breadth processes (Brown 494 

1984) at small and trade-offs at large community scales. 495 
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On the one hand, at small community scales, resources should be very similar to one 496 

another and an adaptation (the arrow in Fig. 1a) that increases the intrinsic performance 497 

of a consumer in exploiting a specific resource type should also be an adaptation to all 498 

other resource types (the “+” in Fig 1a). Therefore, we do not expect to find preferences 499 

(e.g, phylogenetic, phenetic, or geographic signals) in consumer-resource interactions at 500 

small scales. Instead, a coupling between resource availabilities and intrinsic consumer 501 

performances should produce a nested pattern of realized performances: the resources 502 

with highest availability should be more strongly exploited by all consumers, in 503 

proportion to the intrinsic performances of the consumers on those resources (Fig. 1b).  504 

Consequently, by sampling small scales of a community, one should find both a nested 505 

pattern of interactions (Fig. 1c), and a positive relationship between generalism and 506 

performance (Fig. 1d). This last pattern (Fig. 1d) is similar to the positive occupancy-507 

abundance relationships widely reported for biogeographic data (Gaston & Blackburn 508 

2000), normally explained by Brown’s resource breadth hypothesis (Brown 1984). 509 

Since the mechanisms described above are very similar to that proposed by Brown, but 510 

adapted to a context of interactions, we summarize them as resource breadth processes. 511 

On the other hand, at larger community scales, the IHS states that there are trade-offs in 512 

the capacity to exploit resources of different clusters. Specifically, adaptations to a 513 

specific resource type (the arrow in Fig. 1e) should also be adaptations to other similar 514 

resource types of the same cluster (the “+” in Fig. 1e), but maladaptations to dissimilar 515 

resources of other clusters (the “-” in Fig. 1e). Thus, the pattern of realized 516 

performances described above (Fig. 1 b) should be restricted to within each resource 517 

cluster (Fig. 1f). In this context, the different clusters of resources are the real units of 518 

specialization and the true generalist consumers are those that can exploit resources at 519 

several clusters (blue species in figure 1). Consequently, by sampling large scales of a 520 
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community, we do not expect to find a completely nested network, but rather a modular 521 

network with internally nested modules (i.e., a compound topology) (Lewinsohn et al. 522 

2006) (Fig. 1g). In addition, although we expect a positive relationship between 523 

performance and generalism within each cluster of similar resources, we also expect 524 

trade-offs to result in a negative relationship between performance and capacity to 525 

exploit resources of different clusters (modules in the network) (Fig. 1h). 526 

Krasnov et al. (2004) have already suggested that the relationship between performance 527 

and generalism should be negative in communities composed of dissimilar resources, 528 

but positive in communities composed of similar resources. Indeed, Krasnov et al’s 529 

suggestion and the IHS have the same underlying rationale: the probability of an 530 

adaptation to a given resource of being also an adaptation to other resources (i.e, the 531 

resource breadth hypothesis) is higher the more similar the resources are. The IHS is 532 

just a more inclusive hypothesis that also predicts the relationship between 533 

specialization and performance in communities in which resource dissimilarity is not 534 

gradually structured, that is, in communities with clusters of similar resources separated 535 

from one another by gaps of dissimilarity (Allen 2006). 536 

SUPPLEMENTARY FILES 537 
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