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HIGHLIGHTS 

 1st  place in International Challenge for Automated Prediction of MCI from MRI Data 

 Multi-class classification of normal control, MCI, converting MCI, and Alzheimer’s 

disease  

 Morphometric measures from 3D T1 brain MRI images have been analysed (ADNI1 

cohort). 

 A Random Forest Feature Selection, Fusion and Ensemble Strategy was applied 

to classification and prediction of AD. 

 Accuracy and robustness have been assessed in a blind dataset  
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1   All the data used in preparation of this article were obtained from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The investigators within the ADNI contributed to 

the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of 

this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. 
 The preprocessing of the T1-weighted Magnetic Resonance Images (MRI) was conducted by the 

organizers of the competition; information can be found here : https://inclass.kaggle.com/c/mci-prediction 
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*The first two authors contributed equally  

 

Abstract: 

Background: 

In the era of computer-assisted diagnostic tools for various brain diseases, Alzheimer’s 

disease (AD) covers a large percentage of neuroimaging research, with the main scope being 

its use in daily practice. However, there has been no study attempting to simultaneously 

discriminate among Healthy Controls (HC), early mild cognitive impairment (MCI), late MCI 

(cMCI) and stable AD, using features derived from a single modality, namely MRI.  

  
New Method:  

Based on preprocessed MRI images from the organizers of a neuroimaging challenge2, we 

attempted to quantify the prediction accuracy of multiple morphological MRI features to 

simultaneously discriminate among HC, MCI, cMCI and AD. We explored the efficacy of a 

novel scheme that includes multiple feature selections via Random Forest from subsets of the 

whole set of features (e.g. whole set, left/right hemisphere etc.), Random Forest classification 

using a fusion approach and ensemble classification via majority voting.   

From the ADNI database, 60 HC, 60 MCI, 60 cMCI and 60 AD were used as a training set 

with known labels. An extra dataset of 160 subjects (HC: 40, MCI: 40, cMCI: 40 and AD: 40) 

was used as an external blind validation dataset to evaluate the proposed machine learning 

scheme.  

Results: 

 In the second blind dataset, we succeeded in a four-class classification of 61.9% by 

combining MRI-based features with a Random Forest-based Ensemble Strategy. We 

achieved the best classification accuracy of all teams that participated in this neuroimaging 

competition.  

Comparison with Existing Method(s): 

 The results demonstrate the effectiveness of the proposed scheme to simultaneously 

discriminate among four groups using morphological MRI features for the very first time in 

the literature. 

Conclusions: 
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Hence, the proposed machine learning scheme can be used to define single and multi-

modal biomarkers for AD. 

 

2The preprocessing of the T1-weighted Magnetic Resonance Images (MRI) was realized by the organizers of the 

competition. Information can be found here: https://inclass.kaggle.com/c/mci-prediction 

1.Introduction 

In the era of computer-assisted diagnostic tools for various brain diseases, Alzheimer’s 

disease (AD) covers a large percentage of neuroimaging research that is applied in daily 

practice. Pattern recognition approaches, tailored to neuroimaging, offer to the neuroscience 

community a potential diagnostic tool, particularly though not restricted to magnetic resonance 

imaging (MRI), which has shown its effectiveness in the diagnosis of AD (O'Brien, 2007). 

In recent years and with the release of free available databases, a large number of studies 

have introduced the use of pattern recognition and machine learning approaches, based on MRI, 

for the early detection of AD (Gray et al., 2013 ; Lebedev et al., 2014 ; Schwarz et al., 2016 ; 

Vos et al., 2016 ; Kalin et al., 2017). The obvious advantage of the proposed semi- or fully-

automated methods, compared to visual inspection of an MRI by an expert, e.g. a radiologist 

or neurologist, is its avoidance of biases and, in many cases, errors to which human diagnosis 

is subject. All these techniques further improved classification accuracy, primarily through 

enhancing the stability of the algorithmic pipelines and finally through development of a 

standardized computerized decision support system, a rapidly progressing field in the 

overlapping areas of radiology and machine learning (Stivaros et al., 2010; Belle et al., 2013).  

Alzheimer’s disease (AD) is a neurogenerative disorder with chronic symptoms that 

mostly starts slowly and progresses faster over an individual’s lifetime (Mendez, 2012). AD is 

the main cause of 60% to 70% of dementia, and the first symptom is difficulty in remembering 

recent events, which is called short-term memory loss (Jahn, 2013). The basic anatomical 

alteration of AD is hippocampal atrophy, which is highly used as a clinical biomarker  (Morra 

et al., 2009). Complementary to hippocampal atrophy, the atrophy of grey matter in AD could 

be extended also to the medial temporal lobe and other subcortical structures (Seeley et al., 

2009). The localization and the extension of grey matter atrophy can be realized via the 

visualization of anatomical magnetic resonance imaging (MRI) scans, which is the most 

commonly used approach for the clinical diagnosis of AD (Frisoni et al., 2010). Previous 

studies have revealed that AD patients have different volumes and shapes of hippocampi areas, 

compared to elderly individuals with normal cognitive abilities (Scher et al., 2007). Another 

study demonstrated that the volumes of the thalamus and the putamen are also reduced in AD 
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(de Jong et al., 2008). Additionally, extended grey matter atrophy has been revealed in AD 

patients compared to age-matched controls (Karas et al., 2003) and also reduced cortical 

thickness in another study (Lerch et al., 2005). 

In contrast, many significant observations based on MRIs of AD patients with direct 

comparison with controls cannot be used in a straightforward way in a daily clinical setting. 

Some of the candidate AD biomarkers have also been detected in healthy aging. Potential MRI-

based AD biomarkers are only useful if they can discriminate AD subjects from non-affected 

subjects at the subject level (Salat et al., 1999). Lately, research on anatomical MRI markers 

tailored to AD has shifted from group differences to disease detection (de Vos et al., 2016). 

Measurements of the shape and volume of hippocampi sub-areas and cortical thickness, and 

voxel-based morphometry (VBM), have been extensively used to separate controls from AD 

patients with a high range of classification accuracy (Cuingnet et al., 2011; Davatzikos et 

al.,2011; Querbes et al., 2009 ; de Vos et al., 2016 ; Kalin et al., 2017). 

Alternative anatomical MRI-based estimates have been mainly used to discriminate AD 

patients from healthy controls. The principle behind the strategy of using features from 

different feature sets is that they encapsulate complementary information and their combination 

could further increase the classification accuracy of AD. VBM and voxel-based cortical 

thickness demonstrate complementary aspects of age-based decline of grey matter (Hutton et 

al., 2009). Combining alternative anatomical MRI-based estimates further improved AD 

classification accuracy (Bron et al., 2015; Wolz et al., 2011; Westman et al., 2013; de Vos et 

al., 2016; Kalin et al., 2017). Apart from separating AD patients from individuals undergoing 

healthy aging, these features have proved useful for separating mild cognitive impairment 

(MCI) converters from individuals with stable MCI (Dyrba et al., 2015a,b; Schouten et 

al.,2016; Trzepacz et al., 2014; Teipel et al., 2010). Based on the aforementioned studies, it 

would be very important to demonstrate the effectiveness of combining different but 

complementary sets of features derived from anatomical MRI to simultaneously discriminate 

among healthy controls, AD, MCI and cMCI. 

We analyzed the T1-weighted Magnetic Resonance Images (MRI) preprocessed by the 

organizers of a Neuroimaging Challenge/Competition, information on which can be found 

here: https://inclass.kaggle.com/c/mci-prediction. The anatomical MRI scans were derived 

from four groups (healthy controls, AD, MCI and cMCI). The MRI features that were extracted 

are the following: (i) cortical thickness, (ii) cortical surface area, (iii) cortical curvature, (iv) 

grey matter density, (v) the volume of the cortical and subcortical structures, (vi) the shape of 

the hippocampus and (v) hippocampal subfield volumes. We attempted to achieve high 
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generalization of the proposed feature extraction and classification strategy with the use of a 

training set aiming at increasing classification accuracy in a second blind dataset. 

In this study, Random Forest (RF) was adopted as a proper ensemble learning 

algorithm, which is a combination of tree predictors where each tree is built on a random vector 

built in with features sampled independently and with the same distribution across trees in the 

forest (Breiman, 2001). In addition, out-of-bag error estimation (OOB) was adopted in order 

to accurately detect the generalization error of the model. Finally, proximity ratio estimation 

for late fusion strategies and weighted fusion (Liparas et al., 2014) was applied to further 

improve the classification accuracy in a blind test set. 

We hypothesized that using RF with the complementary techniques that guarantee the 

generalization of the model based on a training dataset and the incorporation of MRI-based 

features, it would be possible to achieve a high classification in the aforementioned four-class 

problem. Additionally, we hypothesized that it is possible to keep the classification 

performance on the same level as in previous studies, in which three classes were used (HC, 

MCI and AD).  

 

2. Material and Methods 

2.1 Participants 

In particular, MRIs were selected from the Alzheimer’s disease Neuroimaging 

Initiative (ADNI). ADNI is an international project that collects and validates neurological 

data, such as MRI and PET images, genetics or cognitive tests. 

We randomly and automatically selected subjects with a static seed, by using the data 

analytics platform Konstanz Information Miner (KNIME).  

Subjects from ADNI were selected by filtering text files downloaded from the website 

in three steps. In particular, we used the file containing the conversion of diagnosis for first 

choosing healthy controls (HC), Alzheimer's patients (AD) and Mild Cognitive Impairment 

(MCI) who did not convert their diagnosis in the follow up. Then, with the same approach, we 

selected those with MCI who converted to Alzheimer's (cMCI). 

The second step was to obtain demographic and clinical parameters at that timepoint, i.e. age, 

gender and Mini-Mental State Examination score (MMSE). 

This dataset was grouped by diagnostic criteria, in order to obtain a balanced number of 

subjects (100) for each of the four classes (HC, AD, MCI, cMCI). 
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The last step was to obtain the subjects' MRI scan ID at the baseline from the file 

MPRAGEMETA.csv (green area in Fig. 1 in Sarica et al., 2014). In particular, we selected the 

first MPRAGE sequence (no repetition), acquired at 3 Tesla. 

Finally, the whole dataset of 400 subjects was split into a training dataset of 240 

subjects (60 subjects for each of the four groups) and a testing dataset of 160 subjects (40 

subjects for each of the four groups). 

 Table 1 summarizes the demographics of the training and testing datasets, including 

the average age, the gender contribution and the average MMSE. 

 

Table 1a. Summary of demographics for the training dataset 

 Age  Gender 

(male/females) 

MMSE 

HC        (60) 72.3  ± 5.7 62/58 29.2   ± 1.1 

MCI      (60) 72.2    ±7.5 66/54 28.3   ±1.6 

cMCI     (60) 73.0    ±7.3 60/60 27.2    ±1.9 

AD        (60) 74.8    ±7.4 56/64 23.4   ±2.1 

 

Table 1b. Summary of demographics for the testing dataset 

 Age  Gender 

(male/females) 

MMSE 

HC        (40) 74.9  ± 5.6 18/22 29.00   ± 1.1 

MCI      (40) 72.4    ±8.1 23/17 27.6    ±1.9 

cMCI     (40) 71.7    ±6.3 25/15 27.6    ±1.8 

AD        (40) 73.1    ±8.2 23/17 22.7    ±2.0 

 

2.2 MR Image Acquisition 

All participants were scanned on a Philips 3 T Achieva MRI scanner. The MRI data 

acquisition protocol is described in ADNI’s official webpage2 . 

 

 

 

 

2   http://adni.loni.usc.edu/methods/mri-analysis/mri-acquisition/ 
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2.3 Freesurfer processing and Features Extraction 

T1-weighted Magnetic Resonance Images (MRI) were processed by the organizers of the 

Neuroimaging Challenge/Competition for an automated classification of MCI. Additional 

information can be found here: https://inclass.kaggle.com/c/mci-prediction. 

MRIs were preprocessed by Freesurfer (v5.3), with the standard pipeline (recon-all -hippo-

subfields) on a computer running GNU/Linux Ubuntu 14.04 with 16 CPUs and 16Gb RAM. 

We used the KNIME plugin K-Surfer (Sarica et al., 2014) for extracting numerical data 

produced by Freesurfer into a table format. The organizers of the competition then joined this 

table with demographical and clinical parameters.  

The set of features used for the training procedure are the following:  

 MMSE_bl - Mini-mental state examination total score at the baseline of the subject  

 Age 

and  

 (i) cortical thickness,(ii) cortical surface area, (iii) cortical curvature, (iv) grey matter 

density, (v) the volume of the cortical and subcortical structures, (vi) the shape of the 

hippocampus and (v) Hippocampal subfields volume. 

 

2.4 Problem Formulation 

The organizers of the International Challenge for Automated Prediction of MCI from MRI 

Data generated an additional 340 artificial test observations that were joined with the real test 

observations (4x40=160) in the Challenge test set to form a combined test set of 500 

observations. This testing sample was used in the online Kaggle competition platform for the 

evaluation of the classification performance (Sarica et al., 2016). This set, which can be called 

an artificial – Challenge dataset, was split into a public and private test set. The competition 

started online between 21 December 2016 and 1 June 2017 and every team that participated in 

this neuroimaging competition had the option of one submission per day. After every 

submission, the organizers returned,  via the kaggle web system, the accuracy over 500 

subjects, where only 160 subjects were the real blind dataset, while the rest (340 subjects - 

dummy) were created via a model based on the features from the training dataset. By the end 

of the challenge on 1 June 2017, the best performance of each team was evaluated and selected 

based on the private test set. The final evaluation and the ranking of the teams in terms of the 

classification accuracy was realized based on the Challenge test set which contains the real test 

data. Finally, the labels of the test data and the confusion matrices were released to the 
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participants and teams that were invited to contribute to this special issue, dedicated to the 

international challenge for the automated prediction of MCI using MRI data. Our team won 

the first position in this neuroimaging challenge. 

Our best submission was built around an ensemble of five classification models. The 

construction of these models was based on the well-known Random Forests (RF) machine 

learning method and its operational capabilities. More specifically, in all models, we performed 

feature selection using the Gini impurity index, a type of feature importance measurement 

commonly used in RF. In addition, we employed early fusion, as well as weighted fusion by 

means of late fusion schemes based on internal mechanisms provided by RF, namely the out-

of-bag error and proximity ratios.  

In what follows, the theoretical background of the involved methodologies, as well as 

a description of each classification model that was utilized in our experiments, are provided. 

2.4.1 Random Forests 

Random Forests (RF) is a popular machine learning method used in classification, 

regression and other tasks (Breiman, 2001). The methodology involves the construction of a 

multitude of decision trees and within RF, randomness is employed in the following ways: 

Firstly, each decision tree is constructed using a different bootstrap sample (a training set that 

is drawn randomly from the original training data by sampling uniformly and with 

replacement). Secondly, during the construction of each decision tree, each node split involves 

the random selection of a subset of k variables (from the original variable set), based on which 

the best split is determined and used. For the prediction of unknown cases, the decisions of the 

constructed trees are aggregated by employing majority voting for classification and averaging 

for regression tasks. 

The out-of-bag (OOB) error estimate is an internal mechanism provided by RF for 

estimating the generalization error of a constructed model. The OOB error is estimated as 

follows: RF uses only around 66% (2/3) of the original data in order to build each decision tree.    

The other 33% (approximately) of the original data cases, called OOB data, are 

predicted by the constructed decision tree and are consequently utilized as “test” data. The 

averaged prediction error for each training case x, using only the trees that do not include x in 

their bootstrap sample, is the OOB error estimate. Additionally, the proximity matrix is another 

useful tool in RF. The way to compute the proximity matrix is the following: for each 

constructed decision tree in an RF model, all data cases (both training and OOB) are put down 

that tree. If a pair of cases is found in the same terminal node of the tree, their proximity is 
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increased by one. In this way, a matrix of proximities between all data cases is constructed for 

the entire RF model. Finally, the proximities in the matrix are normalized by dividing their 

values by the number of trees in the forest. 

Another operational feature of RF is its natural ability to provide a ranking of the 

importance of variables in a regression or classification problem. This can be achieved in two 

ways. The first one is based on statistical permutation tests, while the second way, which is 

used in this study, is based on the Gini impurity index. Gini impurity is computed at every node 

split during the construction of a decision tree in an RF model and is used for measuring the 

quality of the split in terms of separating the samples of the different classes in the considered 

node. For a variable, the Gini impurity index is computed as in the following equation: 

                                     𝐺 = ∑ 𝑝𝑖(1 − 𝑝𝑖)
𝑐
𝑖=1  (1) 

where c the number of classes in the variable and pi the fraction of samples labeled with class 

i in the node. 

For a given node split, the values of the Gini impurity index for the two resulting nodes 

are less than the value for the parent node. If we sum the Gini impurity decreases for each 

variable in a dataset over all trees in a RF model, we get the corresponding Gini importance 

measure for each variable, which can consequently be used for feature selection. For more 

details on the Gini variable importance approach in RF, we refer to (Menze et al., 2009). 

2.4.2 Fusion schemes 

An interesting and at the same time important challenge in classification tasks is the use 

of methods for the combination of multiple feature sets (or modalities), a procedure that is 

known as multimodal fusion. In this context, two basic strategies regarding the level at which 

fusion is performed can be considered. In the first strategy, known as early fusion, feature-level 

fusion is performed, where features from the individual feature sets/modalities are 

concatenated in order to create a common feature vector. Then, a classifier is trained using this 

common feature vector in order to form the final prediction model. In the second strategy, 

called late fusion, decision-level fusion is performed, in which a classification model is trained 

separately for each feature set/modality and the individual results (classifier scores) are fused 

into a final common decision. The standard way to combine multiple classifiers in late fusion 

is to compute a weighted sum of the individual classifiers’ scores. Figures 1 and 2 depict the 

notion of early and late fusion, respectively. 
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Figure 1: A flowchart that describes the notion of early fusion                

 

 

 Figure 2: A flowchart that describes the notion of late fusion 

 

[Figures 1,2 around here] 

In this study, we applied early fusion as well as late fusion strategies based on RF’s 

operational features, namely the OOB error and proximity ratios (derived from the proximity 

matrix). The description of these two late fusion strategies is provided below: 

Suppose there are two feature sets/modalities, namely D and E. First, the feature vector 

from each set is used for training a separate RF model. From the two RF models, the weights 

for each feature set/modality needs to be computed in order to apply weighted fusion and 

provide the final RF predictions. The OOB and proximity ratio late fusion strategies are applied 

as follows: 

OOB strategy: From the OOB error estimate of each feature set’s RF model, the OOB 

accuracy values are computed separately for each considered class. These values are then 

normalized (by dividing them by their sum) and serve as weights for the two feature 

sets/modalities. 

Proximity ratio strategy: The same approach, as in the case of the OOB strategy, is followed 

for the proximity ratio strategy. Nevertheless, instead of utilizing the OOB accuracy values 

from each RF model, the ratio values between the inner-class and the intra-class proximities 

(for each class) are used (Zhou et al., 2010). For each RF model, the proximity matrix between 
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all pairs of data cases PR = {prij, i,j = 1,…,n} (n=number of data cases) is constructed, and then 

the ratio values between the inner-class and the intra-class proximities are computed as in the 

following equation: 

                          𝑅 =
𝑃𝑅𝑖𝑛𝑛𝑒𝑟

𝑃𝑅𝑖𝑛𝑡𝑟𝑎
 

 
(2) 

 

 where 

                                     𝑃𝑅𝑖𝑛𝑛𝑒𝑟 = ∑ 𝑝𝑟𝑖𝑗
𝑛
𝑖,𝑗=1 (𝑖𝑓𝑐𝑙𝑖 = 𝑐𝑙𝑗) (3) 

                                     𝑃𝑅𝑖𝑛𝑡𝑟𝑎 = ∑ 𝑝𝑟𝑖𝑗
𝑛
𝑖,𝑗=1 (𝑖𝑓𝑐𝑙𝑖 ≠ 𝑐𝑙𝑗) (4) 

 

and cli, clj the class labels of cases i and j, respectively. 

Weighted fusion: For the prediction of an unknown case, the RF models provide probability 

estimates per class for that case. In our example, the probability outputs PD and PE from the 

two feature sets/modalities D and E, respectively, are multiplied by their corresponding 

modality weights WD and WE (computed either with the OOB strategy or the proximity ratio 

strategy) and summed in order to produce the final RF predictions as in the following equation: 

                          𝑃𝑓𝑖𝑛𝑎𝑙 = 𝑊𝐷𝑃𝐷 +𝑊𝐸𝑃𝐸 
 

(5) 

 

For more details on the aforementioned late fusion strategies, we refer to (Liparas et al., 

2014). 

2.4.3 Models description 

In this section, the features of the five classification models of our best submission’s ensemble 

are described. 

1. Model 1: The first model involved the training of a RF classifier on the whole feature 

set, as well as feature selection by means of the Gini importance measure, which 

provided the final feature subset that was used for retraining the RF model. 

2. Model 2: In the second model, the following steps were involved: 

A. The initially provided feature space was first split into two modalities – feature 

sets, with each set containing features/measurements from the left or right 

hemisphere, respectively.  

B. A RF model was trained for each modality and, as in the case of Model 1, the 

Gini importance measure was utilized for selecting the most important features 

from each modality.  
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C. The RF models were retrained with the use of the resulting feature subsets.  

D. For formulating the final predictions/probability scores from the two RF 

models, weighted fusion was applied with the use of the proximity ratio late 

fusion strategy (described in Section 2.4.2). 

3. Model 3: With respect to the third model, the exact same approach as in the case of 

Model 2 was followed, with the only difference being the use of the OOB late fusion 

strategy in the weighted fusion step (instead of the proximity ratio scheme). 

4. Model 4: The fourth model involved the same application of steps A and B from Model 

2. Then, instead of retraining RF classifiers for the two modalities (as in Step C – Model 

2) with the use of the final feature subsets, we opted to train Support Vector Machine 

(SVM) classification models. Finally, regarding the fusion step (step D – Model 2), we 

performed simple averaging of the probability scores provided by the SVM models. It 

should be noted that the probability scores of the SVM models were computed with the 

use of the Platt scaling method (Platt, 1999). Based on this technique, the output of a 

classification model is converted to a probability distribution over classes. 

5. Model 5: In the case of the fifth model, steps A and B from Model 2 were applied in 

the same way (the only difference was the application of a different value/threshold for 

the Gini importance measure regarding the feature selection process in step B). Then, 

we applied early fusion to the resulting feature subsets from the two modalities (the 

feature subsets were concatenated into a common feature vector) and finally, a new RF 

model was trained with the use of the concatenated feature vector. 

It should be noted that for Models 2-5, variables not specifically related to measurements 

from the left or right hemisphere (e.g. AGE, MMSE_bl, CSF, WM.hypointensities, etc.) were 

assigned to both modalities (left and right), before the feature selection process.  

Finally, for the prediction of unknown cases based on the outputs of the ensemble’s models, 

a majority voting scheme was applied, meaning that the predicted class was the one that 

received the highest number of votes by the ensemble’s models. In the case of ties, the class 

with the highest probability estimate (provided by any of the models) was selected as the final 

prediction. 

Our code for the experiments was written in R3. All RF models were developed using the 

randomForest4 package, while for the construction of the SVM models, the e10715 package 

was used. 

 

 

3   https://www.r-project.org/ 

4   https://cran.r-project.org/web/packages/randomForest/index.html 

5   https://cran.r-project.org/web/packages/e1071/index.html 
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3 Experimental results 

3.1 Experimental setup 

With respect to the RF parameters that we used in the experiments, the number of trees for 

each RF model was empirically set (based on the OOB error estimate), while for each RF model 

and for each node split during the growing of a tree, the number k of the subset of variables 

used to determine the best split was set based on repeated 10-fold cross-validation that was 

performed using the caret6 package. Based on the aforementioned, the following parameter 

values were used for the RF models of the ensemble: 

 Model 1: Number of trees = 2000, k = 53 

 Models 2/3: Number of trees = 2000, k = √𝑚 (where m is the total number of features) 

 Model 5: Number of trees = 1000, k = 9 

Regarding the threshold values for the Gini importance measure during the feature selection 

process in all RF models, the following values were used: 0.5 for Model 1, 0.75 for Models 

2/3/4 and 4 for Model 5. 

Finally, as already mentioned (Section 2.4.3), in Model 4, Support Vector Machine (SVM) 

classification models were trained for the two modalities/ final feature subsets. Specifically, 

for the left modality’s SVM model, a polynomial kernel was used, while a radial basis function 

(Gaussian) kernel was used for the right modality’s model. The aforementioned kernel types, 

as well as the parameter values for the two SVM models, were determined with the use of 

repeated 10-fold cross-validation (using the caret package). Specifically, for the left modality’s 

SVM model, the parameters degree and scale were set to 3 and 0.01, respectively, while for 

the right modality’s SVM model, the parameter sigma was set to 0.0163. 

 

3.2 Selected Features Extraction 

In Table 2, the selected features (with the use of the Gini importance measure) for each 

model of the ensemble are provided. We can notice that 53 features were selected for Model 

 

6   https://cran.r-project.org/web/packages/caret/index.html 
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1, 67 for Models 2/3/4, 41 for the left and right modality, respectively, and 9 features were 

selected in the context of Model 5. 

Table 2: Selected features (based on the Gini importance measure) for each classification 

model of the ensemble 

Classification 
model 

Selected features 

Model 1 “AGE”, “MMSE_bl”, “Left.Inf.Lat.Vent”, “Left.Cerebellum.Cortex”, “Left.Hippocampus”, “CSF”, 
“Left.VentralDC”, “Left.vessel”, “Right.Inf.Lat.Vent”, “Right.Cerebellum.Cortex”, 
“Right.Hippocampus”, “Right.Amygdala”, “X5th.Ventricle”, 
“lh_lateralorbitofrontal_thickness”, “lh_medialorbitofrontal_thickness”, 
“lh_middletemporal_thickness”, “lh_parstriangularis_thickness”, 
“lh_posteriorcingulate_thickness”, “rh_entorhinal_thickness”, “rh_pericalcarine_thickness”, 
“rh_posteriorcingulate_thickness”, “rh_precentral_thickness”, “rh_insula_thickness”, 
“lh_medialorbitofrontal_area”, “lh_parsorbitalis_area”, “lh_temporalpole_area”, 
“rh_paracentral_area”, “rh_transversetemporal_area”, “lh_entorhinal_volume”, 
“lh_rostralanteriorcingulate_volume”, “rh_caudalanteriorcingulate_volume”, 
“rh_cuneus_volume”, “rh_entorhinal_volume”, “rh_rostralanteriorcingulate_volume”, 
“rh_transversetemporal_volume”, “lh_fusiform_thicknessstd”, 
“lh_parahippocampal_thicknessstd”, “lh_paracentral_thicknessstd”, 
“lh_posteriorcingulate_thicknessstd”, “rh_medialorbitofrontal_thicknessstd”, 
“rh_precentral_thicknessstd”, “rh_temporalpole_thicknessstd”, “rh_insula_thicknessstd”, 
“lh_frontalpole_meancurv”, “rh_lateraloccipital_meancurv”, 
“rh_medialorbitofrontal_meancurv”, “left_presubiculum”, 
“Right.Hippocampus_hipposubfields”, “left_CA1”, “right_presubiculum”, “right_CA2_3”, 
“right_subiculum”, “right_CA4_DG” 

Models 2/3/4 Left modality:  “AGE”, “MMSE_bl”, “Left.Lateral.Ventricle”, “Left.Inf.Lat.Vent”, 
“Left.Cerebellum.Cortex”, “Left.Pallidum”, “X3rd.Ventricle”, “Left.Hippocampus”, 
“Left.Amygdala”, “CSF”, “Left.Accumbens.area”, “Left.VentralDC”, “Left.vessel”, 
“Left.choroid.plexus”, “WM.hypointensities”, “non.WM.hypointensities”, “SubCortGrayVol”, 
“BrainSegVol.to.eTIV”, “MaskVol.to.eTIV”, “lh_bankssts_thickness”, 
“lh_caudalmiddlefrontal_thickness”, “lh_entorhinal_thickness”, 
“lh_inferiorparietal_thickness”, “lh_inferiortemporal_thickness”, 
“lh_isthmuscingulate_thickness”, “lh_lateraloccipital_thickness”, 
“lh_medialorbitofrontal_thickness”, “lh_middletemporal_thickness”, 
“lh_parahippocampal_thickness”, “lh_parstriangularis_thickness”, 
“lh_posteriorcingulate_thickness”, “lh_precuneus_thickness”, 
“lh_rostralanteriorcingulate_thickness”, “lh_superiorfrontal_thickness”, 
“lh_superiortemporal_thickness”, “lh_MeanThickness_thickness”, “lh_entorhinal_area”, 
“lh_inferiortemporal_area”, “lh_bankssts_volume”, “lh_entorhinal_volume”, 
“lh_fusiform_volume”, “lh_inferiorparietal_volume”, “lh_inferiortemporal_volume”, 
“lh_middletemporal_volume”, “lh_parahippocampal_volume”, “lh_supramarginal_volume”, 
“lh_bankssts_thicknessstd”, “lh_caudalmiddlefrontal_thicknessstd”, 
“lh_entorhinal_thicknessstd”, “lh_parahippocampal_thicknessstd”, 
“lh_paracentral_thicknessstd”, “lh_posteriorcingulate_thicknessstd”, 
“lh_rostralanteriorcingulate_thicknessstd”, “lh_superiorfrontal_thicknessstd”, 
“lh_insula_thicknessstd”, “lh_fusiform_meancurv”, “lh_inferiorparietal_meancurv”, 
“lh_inferiortemporal_meancurv”, “lh_medialorbitofrontal_meancurv”, 
“lh_frontalpole_meancurv”, “Left.Hippocampus_hipposubfields”, “left_presubiculum”, 
“left_CA1”, “left_CA2_3”, “left_fimbria”, “left_subiculum”, “left_CA4_DG” 
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Right modality:  “AGE”, “MMSE_bl”, “CSF”, “Right.Lateral.Ventricle”, “Right.Inf.Lat.Vent”, 
“Right.Cerebellum.White.Matter”, “Right.Cerebellum.Cortex”, “Right.Hippocampus”, 
“Right.Amygdala”, “rh_entorhinal_thickness”, “rh_pericalcarine_thickness”, 
“rh_posteriorcingulate_thickness”, “rh_insula_thickness”, “rh_paracentral_area”, 
“rh_supramarginal_area”, “rh_transversetemporal_area”, 
“rh_caudalanteriorcingulate_volume”, “rh_entorhinal_volume”, 
“rh_rostralanteriorcingulate_volume”, “rh_supramarginal_volume”, 
“rh_transversetemporal_volume”, “rh_isthmuscingulate_thicknessstd”, 
“rh_medialorbitofrontal_thicknessstd”, “rh_parahippocampal_thicknessstd”, 
“rh_pericalcarine_thicknessstd”, “rh_precentral_thicknessstd”, 
“rh_temporalpole_thicknessstd”, “rh_insula_thicknessstd”, “rh_bankssts_meancurv”, 
“rh_caudalanteriorcingulate_meancurv”, “rh_inferiorparietal_meancurv”, 
“rh_lateraloccipital_meancurv”, “rh_medialorbitofrontal_meancurv”, 
“rh_transversetemporal_meancurv”, “Right.Hippocampus_hipposubfields”, 
“right_presubiculum”, “right_CA1”, “right_CA2_3”, “right_fimbria”, “right_subiculum”, 
“right_CA4_DG” 

Model 5 “AGE”, “MMSE_bl”, “lh_medialorbitofrontal_thickness”, “lh_parahippocampal_thicknessstd”, 
“left_presubiculum”, “rh_entorhinal_thickness”, “rh_temporalpole_thicknessstd”, 
“rh_lateraloccipital_meancurv”, “right_subiculum” 

 

[Table 2 around here] 

In Figure 3, boxplots for 5 features (for each diagnosis class) that were selected as 

important in all classification models of the ensemble are depicted: 
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Figure 3: Boxplots for 5 features (for each diagnosis class), selected as important in all 

models of the ensemble 

[Figures 3 around here] 

 

The confusion matrix for the predictions of the 160 test set subjects (without the 340 

dummy subjects) can be seen in Table 3, while in Table 4, more detailed results (in terms of 

precision, recall and F-score measures for each class, their corresponding macro-averaged 

values and accuracy) with respect to the ensemble’s performance on the test set are provided: 
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Table 3: Confusion matrix for the predictions of the 160 subjects of the test set (without the 

340 dummy test subjects) 

 

Class HC predicted MCI predicted AD predicted cMCI predicted 
HC real 24 9 1 6 

MCI real 14 14 7 5 
AD real 0 0 38 2 

cMCI real 5 8 4 23 
 

[Table 3 around here] 

 

From the results in Table 4, we notice that our classification ensemble achieves an 

accuracy of 61.9% (the best performance achieved in the neuroimaging challenge), as well 

as macro-averaged values of 60.2%, 61.9% and 60.5% for the precision, recall and F-score 

measures, respectively. The best performance is achieved for the class “AD” (precision 76.0%, 

recall 95.0%, F-score 84.4%), while the worst results are attained for the “MCI” class 

(precision 45.1%, recall 35.0% and F-score 39.4%). 

Table 4: Test set results 

 

Class Precision Recall F-score 

HC 55.8% 60.0% 57.8% 

MCI 45.1% 35.0% 39.4% 

AD 76.0% 95.0% 84.4% 

cMCI 63.8% 57.5% 60.5% 

Macro-

average 
60.2% 61.9% 60.5% 

Accuracy 61.9% 

 

[Table 4 around here] 
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Discussion 

 In the present study, we managed to achieve a high level of classification accuracy in a 

blind dataset working for the first time in a four-class AD-based problem. In the feature space, 

we added morphological MRI-based features that in recent years have been shown to increase 

classification accuracy for the automatic diagnosis of AD, such as cortical thickness, 

subcortical volumes and hippocampal subfields (Desikan et al., 2009; Vasta et al., 2016; de 

Vos et al., 2016). Regarding the classification strategy, we adopted an RF approach, designing 

various models for a better learning of the feature space in the internal dataset, thus improving 

the generalization of the whole model. Then, we performed classification using the selected 

feature set from the training set to the blind testing dataset. We achieved a 61.9% classification 

performance for the simultaneously discrimination of four groups (HC, MCI, cMCI and AD). 

It is the very first time in the literature where classification is performed simultaneously in a 

four AD-based class problem using MRI. 

Regarding the modalities, many studies focusing on predictive biomarkers for either 

AD or MCI or both conditions investigated structural MRI data alone (Lebedev et al., 2014; 

Moradi et al., 2015; Nanni et al., 2016 ; Salvatore et al., 2015,2016 ; Ardekani et al., 2017; 

Lebedeva et al., 2017) or combined with features extracted from other modalities, like FDG-

PET (Gray et al., 2013; Sivapriya et al., 2015), florbetapir-PET (Wang  et al., 2016), FLAIR 

(Oppedal et al., 2015) and fMRI (Tripoliti et al., 2007; Son et al., 2017). 

Focusing on the cohort diagnosis and the targeted groups, two studies (Tripoliti et al., 

2007; Lebedev et al., 2014) investigated Alzheimer’s patients (AD) and healthy controls (HC), 

four studies (Cabral et al., 2013; Sivapriya et al., 2015; Maggipinto et al., 2017; Son et al., 

2017) examined AD, HC and Mild Cognitive Impairment (MCI), two studies (Gray et al., 2013; 

Moradi et al., 2015) considered AD, HC, stable MCI (sMCI) and progressive MCI (pMCI, 

converted to AD), two had sMCI and pMCI (Wang et al., 2016; Ardekani et al., 2017), one had 

HC and MCI (Lebedeva et al., 2017) and one (Oppedal et al., 2015) had AD, HC and Lewy-

body dementia (LBD) patients. 

A total of eight studies (Tripoliti et al., 2007; Cabral et al., 2013; Lebedev et al., 2014; 

Moradi et al., 2015; Sivapriya et al., 2015; Ardekani et al., 2017; Lebedeva et al., 2017; 

Maggipinto et al., 2017) applied a feature selection strategy for reducing the dimension of the 

variables space. In two out of eight cases, the number of trees used in the RF was not specified 

(Moradi et al., 2015, Son et al., 2017).  
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Finally, the reported classification accuracies for binary classifiers were: 64.63% for 

HC-AD (Cabral et al., 2013), HC-AD: 89% / HC-MCI: 74.6% / sMCI-pMCI: 58.4% (Gray et 

al., 2013), HC-AD: 90.3% (Lebedev et al., 2014) and sMCI-pMCI: 82% (Moradi et al., 2015). 

Two studies that adopted multi-class classifiers reported 96.3% classification accuracy for HC-

MCI-AD: (Sivapriya et al., 2015) and 87% for HC-LBD-AD (Oppedal et al., 2015). However, 

both of them used multimodal features, in contrast to only MRI-based studies. 

A recent multi-class study based on MRI reported a classification accuracy of ~60% 

for HC-MCI-AD using a regularized extreme learning machine and PCA for feature selection 

(Lama et al., 2017). The whole approach was based on an internal cross-validation scheme 

without attempting to classify a second external blind dataset. In our study, we outperformed 

the best reported single-modality classification performance for HC-MCI-AD focusing on the 

distinction of MCI to cMIC-MCI. 

In this study, we applied early fusion as well as late fusion strategies based on RF’s 

operational features, namely the OOB error and proximity ratios. For the prediction of an 

unknown case, the RF models provide probability estimates per class for that case based on a 

weighting fusion strategy (Liparas et al., 2014). We built in total five models by splitting the 

feature space in the left and right hemispheres. Finally, for the prediction of unknown cases 

based on the outputs of the ensemble’s models, a majority voting scheme was applied, meaning 

that the predicted class was the one that received the highest number of votes by the ensemble’s 

models. Finally, the class with the highest probability estimate (provided by any of the models) 

was selected as the final prediction. This is the very first time that such an RF-based scheme 

was performed and particularly an automatic multi-class classification scheme tailored to 

Alzheimer’s disease and structural MRI modality. 

The most discriminative structural features were the following: age, MMSE scores, the 

thickness of the right entorhinal thickness, right temporal pole thickness and the right medial 

orbitofrontal cortex thickness. Right entorhinal atrophy has been revealed as a consequence of 

frontotemporal dementia and Alzheimer’s disease (Frisoni et al., 1999). Thickness of the right 

temporal pole has been linked to the lateralization effect of semantic dementia (Kumfor et al., 

2016) while the thickness of the right medial orbitofrontal cortex is a key brain area that 

differentiates the prodromal stage of AD from normal aging (Blanc et al., 2015). 

It is important to underline here that both training and testing datasets were age-

matched. We employed age as a possible feature among the MMSE and MRI-based  on the 

assumption that the synergy with morphological properties could play a key role in the 

improvement of classification accuracy. A recent study explored the synergy of age and APOE 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 18, 2017. ; https://doi.org/10.1101/236141doi: bioRxiv preprint 

https://doi.org/10.1101/236141
http://creativecommons.org/licenses/by/4.0/


  

21 
 

for predicting progression from MCI to AD (Korolev et al., 2017). Another study demonstrated 

a Bayesian model for the early prediction and early diagnosis of AD (Alexiou et al., 2017). We 

hypothesize that age will have a weaker relation to a prediction model, e.g. for the conversion 

of MCI to AD for a group, following a physical and cognitive intervention. 

RF has been successfully applied to a wide range of disciplines and several studies that 

make use of RF in the neuroscience domain can be mentioned. For instance, Ramirez et al. 

(2010) presented a computer aided diagnosis (CAD) method for the early detection of the 

Alzheimer’s disease (AD), based on partial least square (PLS) regression for feature extraction 

and RF for single photon emission computed tomography (SPECT) image classification. The 

experimental results of their study showed that the proposed PLS-RF system’s generalization 

error converges to a limit as the number of trees in the RF model increases and is affected by 

the strength of the trees in the model, as well as the correlation between them. In another study, 

Smith et al. (2013) performed prediction of the concentrations of 9 neurochemicals in the 

vestibular nucleus complex and cerebellum by means of Random Forest regression (RFR) and 

compared the results with those of multiple linear regression (MLR). In general, the 

experimental results demonstrated the superiority of MLR over RFR in terms of predictive 

value and error. Nevertheless, an interesting conclusion of the study was that RFR can still 

have good predictive value in certain cases. Lebedev et al. (2014) investigated the effectiveness 

of RF classifier ensembles in the detection and prediction of AD in terms of accuracy and 

between-cohort robustness. The ensembles were trained with the use of different structural 

MRI measures and they resulted in significantly better classification performance compared to 

the reference model (linear Support Vector Machine). Finally, McKinley et al. (2016) proposed 

a method, called fully automated stroke tissue estimation using random forest classifiers 

(FASTER), which estimates the penumbra (tissue-at-risk) volume in the context of ischemic 

stroke treatment. The method utilizes multimodal MRI in order to predict tissue damage in the 

case of persistent occlusion, as well as of complete recanalization. 

A recent systematic review of RF algorithms tailored to the classification of 

neuroimaging data in AD underlines the limitations of single modalities, the best accuracies of 

multimodal imaging and overfitting (Sarica et al., 2017). Finally, they suggested the need for 

the use of machine learning techniques for the early prediction of the progression from MCI to 

AD. 

Complementary to the aforementioned structural features, hippocampal volume has 

been listed high in the ranking of features. Hippocampal volume plays a key role in early 

dementia and cognitive decline. Hippocampal atrophy is higher in AD compared to MCI and 
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healthy controls (Heiyer el al., 2010). Hippocampal volumes were also inversely correlated 

with age in older healthy controls while in Alzheimer’s disease hippocampal atrophy in the 

body and tail of overlap with atrophy was also observed in healthy controls. In contrast, the 

atrophy in the anterior and dorsal CA1 subfield involved in Alzheimer’s disease was not found 

in normal ageing (Frisoni et al., 2008). Parcellating the hippocampus with Freesurfer 6.0 will 

increase the distinction of atrophy between healthy control and Alzheimer’s disease patients 

and also in mild cognitive impairment subgroups (Iglesias et al., 2015). 

 

 

Limitations of the Study 

 In the current study, we attempted to predict the labels of an unknown dataset in a four-

class problem. We achieved a classification accuracy of 61.9%, which is low for a classification 

performance, especially for AD, but the best till now in the literature. This open competition 

with a common starting point for every team underlined the limitations of a single imaging 

modality in the construction of a reliable biomarker that can track every pre-stage of AD and 

distinguishes MCI from cMCI. It is vital in the near future to combine features from multimodal 

imaging with genetic risk for AD (Foley et al.,2017), various neuropsychological estimates and 

also complementary features, such as living habits (Alexiou et al., 2017), for the design of a 

better early diagnostic model for Alzheimer’s disease. To reveal the complementary 

information shared between every group of features in a final model and also their causal role, 

accelerated longitudinal studies are very important (Teipel et al., 2015). We strongly believe 

that the current methodology could be a substrate to fuse multimodal features and to further 

predict the clinical status of an unknown dataset. 

In the future, we will attempt to use the same methodological approach, focusing also 

on subjects with a longer follow-up period with main scope to improve the sensitivity of our 

algorithm in discriminating stable vs progressive MCI subjects (Lebedev et al., 2014). In 

addition, we will extract features from static and dynamic functional brain networks, based on 

resting-state fMRI recordings for building multi-modal biomarkers. 

 

Conclusions 

Our methodology based on RF and structural MRI features produces the highest 

classification accuracy for a multi-class AD-based problem. It is the very first study that 

attempted to simultaneously classify four classes (HC, cMCI, MCI, AD), and achieved a 
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classification accuracy of 61.9% in a blind external validation dataset. Our approach could be 

useful also for multimodal biomarkers focusing on novel and robust AD biomarkers. 
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