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Abstract

A natural way to benchmark the performance of an analytical experimental setup is to use
samples of known content, and see to what degree one can correctly infer the content of such a
sample from the data. For shotgun proteomics, one of the inherent problems of interpreting data is
that the measured analytes are peptides and not the actual proteins themselves. As some proteins
share proteolytic peptides, there might be more than one possible causative set of proteins resulting
in a given set of peptides and there is a need for mechanisms that infer proteins from lists of detected
peptides. A weakness of commercially available samples of known content is that they consist of
proteins that are deliberately selected for producing tryptic peptides that are unique to a single
protein. Unfortunately, such samples do not expose any complications in protein inference. For a
realistic benchmark of protein inference procedures, there is, therefore, a need for samples of known
content where the present proteins share peptides with known absent proteins. Here, we present
such a standard, that is based on E. coli expressed human protein fragments. To illustrate the
usage of this standard, we benchmark a set of different protein inference procedures on the data.
We observe that inference procedures excluding shared peptides provide more accurate estimates
of errors compared to methods that include information from shared peptides, while still giving a
reasonable performance in terms of the number of identified proteins. We also demonstrate that
using a sample of known protein content without proteins with shared tryptic peptides can give a
false sense of accuracy for many protein inference methods.

Introduction

Shotgun proteomics offers a straightforward method to analyze the protein content of any biological
sample. The method involves proteolytic digestion of the proteins into peptides, which greatly improves
the efficiency of the technique, but also introduces a problem for the subsequent data processing. As
the mass spectrometers are detecting ions from peptides rather than proteins directly, the evidence
for the detection of the peptides has to be integrated into evidence of the presence of proteins in the
original sample, using a protein inference algorithm [1].

This protein inference procedure is complicated by the homology within most proteomes, many
proteins share constituent proteolytic peptides and it is not clear how to best account for such shared
peptides. For example, should we see shared peptides as evidence for all, a subset, or none of its
potential aggregate proteins? While the field of computational proteomics starts to reach consensus
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on how to estimate the confidence of peptide-spectrum matches (PSMs) and peptides, there is still
relatively little work done in establishing standards that evaluate how much confidence we can give
reported protein inferences, or even what the best methods to infer proteins from shotgun proteomics
data are.

Currently, there are two available methods to determine the accuracy of inference procedures
and their error estimates: (i) simulations of proteomics experiments and (ii) analysis of experiments
on samples with known protein content. By simulating the proteolytic digestion and the subsequent
matching of mass spectra to peptides [2, 3, 4] one can obtain direct insights into how well the simulated
absence or presence of a protein is reflected by a protein inference procedure. However, there is always
the risk that the assumptions of the simulations are diverging from the complex nature of a mass
spectrometry experiment. Hence, accurate predictions on simulated data can only be viewed as a
minimum requirement for a method to be considered accurate [4].

A more direct characterization of protein inference procedures can be obtained by analyzing exper-
iments on samples of known protein content [5]. For such experiments, a protein standard is assembled
from a set of isolated and characterized proteins and subsequently analyzed using shotgun proteomics.
Normally, the acquired spectra are searched against a database with sequences from proteins known
to be present, as well as absent proteins [6]. Two notable protein standards are available today, the
ISB18 [5], and the Sigma UPS1/UPS2 standard. Both standards consist of a relatively limited set of
proteins, 18 proteins in the ISB18, and 48 proteins in the UPS. However, neither of those standards
produce tryptic peptides shared between multiple protein sequences. Hence, these standards are a
poor fit for benchmarking protein inference algorithms, as the real difficulty of protein inferences is
proteolytic peptides shared between multiple proteins.

Here, we present a benchmark dataset specifically designed for the protein inference problem. Two
different samples of defined content were created from pairs of proteins that share peptides. These
protein standards are a by-product from the antibody production from the Human Proteome Atlas
project (http://www.proteinatlas.org/) [7], where protein fragments, referred to as Protein Epitope
Signature Tags (PrESTs), are expressed in recombinant E. coli strains as antigens to be injected into
rabbits to raise polyclonal antibodies. We demonstrate that such protein fragments can be used for
benchmark protein inference procedures and for evaluating the accuracy of any confidence estimates
such methods produce. This dataset has also previously been made available in anonymized form as
a part of the iPRG2016 study (http://iprg2016.org) on protein inference. Here, we also evaluated
a set of principles for protein inference with the sets.

Methods

Data generation

To generate the datasets, the PrEST sequences of the Human Proteome Atlas-project were scanned
for 191 overlapping pairs of PrEST sequences. From these pairs, two pools A and B were created with
overlapping peptide sequences. Each pool contained only one of the PrESTs of each pair (Figure 1).
A third pool was created by mixing the pool A and B, resulting in a pool A+B. An amount of 1.8
pmol of each PrEST was added to either the pool A or pool B, and an amount of 0.9 pmol of all
PrESTs was added to the pool A+B. A total protein amount of 10 µg from each of the pools were
reduced with dithiothreitol and alkylated with iodoacetamide prior to trypsin digestion overnight and
each pool was mixed into a background of a tryptic digest of 100 ng Escherichia coli [BL21(DE3)
strain], resulting in three mixtures, Mixture A, Mixture B, and Mixture A+B. In effect, the resulting
concentrations of tryptic peptides shared between Mixture A and Mixture B were the same across all
three mixtures, while peptides unique to Mixture A or Mixture B appear in half the concentration in
Mixture A+B.

A per sample amount of 1.1 µg of each of three Mixtures was analyzed in triplicate by LC-MS/MS
in random order. The digests were loaded onto an Acclaim PepMap 100 trap column (75 µm × 2
cm, C18, 3 µm, 100 Å), washed for 5 minutes at 0.25 µL/min with mobile phase A [95% H2O, 5%
DMSO, 0.1% formic acid (FA)] and thereafter separated using a PepMap 803 C18 column (50 cm ×
75 µm, 2 µm, 100 Å) directly connected to a Thermo Scientific Q-Exactive HF mass spectrometer.

2

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2017. ; https://doi.org/10.1101/236471doi: bioRxiv preprint 

https://doi.org/10.1101/236471
http://creativecommons.org/licenses/by-nd/4.0/


The gradient went from 3% mobile phase B [90% acetonitrile (ACN), 5% H2O, 5% DMSO, 0.1% FA]
to 8% B in 3 min, followed by an increase up to 30% B in 78 minutes, thereafter an increase to 43%
B in 10 min followed by a steep increase to 99% B in 7 min at a flow rate of 0.25 µL/min. Data were
acquired in data-dependent (DDA) mode, with each MS survey scan followed by five MS/MS HCD
scans (AGC target 3e6, max fill time 150 ms, mass window of 1.2 m/z units, the normalized collision
energy setting stepped from 30 to 24 to 18 regardless of charge state), with 30 s dynamic exclusion.
Both MS and MS/MS were acquired in profile mode in the Orbitrap, with a resolution of 60,000 for
MS, and 30,000 for MS/MS.

Dataset

We assembled the data into a test dataset consisting of:

• Three FASTA-files, containing the amino acid sequence of the Protein fragments of Mixture A,
Mixture B, as well as the sequences of 1000 representative protein fragments that are known to
be absent from the sample.

• Twelve runs, consisting of triplicates of analyses of Mixture A, Mixture B, Mixture A+B and
“blank” runs without spike-ins, all run in a background of E. coli-lysates. These are provided in
Thermo raw data-format.

• An evaluation script, written in python.

The FASTA-files and scripts can be downloaded from https://github.com/statisticalbiotechnology/

proteoform-standard, and the mass spectrometry data is accessible from the pride database under
the project accession number PXD008425.

This dataset has been made available in anonymized form as a part of the iPRG2016 study (http:
//iprg2016.org) on protein inference. The sample mixtures can be made available on request, for
evaluation under other mass spectrometers than the one we used in this study.

Data Processing

The raw data files were converted to MS1 and MS2 format using ProteoWizard [8] and subsequently
processed by Hardklör [9] followed by Bullseye [10], through the interface of the Crux 2.1 package [11],
to set monoisotopic masses. The resulting ms2 spectra were then matched to separate target and
decoy sequence databases (described below) using Crux 2.1 [12, 11] and Percolator v3.01 [13, 14],
deriving peptide-level probabilities for each of the mass spectrometry runs.

The target protein database consisted of all three FASTA-files combined and the decoy database
was constructed by reversing the protein sequences of the target database.

For each of the runs we calculated protein-level Entrapment FDRs [6] by counting all matches to
PrESTs present in their analyzed mixture as correctly matched, and all matches to PrESTs absent
(i.e. stemming from the set of 1000 non-present PrESTs or from the set of the mixtures not used
in the sample) as being incorrectly matched. As the correct matches only map to present proteins,
whereas incorrect matches distribute over both present and absent proteins, we also normalized the
Entrapment FDR by the prior probability of the PrEST to be absent, the so-called πA [4].

Results

We constructed two mixtures, each containing 191 PrESTs, that is one out of each of the 191 pairs
of PrEST sequences with partially overlapping amino acid sequence (Figure 1). We analyzed the two
samples as well as a combination of the two using LC-MS/MS (see the Methods section).

The three datasets make an informative benchmark set. By matching the spectra of the dataset
against a bipartite database containing both the present and some absent PrEST sequences we obtain
a direct way to count the number of inferred PSMs, peptides, and proteins stemming from non-present
PrESTs [6]. More specifically this allows us to assess the fraction of identifications in a set that stems
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Figure 1: The design of the two mixtures A and B. Two mixtures were generated from 191 over-
lapping PrEST sequences. We generated mass spectrometry data from the two mixtures individually,
as well as from a combination of the two, A+B.

from absent PrESTs, which we here will refer to as the Entrapment FDR. However, unlike traditional
samples of known content, this standard contains overlapping protein fragments, which allows us to
assess the performance of protein inference algorithms in the presence of homology.

Protein inference

We tested a set of different protein inference algorithms against our test set. We first analyzed the data
using Crux [12, 11] and Percolator [13, 14], deriving peptide-level probabilities for each combination
of triplicate mass spectrometry runs. We subsequently compared the performance of the different
schemes for inferring proteins and their confidence.

First, there are different ways to infer proteins from peptide sequences. The major difference
between the methods relates to how they handle so-called shared peptides, that is peptide sequences
that due to homology or other reason could stem from more than one protein. The tested inference
methods were:

Inclusion – Possibly the easiest way to handle shared peptides is to assign any found peptide to
all its possible causative proteins. Under this assumption, we infer the presence of any protein
which links to an identified peptide.

Exclusion – Another method is to remove any shared peptides before any reconstruction takes
place. Under this assumption, we infer the presence of any protein which links to an identified
peptide unique to the protein.

Parsimony – A method that is quite popular for handling shared peptides is to use the principle of
parsimony, i.e. to find the minimal set of proteins that would best explain the observations of
the PSMs with a score above a given threshold. This principle has been implemented in a couple
of well-known software tools such as IDPicker 2.0 [15], and MaxQuant [16]. In cases where there
are multiple such minimal sets of proteins, several strategies can be used: do not include any of
the sets, apply some form of protein grouping (see the Discussion section), or select one of the
sets, either at random or based on the order the proteins are listed in the database. Here, we
have opted to use the latter alternative, to select one of the sets at random.

Methods to rank protein identifications

More than just inferring the protein sequences, any practically usable protein inference strategy has
to assign confidence estimates in terms of posterior probabilities or false discovery rates. One way
to assign such protein-level statistics is by investigating decoy ratios, a process that depends on
assigning scores to rank our confidence in the different protein sequences. The different methods to

4

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2017. ; https://doi.org/10.1101/236471doi: bioRxiv preprint 

https://doi.org/10.1101/236471
http://creativecommons.org/licenses/by-nd/4.0/


obtain protein-level scores differ in the way they combine the confidence estimates of the proteins’
constituent peptides. We tested five different methods to score proteins:

Products of PEPs – This method summarizes a score for the protein’s constituent peptides by
calculating the product of peptide-level posterior error probabilities (PEPs) [16]. This method
has been extensively used by tools such as MaxQuant [16], PIA [17] and IDPicker [15].

Fisher’s method – Another method that relies on an assumption of independence between differ-
ent peptides’ incorrect assignment to a protein, is Fisher’s method for combining independent
p values, which is a classical technique for combining p values [18]. Fisher’s method takes into
account all constituent peptides of a protein [19, 20, 21], by summarizing the individual peptides
empirical p values. Unlike the product of PEPs, which also combines peptide-level evidence,
Fisher’s method explicitly accounts for the number of p values being combined and hence nor-
malizes for protein length to some extent.

Best peptide – Instead of weighting together peptide-level evidence for a protein, some investiga-
tors chose to just use the best available evidence for a protein [22]. Savitski et al. [23] showed
that, on large-scale data sets, taking the best-scoring peptide as the representative of a protein
was superior to incorporating information from lower-scoring peptides. This approach might feel
unsatisfying for most investigators, as the method discards all information but the best-scoring
PSM for each protein.

Two peptides A simple way to combine evidence at the peptide level is the widely used two-peptide
rule [24]. This approach requires evidence for a second peptide to support a protein inference,
thereby preventing so-called “one-hit wonders”, i.e., cases where a single, potentially spurious
PSM yields a spurious protein detection [22]. Furthermore, the recently published Human Pro-
teome Project Guidelines for Mass Spectrometry Data Interpretation version 2.1 requires “two
non-nested, uniquely mapping (proteotypic) peptides of at least 9 aa in length”, to count a
protein sequence as being validated with mass spectrometry [25].

Fido A more elaborate method to estimate the confidence in inferred proteins is to use Bayesian meth-
ods, represented here by Fido [26], which calculates posterior probabilities of proteins’ presence
or absence status given the probabilities of peptides correctly being identified from the mass
spectrometry data. Such methods are normally seen as inference procedures, but due to the
design of our study, we listed it as a confidence estimation procedure to be used in combination
with Inclusion inferences. Fido’s use requires selection of prior probabilities for protein pres-
ence, present proteins emitting detectable peptides and mismatches. These probabilities were
set using grid searches, as implemented when running Fido through Percolator [13].

In Supplementary Table S3 we have mapped a set of commonly used protein inference tools ac-
cording to the names of the inference and ranking principles we use in this paper.

Performance

First, we measured the performance of the permutations of inference and confidence estimation proce-
dures, in terms of the number of identified proteins at a 5% protein-level entrapment-FDR (see Table
1 and S1, as well as Figure S1). It is worth noting that there is a fundamental difference between
the different benchmark sets, for the set A+B all proteins that share tryptic peptides are present.
However, the sets A and B, contain tryptic peptides shared between absent and present proteins.

Comparing the different methods of dealing with shared peptides, we found that the Inclusion
and Parsimony methods reported more proteins than the Exclusion method when investigating the
A+B set that contains peptides shared between present proteins. However, for the A set that contains
peptides shared between the present and absent proteins, the Exclusion reports more proteins than
the Inclusion methods (except Fido) and the Parsimony methods.

For the different confidence estimation procedures, we noted that the Two peptides method
reported fewer proteins than the other methods, whereas Fido reports more proteins than the other
methods.
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Many implementations of Parsimony are two-step procedures, which first threshold on peptide-
or PSM-level FDR and subsequently infer the most parsimonious set of proteins. In such implementa-
tions, one ends up controlling the list of proteins at both peptide and protein-level. We chose to make
a more extensive test series of Parsimony for 1%, 5% and 10% peptide-level FDR (See Figure S3
and Table S2). A trend is observable for such data, for the A+B set, more proteins are observed
for similar protein-level FDRs when using a higher peptide-level FDR (e.g. 10%) than when using
a lower peptide-level FDR (e.g. 1%). However, the inverse is true for the A set, more proteins are
observed for similar protein-level FDRs when using a 1% peptide-level FDR than when using a 10%
peptide-level FDR. This is a consequence of the cases where the algorithm has to select one of many
minimal sized subsets explaining the observed peptides at random. Such a selection is not harmful
to the performance if all minimal subsets consist of present proteins, but might be harmful if one or
more of the minimal subsets contains absent proteins [27].

Inference Principle Scoring method A A+B

Anticipated number of PrESTs 191 · 1.05 = 382 · 1.05 =
201 401

Inclusion

Fisher’s method 112 390
Products of PEPs 124 395
Best peptide 0 395
Two peptides 0 381
Fido 181 388

Exclusion

Fisher’s method 182 345
Products of PEPs 184 355
Best peptide 185 355
Two peptides 171 309

Parsimony

Fisher’s method 181 365
Products of PEPs 181 365
Best peptide 174 365
Two peptides 181 344

Table 1: The number of inferred proteins at a 5% protein-level entrapment FDR from the
peptides derived from the triplicate runs. Note that, since we are inferring proteins known to
be present, any incorrect inferences will be added as additional proteins. Hence the maximal number
of inferred proteins is 5% higher than the number of proteins in the mixtures.

Accuracy of confidence estimates

Subsequently, we set out to estimate the accuracy of the different confidence estimates of the protein
inference procedures and hence plotted the entrapment FDR as a function of the methods’ reported
FDR in Figure 2 and Supplementary Figure S2.

All the tested methods reported acceptable and similar accurate statistics for the sets where the
shared peptides stem from proteins that are all present (set A+B). However, when comparing the
decoy and entrapment FDR for the sets with peptides shared between present and absent proteins
(set A) we see that none of the inference methods using Inclusion or Parsimony reported satisfying
decoy-derived FDRs.

The Exclusion principle, on the other hand, seemed to handle the sets with peptides shared
between present and absent proteins in a satisfying manner, and particularly the Fisher’s method and
the Products of PEPs gave quite accurate statistics for such data without reducing the number of
reported proteins.
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Figure 2: The accuracy of the tested confidence estimation procedures for different infer-
ence methods. The figures plots reported q values from the decoy model, the decoy FDR, against
the fraction of entrapment proteins in the set of identified target proteins, the observed entrapment
FDR using a peptide-level FDR threshold of 5%. The dashed lines indicate y = x/1.5 and y = 1.5x.
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Discussion

Here we have described a protein standard that can be used for comparing different algorithmic
approaches to inferring (sorted) lists of proteins from shotgun proteomics data. The set is particularly
useful for determining how to handle protein inferences in cases where a peptide could stem from
multiple different proteoforms. We used the dataset to compare a set of approaches for protein
inference and protein scoring models, and found that the reliability of protein inferences became more
accurate when excluding any peptides shared between multiple proteins as compared to, e.g. inferring
the most parsimonious set of proteins.

Many algorithms and tools that use Parsimony or Inclusion principles, group proteins according
to the peptide evidence that they share. Particularly in the case of Inclusion, the accuracy would
increase dramatically if we would have evaluated protein groups rather than individual proteins. We
have not included this option here for the sake of simplicity, not least because it confounds the null
hypothesis in a way that complicates a fair comparison between methods [27, 4].

While the set is larger and more complex than other samples of known content (several millions
of spectra), we see room for future improvements both in terms of more and longer protein sequences
than our current standard as well as more complicated patterns of shared peptides.

Recently, a couple of other benchmarks for protein inference algorithms have been published. First,
when selecting a protein inference strategy for Percolator, the authors used simulations to show that
excluding shared peptides and scoring the protein based on the best scoring peptide performed overall
better than the compared methods. However, on small-sized datasets, the method of multiplying
PEPs had a slight performance advantage [14].

Second, a large center study, Audain et al. [28], benchmarked a set of protein inference algorithm
implementations on “gold standards” i.e. manually annotated datasets. The authors conclude that
PIA [17] and Fido [26] perform better than the other analyzed implementations on their datasets. We
did not include PIA in our comparisons, but we did include Fido. In line with Audain et al., Fido
gave an excellent performance and calibration and on datasets where all proteins sharing a peptide
were present (set A+B). However, Fido’s assessment of reliability scores was less than ideal for the
datasets where the shared peptides’ causative proteins were from both the present and absent groups
(set A and set B). This behavior could not have been characterized using datasets lacking peptides
shared between multiple proteins, and it is hence not a surprise that such characteristics have not
been noted in previous studies.

The two-peptide rule performed poorly, as has been reported by several studies [22, 29, 30]. For
instance, Veenstra et al. wrote already in 2004 that “Simply disregarding every protein identified
by a single peptide is not warranted” [22]. Similarly, the FDRs reported after using parsimony to
handle shared peptides seems, in general, to be anti-conservative which is in line with what was
reported by Serang et al., “parsimony and protein grouping may actually lower the reproducibility
and interpretability of protein identifications.” [27].

In this study we have kept the peptide inference pipeline identical for all protein inference pipelines,
to enable a ceteris paribus comparison of the protein inference methods. We also have tried to bench-
mark principles rather than implementations but made an exception for the Fido inference method,
as this was readily available in the Percolator package that was used for the peptide inferences.
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