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Abstract

We present a technique applicable in any dynamical framework to identify
control-robust subsets of an interacting system. These robust subsystems, which we call
stable modules, are characterized by constraints on the variables that make up the
subsystem. They are robust in the sense that if the defining constraints are satisfied at
a given time, they remain satisfied for all later times, regardless of what happens in the
rest of the system, and can only be broken if the constrained variables are externally
manipulated. We identify stable modules as graph structures in an expanded network,
which represents causal links between variable constraints. A stable module represents a
system “decision point”, or trap subspace. Using the expanded network, small stable
modules can be composed sequentially to form larger stable modules that describe
dynamics on the system level. Collections of large, mutually exclusive stable modules
describe the system’s repertoire of long-term behaviors. We implement this technique in
a broad class of dynamical systems and illustrate its practical utility via examples and
algorithmic analysis of two published biological network models. In the segment polarity
gene network of Drosophila melanogaster, we obtain a state-space visualization that
reproduces by novel means the four possible cell fates and predicts the outcome of cell
transplant experiments. In the T-cell signaling network, we identify six signaling
elements that determine the high-signal response and show that control of an element
connected to them cannot disrupt this response.

Author summary

We show how to uncover the causal relationships between qualitative statements about
the values of variables in ODE systems. We then show how these relationships can be
used to identify subsystem behaviors that are robust to outside interventions. This
informs potential system control strategies (e.g., in identifying drug targets). Typical
analytical properties of biomolecular systems render them particularly amenable to our
techniques. Furthermore, due to their often high dimension and large uncertainties, our
results are particularly useful in biomolecular systems. We apply our methods to two
quantitative biological models: the segment polarity gene network of Drosophila
melanogaster and the T-cell signal transduction network.

Introduction 1

A key goal in the study of complex dynamical systems is to extract important 2

qualitative information from models of varying specificity (e.g., [1, 2]). This has been 3
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approached via the construction and analysis of qualitative models (e.g., discrete 4

models [3–7]) and also by analytic techniques applied to continuous systems [8–13]. In 5

this work, we present and implement a new approach to identifying control-robust 6

subsystem behavior that can drive the dynamics of the system as a whole. Our 7

approach applies to a large class of continuous, discontinuous, and discrete models. 8

Interacting systems are partially described by their regulatory networks. In these 9

networks, nodes represent each of the various interacting entities within the system, and 10

signed edges represent direct positive or negative influence. To better understand the 11

temporal character of the system, one can construct a dynamical model on the 12

regulatory network. First order Ordinary Differential Equations (ODEs) are a natural 13

choice for such models. The influence upon the value of each entity, xi, is represented as 14

ẋi = Fi (x), where the dependence of Fi upon xj is consistent with the influence of 15

entity j upon entity i. A validated model can be used to gain practical insights about 16

the system, such as how to drive it into a desired attractor. 17

There are two key challenges to the construction and analysis of ODE models of 18

complex interacting systems. First, there is often large uncertainty in measurements of 19

variable and parameter values. Second, these systems are typically high-dimensional, 20

which complicates phase-portrait visualization and other traditional qualitative analyses. 21

One approach to these challenges is to choose a more qualitative model. Discrete 22

models have been used to successfully model many biological phenomena, including 23

pattern formation and multistability [3, 4]. Despite the vast reduction in state-space 24

afforded by discretization of variable values, exhaustive searches for dynamical 25

behaviors are computationally infeasible in high-dimensional systems. Several methods 26

for identifying the causal structure of state-space in discrete models have been proposed, 27

including hierarchical transition graphs [14] and prime implicant graphs [15]. 28

An analogous concept in ODE models is that of positive invariant sets (also called 29

“trap spaces”) [16,17]. These are regions of state space that system trajectories may 30

enter but not exit. By identifying such spaces, one may make predictions about the 31

evolution of a system without integrating the governing ODEs. 32

A second strategy is that of examining features in the dynamical repertoire that 33

arise directly from the associated regulatory network and weak assumptions about the 34

form of the dynamic model. Structural controllability relates branching patterns in the 35

regulatory network to the identification of control targets that are sufficient to drive 36

linear dynamics on the network into any state [18]. This allows one to study system 37

control near a steady state. In many biological and chemical systems, however, the 38

dynamics are nonlinear and large disruptions from equilibrium are of interest. In such 39

systems, even when the dynamics are not specifically known, regulatory feedback loops 40

provide useful information for global control [19–23]. For example, given relatively 41

permissive continuity and boundedness assumptions, an ODE-described system can be 42

driven into any of its attractors by controlling any set of variables whose removal 43

eliminates all feedback loops and external inputs [19, 21,24]. Positive feedback loops in 44

particular are associated with the presence of multistability [8–12], which has been of 45

particular interest in biomolecular systems because it is necessary for cell-fate branching 46

and decision making [4, 25–28]. 47

Two existing approaches to identifying the effects of positive feedback loops are 48

especially relevant here. The first of these is the methods put forth by Angeli and 49

Sontag for studying monotone input-output systems (MIOS) [29]. Their approach 50

identifies steady states and their stability in systems lacking negative feedback loops or 51

incoherent feed-forward loops (in the general meaning of two directed paths of opposite 52

sign between two nodes). The second is based on the concept of stable motifs of 53

Boolean dynamical systems [22,30]. This method constructs an auxiliary network that 54

encodes the regulatory logic within its graph structure (in a similar vein as logic 55
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hypergraphs ( [5, 31]), enabling efficient identification of the system’s dynamical 56

repertoire. Within this auxiliary network, certain graph structures, called stable motifs, 57

correspond to positive feedback subsystems that sustain steady states that are 58

impervious to influence from the rest of the network (see S1 Appendix section 1 or [30] 59

for further details). In other words, stable motifs determine positive invariant sets. This 60

observation connects the concept of positive invariant sets to the regulatory network in 61

the Boolean case. Our work extends this connection to the continuous case. 62

Our framework encodes the causal relationships between variable constraints as the 63

network structure of an expanded network. An edge from one constraint (e.g., x > 0) to 64

another (e.g., y > 0) indicates that the first (x > 0) is sufficient to maintain the second 65

(y > 0). The expanded network helps to identify low-dimensional subsystems that drive 66

higher-dimensional dynamics. We show that stable modules, source-free expanded 67

subnetworks subject to certain consistency criteria, correspond to control-robust 68

positive-invariant sets of the originating dynamical system. Variables obeying stable 69

module constraints must be directly controlled (i.e., either receive exogenous input or be 70

made control variables) if the constraints are to be broken. This identifies variables that 71

must be controlled to disrupt certain behaviors (or, equivalently, it identifies variables 72

that cannot be controlled in such a way as to disrupt the behavior). 73

It is non-trivial to choose relevant variable constraints for the modeled system, but 74

in practice, the form of the regulatory functions often suggests natural candidates. 75

Furthermore, we leverage MIOS techniques to algorithmically specify meaningful 76

constraints in a class of systems common in biology (see S1 Appendix section 2). This is 77

implemented (S1 Source Code) as code that systematically scans for stable modules in 78

an input ODE system satisfying certain assumptions. Identifying several stable modules 79

in a systematic search highlights “decision points” in subsystems that determine 80

system-wide outcomes. 81

Results 82

Stable Modules Describe Control-Robust Behavior 83

The core of our analysis strategy lies in the interpretation of an auxiliary network that 84

is constructed from the dynamical system of interest. Following previous work in 85

Boolean systems [3, 32], we call this auxiliary network an expanded network. An 86

expanded network must be constructed from a given dynamical system. It is a network 87

on a node set consisting of statements about the values of variables (or, equivalently, 88

consisting of the regions of state-space in which these statements are true). There are 89

two types of directed edges between nodes. The first type, the maintenance edge, 90

indicates that one statement cannot become false while the other is true. The second 91

type, the driving edge, indicates that the sustained truth of the first statement implies 92

that the second statement will eventually become true. In this paper, our focus is on 93

continuous, autonomous ODE systems, although the concepts are presented in such a 94

way as to be readily adapted to other types of dynamical systems. In the following, we 95

describe the nodes and edges of an expanded network in more detail. In S1 Appendix 96

section 3, we provide a formal mathematical foundation for the following discussion. 97

In an expanded network, there are two types of nodes: virtual and composite. 98

Virtual nodes are statements about the values of dynamic variables that can be assigned 99

a definite truth value at any given time (e.g., the virtual node “x > 0” is true only when 100

the value of the variable x is positive). Virtual node statements can be viewed as 101

regions of state-space, and are true at time t if x (t) is in the corresponding region. 102

Composite nodes also take Boolean values, and correspond to the composition of virtual 103

nodes by “AND” (∧) rules. Each composite node receives directed edges from its factor 104
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virtual nodes. As such, all factors of a composite node must be represented as virtual 105

nodes in the expanded network. For example, the composite node x > 0 ∧ y > 0 is true 106

only when x and y are positive, and there are directed edges from x > 0 and y > 0 to 107

this composite node. In deterministic finite-level systems, it is possible to choose a finite 108

number of statements that fully characterize the state space [33], but in general, the 109

nodes of an expanded network embody partial information about the system. For a 110

given choice of virtual and composite nodes, the expanded network is unique, however, a 111

different choice of virtual nodes for the same system can lead to different expanded 112

networks. Some choices of virtual nodes are therefore more illuminating than others, 113

and choosing an informative set of virtual nodes is not always straightforward. In the 114

next section, we propose and implement a method to address this difficulty in a 115

particular class of systems. The remainder of this section covers general expanded 116

network properties, which are prerequisite for the methods of the next section. 117

Virtual nodes can receive two types of edges: a maintenance edge or a driving edge, 118

with the latter being a more restrictive version of the former. If a virtual or composite 119

node X must be false before a virtual node Y can change from true to false, we say that 120

X maintains Y and we draw a directed edge from X to Y in the expanded network. 121

Note that if a virtual node X describes a positive-invariant set in state-space that 122

remains positively invariant even under control of variables not involved in the 123

definition of X, then according to this definition X maintains X, which results in a 124

self-loop on X. This can happen if X describes a self-activating variable, for example. 125

In determining whether X maintains Y , we must consider all valid variable values that 126

might disrupt Y when X is true. These variable values are drawn from the region of 127

state-space in which the model is valid and experimentally accessible, e.g. a box in 128

state-space defined by the maximum and minimum values of each variable. By 129

considering values from this region of validity we simultaneously evaluate a large 130

number of system trajectories and control strategies. To explore whether control of one 131

system element can drive the system as a whole into particular regions of state-space, 132

one may also wish to impose the condition that an edge from X to Y indicates that the 133

truth of X implies the truth of Y in finite time (or, more briefly, X drives Y ); this 134

additional constraint is unnecessary when considering self-sustaining behavior. 135

A subnetwork, S, of an expanded network, N , is a stable module if it satisfies three 136

conditions: (i) all nodes X in S have a parent (regulator) node in S (possibly X itself if 137

it has a self-loop), (ii) if a composite node X =
∧n
i=1Xi is in S, then Xi is also in S for 138

i = 1..n, and (iii) it is possible for all nodes in S to be simultaneously true. For brevity, 139

we refer to subnetworks satisfying conditions (i), (ii), or (iii), as source-free, 140

composite-closed, or consistent, respectively. Our key result is the following: if all nodes 141

in a stable module are simultaneously true (i.e., if in that instant the system is in a 142

region of state-space for which all virtual node statements in the stable module are 143

true), then they remain true under all state-space configurations in the region of validity. 144

In the following we will call a stable module whose nodes are simultaneously true an 145

active stable module. 146

To prove our key result, consider by way of contradiction an active stable module, S 147

that deactivates. Let Y ∈ S be a virtual node that becomes false before or concurrently 148

with any other node in S. Because every node in S has a parent node in S, there is 149

X ∈ S that maintains Y . By the definition of maintenance edges, X (or one of its 150

factors if it is composite) must become false before Y does, violating the selection 151

criteria and thereby proving the result. 152

A stable module with no stable submodules is a stable motif. Under the condition 153

that a stable module, S, is active, we can simplify the expanded network by removing 154

any edges that point from a virtual node in S (e.g., x > 0) to a composite node outside 155

of S (e.g., x > 0 ∧ y > 0) because the condition expressed by this edge is now satisfied. 156
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We can also remove any node that is necessarily false when S is active (e.g., if S 157

contains the node x > 0, the node x < 0 can be removed). Stable motifs of the modified 158

expanded network are then identified and added to S in the original expanded network. 159

We thus iteratively form larger stable modules, building a sequence of stabilized 160

subsystems that drive system dynamics. When the activity of a stable module in one 161

sequence implies the inactivity of at least one stable module in another sequence, these 162

sequences are mutually exclusive. Collections of mutually exclusive sequences describe 163

the system’s dynamical repertoire. 164

Our definition of stable motifs encompasses the definitions of stable motifs given 165

in [30] for Boolean systems (see S1 Appendix section 1) and in [33] for multi-level 166

systems. This allows us to generalize many results from discrete modeling to general 167

dynamical systems. In particular, generalizing arguments in [22], we consider system 168

control via expanded network topology. It is often of interest to identify variables that 169

can activate a stable module (which may correspond, e.g., to a healthy cell state). This 170

can be achieved by solving the graph-theoretic problem of identifying stable module 171

driver nodes. A module driver node set D of module M in an expanded network is a set 172

of virtual nodes D such that the truth of all nodes in D implies the truth of all nodes in 173

M in finite time. Therefore, identification of a driver node set for a stable module 174

prescribes a control strategy to trigger the module behavior. Conversely, if a stable 175

module represents undesired behavior (e.g., a diseased cell state), one might seek to 176

disrupt it. Because stable modules are self-sustaining, control of variables not 177

represented in the undesired module can never achieve this goal. Disruption of a stable 178

module requires direct control of at least one of its represented variables. 179

To illustrate the method, and some of its utility, we analyze a toy example (Fig 1, 180

Eq. 1). In this toy example, we will choose statements for virtual nodes somewhat 181

arbitrarily, with the goal of illustrating how relationships between nodes in the 182

expanded network can be identified and interpreted. In later sections, we introduce a 183

more systematic approach to selecting virtual nodes that does not rely on the intuition 184

of the investigator. 185

u̇ =
1

1 + z
− u3 ẇ =y − w/2 ẋ =

1 + 4w + 4wz

(1 + 2w)(1 + 2z)
− x

ẏ =
x

x+ 1/2
− y ż =xf (y)− z f (y) ≥ fmin > 0 (1)

Here, we have very limited information about f (y); perhaps it is stochastic or 186

discontinuous. Nevertheless, by uncovering upper and lower bounds on components of 187

the ODE vector field, we can begin to assemble an expanded network one edge at a 188

time. For instance, if x > 1/2 holds, then ż > fmin/2− z is implied. If z is positive and 189

decreasing (ż < 0), it cannot decrease faster than fmin/2− z. In this case z would 190

asymptotically approach fmin/2. As a consequence, z will never fall to zero. Therefore, 191

as long as x is greater than 1/2, z cannot fall below 0 once it has become positive, and 192

so we say that x > 1/2 maintains z > 0. A similar argument applies in any case when x 193

is larger than an arbitrary positive value. Furthermore, if z is not positive, then ż is 194

strictly greater than fmin/2. Therefore z will eventually (in finite time) become larger 195

than zero and so we say x > 1/2 drives z > 0. We can therefore conclude that there is 196

an edge from x > 1/2 to z > 0 in the expanded network. Similarly, we see that x will be 197

maintained above 1/2 if w > 1/2 and z > 0 are both true. We therefore identify a 198

composite node (w > 1/2) ∧ (z > 0) with incoming edges from w > 1/2 and z > 0, and 199

an outgoing edge to x > 1/2. We continue to identify edges in the expanded network 200

and search for stable modules. Some of the subgraphs of the expanded network that can 201

be generated in this way are depicted in Fig 1 alongside the traditional network 202
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Fig 1. A network representation of the system given in Eq. 1 along with three
expanded networks. Each circular node represents a composite node formed by
composition of its parent nodes by an “AND” rule. Highlighted components are stable
motifs (and therefore also stable modules). These represent conditions that, once
satisfied, remain satisfied. In the overlapping motifs (marked in blue and red), we may
choose to consider the motif containing w > 1 (red), which gives more information
about the value of w when the motif is realized, or we may consider the w > 1/2 (blue)
motif, which is more readily realized (i.e., the threshold is smaller). By considering both
motifs together, we see that the w > 1/2 (blue) motif drives the w > 1 (red) motif, i.e.,
states satisfying w, x, y > 1/2 and z > 0 will eventually also satisfy w > 1. We remark
also that the stable motifs shown could be expanded to incorporate the other nodes
depicted in the components. Such structures are stable modules and are also
self-sustaining, but include nodes that are not necessarily part of any feedback loop;
they are instead driven by feedback elsewhere in the network.
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representation of the system. We have identified three stable modules, thereby proving, 203

for example, that if the systems satisfies x, y, w, z > 0 at any time, it will always satisfy 204

those conditions (as follows from the yellow module in the bottom left of Fig. 1). The 205

other two modules contain x, y > 1/2 and z > 0 as well as either w > 1 or w > 1/2 (see 206

bottom right panel of 1). Thus, if the system satisfies the four conditions given by 207

either module, it will continue to do so for all time. The arguments underlying the 208

construction of the subgraphs of the expanded network hold for any f (y) > fmin > 0, 209

and so we have extracted meaningful qualitative information despite large dynamical 210

uncertainty. In addition to the expanded networks and their subgraphs containing 211

stable modules, many that do not contain stable modules also exist (e.g., the top right 212

panel of 1). Such networks contain information regarding the consequences of directly 213

controlling particular nodes so that they satisfy virtual node statements (e.g., if we fix 214

y < 0, we see that w will eventually become negative). 215

Choosing virtual nodes defined by inequalities, as is our main focus here, has 216

important implications for how oscillations are observed. If a variable oscillates, but 217

remains above or below some threshold, the statement indicating the variable value 218

relative to that threshold can be part of a stable module. Alternatively, oscillations can 219

manifest in the expanded network as subnetworks with contradictory virtual nodes. For 220

instance, if ẋ = z + sin(y)− x, then z > z0 (where z0 is an arbitrary positive number) 221

maintains (and drives) x > z0 − 1 and z < z0 maintains (and drives) x < z0 + 1. 222

The main difficulty in identifying stable modules is determining what statements are 223

most useful for inclusion in the expanded network. If the statements are too general, 224

then either the results will not provide much insight, or the network will be too sparse 225

because the statements are not sufficiently restrictive to imply one another. If a 226

statement is too restrictive, on the other hand, it may have an in-degree of zero in the 227

expanded network, in which case it cannot be part of a stable motif. Despite these 228

challenges, we have found a straightforward approach to analyzing threshold behavior of 229

a large class of biologically relevant systems. 230

Application to Biological Systems 231

We consider a broad class of dynamical systems that take the form 232

ẋi = Fi (x) , (2)

where Fi is continuous, monotonic in each of its arguments, and strictly decreasing in xi. 233

This class of ODEs describes many biological systems (S1 Appendix section 2) and is 234

particularly well-suited to analysis in our framework. 235

The essential steps of the stable module identification process are as follows. First, 236

we identify all subgraphs of the regulatory network that are composed of positive 237

feedback loops. For each such subgraph, we construct two families of candidate stable 238

modules by conjecturing that each variable xi in the regulatory subnetwork has a 239

virtual node of the form xi > Ti or xi < Ti, where Ti is left unspecified (for brevity, we 240

denote this form by xi ≶ Tαi ). For each candidate module, we construct a “worst-case” 241

monotone system by replacing any variable regulatory effects that would introduce a 242

negative feedback loop or incoherent feedforward loop by constant regulatory effects. 243

This system is analyzed using the techniques of [29] such that equilibria of the 244

worst-case system yield thresholds Ti for which the candidate stable module is genuine. 245

In the following we provide the details of the process. 246

To each variable xi of a regulatory subnetwork under consideration, we assign a set 247

of thresholds {Tαi } and consider virtual node statements of the form xi ≶ Tαi . At this 248

stage, each Tαi may remain parameterized and the statements need not cover the full 249

dynamical range of xi. We create composite nodes
∧m
k=1

(
xik ≶ Tαk

ik

)
as needed. Next, 250
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we conjecture that particular edges exist in the expanded network for some (unspecified) 251

choice of threshold parameters. For instance, when activity of one variable, x1, is 252

sufficient for activation of another, x2, we would hypothesize the formation of an edge 253

x1 > T1 → x2 > T2. In the conjectured expanded network, we find source-free, 254

consistent, and composite-closed subgraphs, which serve as candidate stable modules. 255

Consider a candidate stable module, Sc, in the conjectured expanded network. 256

Consider also the regulatory subnetwork, Gc, made up of nodes represented in Sc and 257

all incident edges. Some of these incident edges are represented in Sc, while other 258

“external” edges are not. For example, a candidate stable module Sc in Fig 1 might be 259

y > Ty → w > Tw → x > Tx → y > Ty and the corresponding regulatory subnetwork 260

Gc consists of the positive cycle x, y, w and the additional external edge from z to x. 261

We note that external edges may exist between two nodes in Gc if the regulatory 262

relationship between these variables is not part of Sc. To identify bounds for the virtual 263

nodes that ensure that the candidate stable module Sc is genuine, we use the monotone 264

input-output systems (MIOS) methods of Angeli and Sontag [29], which apply to 265

sign-consistent systems (see S1 Appendix section 4). 266

The relationships represented in Sc constitute a sign-consistent subnetwork 267

(S1 Appendix section 4). Any sign-inconsistencies in Gc arise from external edges. To 268

construct a sign-consistent modified subsystem for Sc, we consider each variable xi 269

represented in Sc. Any external regulation of xi by yj is held fixed by replacing yj with 270

a “worst-case” value in Fi. The “worst-case” value is chosen such that xi is as close as 271

possible to Tαi in the stable module node xi ≶ Tαi ; because Fi is monotonic in each 272

argument by assumption, this is either yj ≡ inf yj or yj ≡ sup yj (i.e., when yj is as 273

large or small as possible within the region of validity). For example, if yj negatively 274

regulates xi and xi < Tαi is in Sc then we evaluate Fi
∣∣
yj=inf yj

. 275

Because the resulting modified subsytem is sign-consistent, we can apply the MIOS 276

procedure of Angeli and Sontag (Theorem 3 of [29]). For examples of this process for 277

sign-consistent systems, see [20,29]. To do this, we must verify that we can select a 278

variable, xk, called the “MIOS input variable” that has the property that maintaining 279

xk at a constant value drives the system to a single steady state for all initial values of 280

variable other than {xk} [20, 29]. The form of Eq. 2 implies that a node in the modified 281

system satisfies these conditions if its removal makes the modified system acyclic. 282

Once we have verified that a MIOS input variable can be chosen, we can follow 283

Angeli and Sontag [20,29] to find the steady states of the modified subsystem. These 284

steady states determine the thresholds that we use for the virtual nodes in Sc. The 285

sign-consistency of the modified subsystem implies that these thresholds describe a 286

positive invariant set of that subsystem ( [29]). This sign-consistency together with the 287

monotonicity of the regulatory functions implies that this set remains positively 288

invariant for all possible values of the external regulatory effects because any deviation 289

in these from their worst case values unambiguously drives the system away from the 290

boundary of the stable module subspace and into its interior. Therefore, with these 291

thresholds, Sc is realized as a valid stable module for the original system. 292

We illustrate this method by identifying a candidate module and constructing a 293

worst case system in the example of Eq 1. First, we recall that we have already shown 294

that the system is restricted to the positive orthant if the initial conditions are within 295

this region, so we assume that this is our region of validity. In general, identification of 296

the region of validity often follows from physical or biological considerations. By 297

inspection, we observe that y activates w, which activates x, which in turn activates y. 298

We thus conjecture that a stable module of the form 299

y > Ty → w > Tw → x > Tx → y > Ty exists. Note that this feedback loop is positive 300

and defines a loop closure of a monotone system when z is viewed as a parameter. To 301

identify valid bounds for this candidate stable module (if such bounds exist), we 302
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construct the worst case system for the candidate. As the only regulatory effect not 303

represented in the candidate is the effect of z on x, we must identify the value of z, 304

within the region of validity, for which ẋ is minimized. In this case, ẋ is minimized when 305

z is maximized, and so we allow z to tend toward infinity in the worst case system, 306

yielding a worst case system given by ẋ = 2w
1+2w − x, along with ẇ and ẏ from Eq 1. 307

The steady state of this system is given by the solution of the feedback characteristic 308

equation x =
(

2x
x+1/2

)
/
(

2x
x+1/2 + 1/2

)
, which has solution x = 7/10, yielding w = 7/6 309

and y = 7/12. We thus conclude that y > 7/10→ w > 7/6→ x > 7/10 is a stable 310

module. We provide additional examples in sections 5 and 6 of S1 Appendix. 311

We have algorithmically implemented (S1 Source Code) this process by considering 312

intersecting unions of positive feedback loops. For each union, we conjecture two stable 313

modules (in which one set of nodes is “high” and the other is “low”, and vice versa). 314

Using user-specified physical system bounds, we construct a “worst case system” for 315

each candidate stable module, as described above, and test the existence of a MIOS 316

input variable. If such a variable can be found, we use it to numerically find the steady 317

states via the MIOS procedure. If any steady states are within the physical system 318

bounds, we return the corresponding stable module. 319

The above procedure returns a list of stable modules involving threshold statements 320

about subsystem variables connected by positive feedback loops. Note that generally 321

the list of stable modules we generate does not directly correspond to all of the system’s 322

equilibria, or even necessarily to equilibria at all. Rather, it corresponds to “trap” 323

subspaces, i.e., positive-invariant sets, that are robust to control of regulatory effects 324

external to the subsystem. If the control includes multiple regulatory effects, we assume 325

that these effects can be controlled independently of each other. The list of stable 326

modules generated for each subsystem is in one-to-one correspondence with the 327

equilibria of this subsystem that are robust to such control. This list thus contains the 328

subsystem behaviors that are self-sustaining under all control strategies that preserve 329

the topological structure of the regulatory network. Additional behaviors may be robust 330

to only a subset of these interventions. 331

In the remainder of this paper, we use the above methodology and automation 332

scheme to analyze two systems from the literature. The first, the Drosophila segment 333

polarity gene network, is a prototypical system used to study a broad class of embryonic 334

pattern formation mechanisms. The second example is the T-cell signaling network, 335

which is a characteristic representative of signal transduction networks, which lead to 336

specific cell responses to environmental signals. 337

Single-Cell Drosophila Segment Polarity Network 338

The original multicellular model of the Drosophila segment polarity gene network [34] 339

uses coupled ODEs to model the concentrations of mRNAs and proteins of a family of 340

genes that are important for the development of segments in Drosophila melanogaster 341

embryos (see Fig 2). This family of genes includes engrailed and cubitus interruptus, 342

which encode transcription factors, as well as wingless and hedgehog, whose proteins are 343

secreted and interact with proteins in the neighboring cells [34–36]. We use a modified 344

version of this model (equations 12-23 in [35]), which has incorporated more recent 345

experimental results (e.g., on the sloppy-paired protein) and been recast for a single cell 346

while assuming steady-state values for neighboring cells. Because no measured values of 347

the kinetic parameters in the model are available, and because our purpose here is 348

illustrative, we have simply chosen parameter values from the biologically relevant 349

parameter region (see S1 Appendix section 7 for parameter values and variable 350

abbreviations). 351

We identify several stable modules of biological importance in this model. When 352
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neighboring cells have high levels of wingless protein, we find two stable modules 353

distinguished by differential sloppy-paired and engrailed expression (red and blue nodes 354

in Fig 2). For high concentrations of neighboring hedgehog protein, we find two stable 355

modules involving the wingless sub-network (yellow and purple nodes in Fig 2). 356

By shading the nodes in the expanded network according to module membership (as 357

in Fig 2) we can visually identify regions of state-space that correspond to different 358

attractors of the system. Specifically, these attractors distinguish the four cell-types 359

observed in the development of Drosophila melanogaster segments, which we label 360

PC1-PC4 [34,36] (see Fig 2). Furthermore, the expanded network highlights the causal 361

chains that link regions of state-space and establish cell fates. By identifying driver 362

node sets for stable modules, we can prescribe control strategies to attain any of the 363

four cell types. For example, drivers of the cell type PC1 (blue module in Fig 2) are 364

high neighboring hedgehog (Hnbr) and low sloppy-paired (sp or SP ). 365

Furthermore, we can use this information to form hypotheses about the outcome of 366

altering node states. For example, we can make the following prediction about the 367

outcome of a future wet-bench experiment in which a cell of a certain type is 368

transplanted to a region in which neighboring cells express hedgehog and wingless at 369

higher or lower levels relative to the cell’s initial neighbors. Consider a cell of type PC1 370

(blue module in Fig 2). If the neighboring wingless (Enbr) and hedgehog (Hnbr) are 371

reversed in expression level, that disrupts the engrailed -sloppy paired part of the module. 372

As a result, en and sp approach zero and one, respectively. The values of wingless (wi) 373

and the two configurations of its protein before transplant are consistent with the stable 374

module characterizing cell type PC2 (yellow module in Fig 2). Therefore, our analysis of 375

the model ( [35]) suggests that a qualitative change in cell gene expression from that of 376

the foremost cell of the embryonic segment (PC1, blue module) to that of the second 377

segmental cell (PC2, yellow module) would be observed in such a transplant experiment. 378

Numerical simulations support this conclusion (S1 Figure). Our analysis also identifies 379

the reason for this change: the engrailed -sloppy paired feedback loop is not robust to 380

elimination of neighboring wingless (Enbr). If this prediction is falsified by follow-up 381

experiments, the lack of transition would imply the existence of additional regulation of 382

engrailed and/or sloppy paired. The additional regulation would need to act in such a 383

way as to allow a high expression of engrailed in the absence of neighboring wingless. 384

T-Cell Receptor Signaling Network 385

The second biological example we consider here is a model that describes the cascading 386

activation of transcription factors when T-cell receptors are bound by external 387

molecules [37]. The model was constructed using the Odefy MATLAB toolbox ( [38]) to 388

transform a pre-existing Boolean model of T-cell activation ( [31]) into an ODE model 389

ẋi = Fi (x) = (Ri (x)− xi) /τi, where each Ri is a polynomial of Hill functions with 390

Ri (x) ∈ [0, 1] describing the regulatory effects that influence the production of xi. The 391

parameters τi are the inverse degradation rates of the various biomolecules. 392

To simplify the example, we consider the strongly connected core of the system with 393

saturated input signals, though the precise signal strength has little impact on the 394

analysis. The resulting network is depicted in Fig 3 (left), in which the edges are labeled 395

with the Hill coefficient, n, and disassociation constant, k, of the function Hi (xi) for 396

the corresponding regulatory effect. 397

By considering when the activation or inhibition of a given node is sufficient or 398

necessary to cause the activation of other nodes, we have identified the cycle 399

TCRb→Fyn→PAG→Lck→ZAP→cCbl→TCRb as a candidate stable motif depicted 400

in Fig 3 (right). This cycle is a positive feedback loop, but it is embedded in a 401

sign-inconsistent network. As such, before we implement the MIOS approach to 402

determine valid thresholds for the motif, we must address the effects of sign-inconsistent 403
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edges ( [29]). For instance, in the motif, we expect TCRb and PAG to achieve 404

relatively high values, but there is an inhibitory effect between the two; indeed, 405

τPAG
dPAG

dt
= (1−H1 (TCRb)) (1−H2 (Fyn))

+H2 (Fyn)− PAG, (3)

where H1 and H2 are Hill functions (of the form xn

xn+kn with n ∈ Z+ and k ∈ (0, 1)). 406

The inhibitory effect is maximized when TCRb attains its maximum value, i.e., one 407

(because all variables are normalized to their maximum values in this model). It is also 408

possible to consider the possibility that TCRb is delivered to the system via external 409

control, in which case we would evaluate Eq. 3 in the limit as TCRb→∞. For now, we 410

shall only consider TCRb = 1 in this regulatory function. We therefore replace 411

H1 (TCRb) in Eq. 3 with H1 (1) and allow TCRb to evolve according to its natural 412

dynamics in this new network, in which the regulation of PAG is modified. Similar 413

analysis is taken on any edge that either introduces a sign inconsistency, or does not 414

connect two nodes of the stable motif. The resulting modified network is a single 415

positive feedback loop with a single steady state that is easily identified using the MIOS 416

approach [29]. The steady state values of the nodes in the modified network serve as 417

thresholds in the expanded network, and allow us to identify a stable motif (see Fig 3). 418

In this example, the stable motif we have identified coincides with a global steady 419

state of the system. This observation is in agreement with [17], in which this system is 420

analyzed by application of theorems regarding the conservation of certain positive 421

invariant sets when a system is described by both a Boolean and an ODE model with 422

Hill regulatory functions. We note that our analysis does not rely on a particular 423

functional form of the regulation or on an explicit companion Boolean model. A novel 424

result of our analysis is that the stable motif behavior cannot be disrupted by 425

manipulating TCRp. 426

We demonstrate the robustness of the stable motif by numerically solving the system 427

ODEs with various constraints placed on TCRp (Fig 3). In the top left panel of Fig 3, 428

we show a natural evolution of the system for initial conditions satisfying the stable 429

motif conditions. In the other panels, the value of the TCRp node is subjected to one of 430

three external controls (absence, saturation, and oscillation), and the motif variables 431

continue to respect the stable motif conditions. These simulations illustrate an 432

important conclusion we can draw from the existence of the stable motif: If one wishes 433

to avoid states in which Fyn, PAG, and TCRb are high while Lck, ZAP , and cCbl are 434

low, TCRp is not a viable control target. Biologically, this model predicts that 435

disruption of TCR phosphorylation is not sufficient to disrupt the response of the cell 436

to a high degree of receptor-ligand binding. Instead one must disrupt one of the six 437

motif nodes directly, and furthermore, the motif bounds provide lower bounds on the 438

magnitude of the required disruption. For example, to disrupt the motif via control of 439

PAG, one must lower its value below the threshold of 0.69. 440

Discussion 441

We have presented a new framework, based upon construction of an auxiliary 442

“expanded network”, for identifying self-sustaining subsystems that cannot be controlled 443

via the rest of the system. Full attractor control requires that variables from each of 444

these subsystems be externally manipulated. We have applied our framework to develop 445

an algorithm (S1 Source Code) for finding these subsystems that is applicable in many 446

biological ODE models. We have demonstrated our framework and algorithm in two 447

biological systems: the T-cell receptor signaling network and the Drosophila 448

melanogaster segment polarity gene network. 449
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The method of expanded networks can extract important qualitative features from 450

quantitative or qualitative models of system behavior. We have emphasized the 451

identification of stable modules, which correspond to state-space regions that, once 452

entered, cannot be exited without directly applying external control on the variables 453

that define the region boundaries. We have also shown, for example in our analysis of 454

the Drosophila melanogaster segment polarity gene network, how the consideration of 455

expanded networks can elucidate meaningful and intuitive partitioning of state-space. 456

In these analyses, we have considered virtual nodes of the form xi ≶ Tαi , but other 457

choices for virtual nodes are possible, and can be informative when xi has inherently 458

multi-level behavior. 459

In searching for stable modules, it is important to identify positive feedback loops, as 460

every stable module of the type considered in our automation procedure corresponds to 461

a sign-consistent subgraph that must contain at least one positive cycle. In the 462

examples described here, as well as in every ODE model of biological systems we 463

encountered so far, the number of positive feedback loops is small, and so an exhaustive 464

search is feasible. Even when this number is large, an exhaustive test of all 465

sign-consistent subgraphs is probably still faster than a brute-force simulation approach 466

because this method is testing many control strategies simultaneously for each 467

subsystem, and does not involve integration of any ODEs. Positive feedback loops can 468

be identified using existing software implementations. For each positive feedback loop, 469

the computational complexity of determining the associated thresholds scales linearly 470

with the number of variables in the feedback loop. If necessary, we are also able to limit 471

our search to positive feedback loops of a certain size, allowing for fast identification of 472

small, control-robust subsystems embedded in much larger systems. 473

Our procedure yields all stable modules of threshold statements about variables 474

involved in positive feedback loops. These correspond to positive-invariant sets that 475

remain positively invariant even when regulatory effects external to the feedback loop 476

are manipulated. Because we cannot know a priori which regulatory manipulations are 477

available within a given model, we have chosen to focus on behaviors that are robust to 478

all manipulations of these external regulations. Therefore, the stable modules we 479

identify are robust to control beyond that which can be implemented in practice. In 480

some systems, additional behaviors may exist that are robust only to a biologically 481

relevant subset of control strategies. Nevertheless, knowledge of the fully robust system 482

behaviors reduces (in some cases, dramatically) the search space for control targets. For 483

example, in a large system, we might identify a stable module that includes some 484

“undesirable” behavior (e.g., a disease state) and involves a small number of variables. 485

Because the stable module subsystem is robust to all topology-preserving external 486

controls, control targets must be selected from the small number of variables directly 487

involved in the stable module. 488

Many existing results about the analysis of Boolean models via expanded networks 489

remain valid in this more general framework and can therefore be applied to continuous 490

systems. An example is the concept of a driver node set, which is a set of virtual nodes 491

in the expanded network whose truth eventually implies the truth of a given stable 492

module. Identification of driver nodes in the expanded network is related to finding 493

paths in logic hypergraphs [31]. This identification problem has been partially 494

addressed in [30,39]; developing a general and fast algorithm for driver node 495

identification in arbitrary expanded networks is a promising direction for future research 496

with applications for control target selection. 497

Some results do not generalize as easily because they rely upon completeness 498

properties of discrete expanded networks; the oscillation analyses in [30,33] are an 499

example. Oscillations can manifest in the expanded network as source-free graph 500

components that contain contradictory nodes. Such structures do not always indicate 501
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oscillatory behavior, and may instead indicate chaotic behavior or the existence of a 502

steady state that violates all of the contradictory conditions. For example, the simple 503

harmonic oscillator ẋ = y, ẏ = −x has an expanded network with contradictory 504

source-free component x > 0→ y < 0→ x < 0→ y > 0; while the system can oscillate 505

between satisfying these conditions, there is also a steady state, x = y = 0, that violates 506

all four conditions. We are optimistic that results of this type might be recast in more 507

general forms. 508

The expanded network framework shows promise not only for studying the 509

state-space of dynamical systems, as we have emphasized here, but also for the study of 510

parameter space. Statements regarding the value of parameters can be included in an 511

expanded network as statements with self-loops. Because the expanded network 512

approach extracts qualitative information from the system, the inclusion of parameters 513

in this way is conceptually distinct from and complementary to existing methods for 514

probing the parameter space of a dynamical system (e.g., [40, 41]). The application of 515

expanded networks to parameter sensitivity analyses is the subject of ongoing work. 516

Supporting information 517

S1 Appendix. Supplementary Notes and Examples. 518

S1 Source Code. Six python source files that contain the implementation 519

of the stable module search procedure and its application to five examples 520

used in the main text and S1 Appendix. 521

S1 Figure. Results of numerical simulations of the hypothetical 522

Drosophila cell transplant experiment discussed in the main text. 523
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30. Zañudo JGT, Albert R. An effective network reduction approach to find the
dynamical repertoire of discrete dynamic networks. Chaos. 2013;23(2):025111.
doi:10.1063/1.4809777.

31. Klamt S, Saez-Rodriguez J, Lindquist JA, Simeoni L, Gilles ED. A methodology
for the structural and functional analysis of signaling and regulatory networks.
BMC Bioinformatics. 2006;7:56. doi:10.1186/1471-2105-7-56.

32. Wang RS, Albert R. Elementary signaling modes predict the essentiality of signal
transduction network components. BMC Systems Biology. 2011;5:44.
doi:10.1186/1752-0509-5-44.

33. X Gan, R Albert. General method to find the attractors of discrete dynamic
models of biological systems. Phys Rev E (submitted). 2017;.

November 13, 2018 15/18

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2018. ; https://doi.org/10.1101/236323doi: bioRxiv preprint 

https://doi.org/10.1101/236323
http://creativecommons.org/licenses/by/4.0/


34. George van Dassow, Eli Meir, Edwin M Munro, Garrett M Odell. The segment
polarity network is a robust developmental model. Nature. 2000;406.

35. Ingolia NT. Topology and Robustness in the Drosophila Segment Polarity
Network. PLoS Biology. 2004;2(6):e123. doi:10.1371/journal.pbio.0020123.

36. Ingham PW. Chapter Twenty-Six - Drosophila Segment Polarity Mutants and
the Rediscovery of the Hedgehog Pathway Genes. In: Wassarman PM, editor.
Current Topics in Developmental Biology. vol. 116 of Essays on Developmental
Biology, Part A. Academic Press; 2016. p. 477–488. Available from:
http://www.sciencedirect.com/science/article/pii/S0070215316000089.

37. Wittmann DM, Krumsiek J, Saez-Rodriguez J, Lauffenburger DA, Klamt S,
Theis FJ. Transforming Boolean models to continuous models: methodology and
application to T-cell receptor signaling. BMC Systems Biology. 2009;3(1):98.
doi:10.1186/1752-0509-3-98.

38. Krumsiek J, Pölsterl S, Wittmann DM, Theis FJ. Odefy-from discrete to
continuous models. BMC bioinformatics. 2010;11(1):233.

39. Maheshwari P, Albert R. A framework to find the logic backbone of a biological
network. BMC Systems Biology. 2017;11:122. doi:10.1186/s12918-017-0482-5.
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Fig 2. The network schematic for the single-cell model of Drosophila segment polarity
genes [35] (left) and expanded network (right). The color key (right inset) summarizes
observed characteristics of cells in the Drosophila embryonic segments (parasegments)
( [34–36]; see S1 Appendix section 7 for parameter values and the full names of
abbreviated variables). Each column represents an individual cell, arranged by
anterior-posterior position in the parasegment. Columns are colored and named
according to cell type, which is determined by prevalence of the proteins labeling each
row. Black-filled ovals represent high levels of the protein, while white-filled ovals
represent low levels. In the expanded network (right), dotted lines represent the node
maintenance relation and asymptotic implication. Solid lines indicate the maintenance
relation and implication in finite time. Nodes are colored according to membership in
each of four biologically relevant stable modules, which correspond to the four cell types
identified in the right inset. Node shape indicates participation in feedback loops that
sustain these stable modules.
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Fig 3. (a) The network diagram and stable motif for the T-cell signaling model of [37]
with all sources saturated. In the stable motif diagram, node shape and color indicate
whether an upper or lower bound is specified (as indicated by the node labels). The
variables constrained by the stable motif cannot leave the region of state-space specified
by the stable motif once it has been entered. This remains true even when TCRp,
which regulates ZAP , but is not included in the stable motif, is subjected to external
control, provided it remains within the bounds considered when constructing the
expanded network (between 0 and 1 in this case, though a similar result can be
obtained for 0 ≤ TCRp <∞). This robustness is illustrated in (b), in which solid
colored lines indicate dynamic variable values that are constrained by stable motif
thresholds (dashed lines). The black dotted line is the TCRp value and is subject to
different external controls in panel of sub-figure (b).
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