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Abstract 

Genome-wide association studies have uncovered common variants at many loci 

influencing human complex traits and diseases, such as high-density lipoprotein 

cholesterol (HDL-C). However, the contribution of the identified genes is difficult to 

ascertain from current efforts interrogating common variants with small effects. Thus, 

there is a pressing need for scalable, cost-effective strategies for uncovering causal 

variants, many of which may be rare and noncoding. Here, we used a multiplexed 

inversion probe (MIP) target capture approach to resequence both coding and 

regulatory regions at seven HDL-C associated loci in 797 individuals with extremely 

high HDL-C vs. 735 low-to-normal HDL-C controls. Our targets included protein-coding 

regions of GALNT2, APOA5, APOC3, SCARB1, CCDC92, ZNF664, CETP, and LIPG 

(>9 kb), and proximate noncoding regulatory features (>42 kb). Exome-wide genotyping 

in 1,114 of the 1,532 participants yielded a >90% genotyping concordance rate with 

MIP-identified variants in ~90% of participants. This approach rediscovered nearly all 

established GWAS associations in GALNT2, CETP, and LIPG loci with significant and 

concordant associations with HDL-C from our phenotypic-extremes design at 0.1% of 

the sample size of lipid GWAS studies. In addition, we identified a novel, rare, CETP 

noncoding variant enriched in the extreme high HDL-C group (P<0.01, Score Test). Our 

targeted resequencing of individuals at the HDL-C phenotypic extremes offers a novel, 

efficient, and cost-effective approach for identifying rare coding and noncoding variation 

differences in extreme phenotypes and supports the rationale for applying this 

methodology to uncover rare variation—particularly non-coding variation--underlying 

myriad complex traits.  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235887doi: bioRxiv preprint 

https://doi.org/10.1101/235887
http://creativecommons.org/licenses/by-nd/4.0/


 

4 

Introduction 

While genome-wide association studies (GWAS) have elucidated the role of common 

genetic variation to many human complex traits and diseases, the role of rare genetic 

variation in complex traits remains poorly defined [1].  This is especially true for rare 

noncoding variants, which are not captured by whole exome sequencing (WES) 

currently being applied to large numbers of participants.  Blood lipid levels are among 

the most heritable biomarkers of disease risk and protection [2].  One strategy to 

capture novel variation that may include putatively causal variants is targeted 

resequencing of genes at candidate loci for lipid traits. Indeed, this approach has been 

applied to the follow-up of initial GWAS studies for low-density lipoprotein cholesterol 

(LDL-C) and triglycerides (TG) [3-5].  These efforts have largely sequenced the coding 

regions of candidate genes, with the goal of identifying protein-altering variants that may 

have a profound functional impact. However, given that the majority of GWAS-

implicated variants are in the noncoding genome [6,7] the contribution of rare noncoding 

variants to these traits is underexplored. 

 Plasma levels of high density lipoprotein cholesterol (HDL-C) are highly heritable.  

There are >70 loci significantly associated with HDL-C levels through testing of common 

variants (minor allele frequency, MAF > 0.05) on genome-wide genotyping arrays [8,9]. 

However, pinpointing the causal variants and genes from these associated loci is 

challenging. Current efforts to resolve this have included fine mapping of identified loci 

to determine causal variants [10,11], but these methods are limited in that they focus on 

common single nucleotide polymorphisms (SNPs) with generally small effect sizes. 

Given that common SNPs are estimated to explain only a fraction of the heritability of 
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HDL-C levels [8], additional variance may be explained by low frequency (MAF = 0.01-

0.05) and/or rare variation (MAF < 0.01) not yet captured in existing genotyping arrays 

and imputation reference panels. Furthermore, the identification of rare, causal, 

noncoding variants with strong effect sizes on HDL-C may help to delineate causal and 

heritable mechanisms governing HDL metabolism that could directly relate to CHD risk. 

One limitation hampering targeted sequencing efforts for the noncoding genome is the 

relatively poor annotation of functional elements most likely to harbor variants of 

significance. A related issue is that targeted sequencing efforts are costly and scale with 

the size of the genomic targets, so methods have largely been developed for reliably 

amplifying and sequencing coding regions of genes. Thus, there is a pressing need for 

efficient and scalable method for capturing the noncoding genome to apply to large 

populations to uncover causal variation underlying complex traits such as HDL-C. 

Here, we investigated the feasibility of targeting the noncoding regions of 

candidate gene loci to identify rare variants that differ in frequency at extremes of HDL-

C levels using a cost-effective approach that could be extended to larger numbers of 

samples. We adapt a recently reported target capture method involving Molecular 

Inversion Probes (MIPs) [12,13] for amplifying genomic targets utilized for autism 

spectrum disorder candidate gene sequencing.  We performed targeted resequencing 

of seven HDL loci including both coding and noncoding regions in a cohort of 1,532 

subjects with either extremely high or low HDL-C, and show the ability to capture 

noncoding regions of the genome using this method. Our results validate previously 

reported coding and noncoding SNP associations with HDL-C, identify gene-level 
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associations in these seven regions with this trait, and also show the promise of large-

scale targeted resequencing of noncoding regions for complex traits. 

 

Results 

Candidate regions for targeted sequencing 

We sought to develop an approach for multiplexed targeted sequencing that could 

identify noncoding variants, uncover novel noncoding variation in HDL-C candidate 

genes could underlying phenotypic extremes, and test the hypothesis that noncoding 

variation at these loci could contribute significantly to these extreme phenotypes in a 

manner similar to that of coding variants traditionally identified by targeted resequencing 

approaches to date. Thus, we performed a targeted resequencing study of HDL 

candidate gene regions in 1,532 participants with either extremely high HDL-C (mean 

plasma HDL-C of 107 mg/dL, >95th percentile for age and sex, 797 participants) vs. low 

HDL-C controls (plasma HDL-C between 20 mg/dL and 25th percentile for age and sex, 

735 participants; Table 1). 

We selected seven candidate loci for targeted sequencing of coding and 

noncoding regions in our cohorts (Figure 1). Four of the targeted loci, APOC3, 

SCARB1, CETP, and LIPG have known roles in HDL metabolism for which loss-of-

function has been shown to elevate HDL-C in humans [14]. To explore the hypothesis 

that rare noncoding variants may underlie GWAS-implicated loci for HDL-C levels, we 

selected three HDL-C loci newly identified through GWAS, GALNT2, SBNO1, and the 

CCDC92-ZNF664 region for our targeted sequencing. Some sequencing efforts have 

suggested that GALNT2 coding variants segregate with elevated HDL-C while a recent 
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report from our group found an opposite result for two rare coding variants [15]. 

Similarly, the contribution of either coding or noncoding rare variants at the CCDC92-

ZNF664 and SBNO1 loci to HDL metabolism remains completely unexplored. 

Therefore, we evaluated these loci for rare coding and noncoding variants to better 

determine the directional relationship of these genes with HDL-C beyond the initial 

common variant associations. 

 

Variants identified by MIP sequencing 

We performed multiplexed capture of the genomic targets using 569 MIPs in 1,532 

participants and sequenced all samples together after dual-index barcoding on the 

Illumina HiSeq2500 sequencing platform (Supplementary Figure 1). Genomic targets 

included 9,075 bp of protein coding sequence, 31,371 bp of noncoding UTR and intronic 

sequence, and 10,874 bp of noncoding intergenic sequence for a total target footprint of 

51,320 bp (see Materials and Methods). Multiplexed sequencing across the 1,532 

samples resulted in a median sequencing coverage of 110-fold per base from a single 

HiSeq2500 sequencing run. We observed a high uniformity of target coverage per MIP 

across the subjects in our cohort, with approximately 489 MIPs (86%) demonstrating 

coverage of >10-fold depth in each sequenced participant. 

 Following sequence read quality control, reads were aligned on an individual 

sample basis, and the alignments were then merged for joint genotyping (Materials and 

Methods). Raw variant calls were hard filtered based on alignment metrics, and then 

subjected to secondary variant-level and sample-level quality control pipelines to 

remove any additional outliers (Supplementary Figure 2). Next, filtered samples 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235887doi: bioRxiv preprint 

https://doi.org/10.1101/235887
http://creativecommons.org/licenses/by-nd/4.0/


 

8 

underwent principal component analysis to inspect for any cryptic population structure 

present in our cohort, identify any individual outlier samples, examine any clustering of 

MIP capture batches, and visualize demographic relationships in the context of 1000 

Genomes samples and variants (Phase 3 version 5a; Supplementary Figures 3-7). 

After filtering MIP samples on the basis of these criteria, a total of 1500 out of 1532 

original samples remained for further variant analysis. 

To validate the variants identified from our MIP sequencing, we genotyped 1,114 

of the 1,532 participants (681 high HDL-C individuals and 433 low HDL-C individuals) 

on the probe-based Illumina Exome Array [16]. Among the variants genotyped on this 

array, 38 were within our target regions. We observed a high concordance rate in 

variant discovery between MIP sequencing and genotyping results, with 32 of 38 SNPs 

overlapping on the Exome Array called with >90% concordance across all participants, 

and 987 of 1114 participants demonstrating >90% concordance of all genotyped SNPs 

(Figure 2). 

 The final MIP sequencing variant call set contained 1956 SNPs and 689 distinct 

insertion/deletion events (indels; 78 insertions and 611 deletions) for a total of 2645 

unique variants in 1500 samples. Of these, 556 correspond with previously reported 

variants in dbSNP (v141), suggesting that the remaining 2089 were novel discoveries 

without any previous annotation (Table 2). We also compared the frequency of 

identified variants across our genomic targets based on their annotated genomic 

position and effect on gene function (e.g. coding nonsynonymous, noncoding 5�UTR) 

and compared the total proportion of variants identified for a given annotation with the 

total amount of genomic sequence corresponding to that annotation. We found that the 
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number of variants identified for a given annotation was proportional to the amount of 

sequence for a given annotation comprising the genomic target. This suggests that our 

MIP sequencing capture approach did not preferentially identify variants of a given 

annotation across our selected genomic targets (Supplementary Figure 8). Following 

quality control, genotype validation, and annotation distributions, the MIP sequencing 

variants were then tested for association with HDL-C using a framework sensitive to 

minor allele frequency (MAF) and protein coding status of the different variants 

(Supplementary Figure 9). 

 

Association of single variants from targeted sequencing with extremely high HDL-C 

We tested the association of 336 common and low frequency (MAF ≥ 0.01) SNPs and 

indels identified with high vs. low HDL levels, and observed 34 alleles at significantly 

greater frequencies among the high HDL-C participants (P < 1.49 x 10-4, Score test, 

Table 3). Of these, 17 were previously reported by the Global Lipids Genetics 

Consortium GWAS study [8]. 

 

Replication of HDL-C associations from GWAS through MIP sequencing 

In addition to rare, noncoding variants identified from MIP sequencing, we also 

recovered common variants previously associated with HDL-C through the Global Lipids 

Genetics Consortium + MetaboChip (GLGC) GWAS [8]. In the GLGC study, 49 variants 

that exceeded genome-wide significance (P < 5 x 10-8) in their associations with HDL-C 

are located in regions that overlap with MIP sequencing targets. We observed all of the 

49 variants in the MIP sequencing variant call set, and likewise observed all of them at 
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common or low frequencies (MAF > 0.01) in the 1500 samples. A total of 17 of the 49 

exceeded an experimental statistical threshold (Score test P < 1.49 x 10-4), with an 

additional 10 that were nominally significant (Score test P < 0.01, Table 4, 

Supplementary Figures 10-14). All of the experiment-wide significant and nominally 

significant associations we identified were directionally consistent with prior reports of 

SNPs as those loci with HDL-C levels and with comparable minor allele frequencies 

(MAF) to those reported for each variant from 1000 Genomes Project (Phase 3 v5a, 

European sample set) [17,18]. . 

 

Rare, novel, noncoding variants with nominally significant associations with HDL-C 

Due to the small sample size of our study, we expected modest power to demonstrate 

association beyond a reasonable doubt. Thus, we examined variants that exhibited 

nominally significant associations (P<0.01, Score test) with elevated HDL-C, and 

identified 68 such SNPs and indels (Supplementary Table 5 and Table 3). These 

included 54 noncoding variants (i.e., located outside of protein-coding sequence), 11 

rare (MAF≤0.01) and six low frequency variants (0.01<MAF<0.05), and eight variants 

not previously described in dbSNP. Of the noncoding variants identified, 12 were found 

to have CADD scores of 10 or more, suggestive of deleteriousness to gene expression 

or function (Table S5) [19]. We evaluated the putative impact of the noncoding variants 

we identified across our regions by exploring overlap between these SNPs and 

transcription factor binding sites and microRNA seed sites, which identified multiple 

common noncoding variants across our loci that overlapped such regulatory features 

(Table S5).  Among the noncoding SNPs with potential functional impact on gene 
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expression is a proximal variant 21 bp upstream of the transcription start site of CETP, 

rs34498052 (chr16:56,995,814 G>A), that was previously identified in a resequencing 

study of 68 genes in French Canadian myocardial infarction cases and controls. 

Although this variant overlaps multiple epigenetic marks from ENCODE, including CpG 

methylation marks in HepG2 hepatocytes and HMVEC endothelial cells, it was 

extremely rare (MAF=0.001, allele count [AC] = 3), which made statistical interpretation 

challenging, as the score test is not intended or calibrated for that end of the frequency 

spectrum given our sample size. More conservatively, for variants identified with greater 

than five allelic copies among the 1500 participants, we identified a single rare, novel, 

noncoding SNP in a splice region of the CETP gene (chr16:57,005,300 G>A) that was 

nominally associated with high HDL-C (P=0.009, Score Test, AC=8). 

We also investigated the association of these SNPs with expression of genes as 

expression quantitative trait loci (eQTLs) from the Genotype-Expression (GTEx) project 

(Table S5 and S6) [20]. Analysis of eQTLs across human tissues identified 21 of the 54 

noncoding SNPs with at least one significant eQTL in a human tissue. Among these are 

a set of noncoding SNPs at the CCDC92 locus associated with reduced CCDC92 

expression and that of other genes in subcutaneous adipose tissues, consistent with the 

recent identification of a sentinel SNP at this locus in LD with our identified SNPs that 

was associated with CAD and also with decreased CCDC92 expression in the same 

tissue [21]. As another example, we show that another set of SNPs downstream of the 

LIPG gene are associated with LIPG gene expression in skeletal muscle and skin 

tissues. These SNPs are in LD with other GWAS-implicated SNPs downstream of LIPG 

that we previously showed to reduce endothelial lipase (EL) protein levels [22]. Thus, 
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our MIP sequencing experiment identified multiple regulatory variants underlying high 

HDL-C that also correlated with cis-regulatory effects on gene expression across human 

tissues.   

 

Rare variant burden associations with extremely high HDL-C 

Lastly, we tested the hypothesis that the genomic regions we targeted harbor rare 

variants that collectively contribute to the relationship of these genes with HDL-C levels. 

We performed aggregate rare variant burden using a framework that categorized rare 

variants (MAF<0.01) on the basis of their coding status, deleteriousness, and genic 

region (Table 5 and Supplementary Figure 9). We first identified rare coding variants 

believed to be non-benign in their putative functional consequence (n=213), organized 

them based on their predicted impact on protein function (e.g.: i) disruptive, ii) disruptive 

plus missense, or iii) loss-of-function; see Materials and Methods for definitions), and 

then tested aggregate rare coding variant burden across all targeted genic regions for 

each predicted impact category.  We found that for each predicted impact category the 

collection of all rare coding variants did not exhibit a level of rare variant burden that 

was significantly associated with HDL-C. Similarly, variant aggregation over the coding 

regions of the individual gene targets separately (n=8) did not identify any individual 

region with significant variant burden associated with high vs. low HDL-C (Collapsing 

test; Table 5). 

 We then asked if the burden of rare noncoding variants across all targets 

contributed to extremely high HDL-C. Due to the fact that a methodological framework 

for predicting the potential regulatory impact of noncoding variants genome-wide has 
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yet to be widely accepted, the rare noncoding variants were not subdivided into putative 

functional categories like the coding variants described above. Thus, we first analyzed 

all rare noncoding variants as a single group, which resulted in a variant burden that 

was not significantly associated with high HDL-C in our cohort (P=0.5028; Table 5). We 

next grouped rare noncoding variants by physical genic region (n=10) and performed 

variant burden analyses separately on each region. This approach identified a collection 

of 151 rare variants in the APOA4-APOA5 intergenic region that were nominally 

significantly associated with extremely high HDL-C (P=9.43 x 10-3, Collapsing test; 

Table 5). Within this region, we noted a collection of three different indels as multiple 

alternative alleles at the position chr11:116,678,249 (hg19). Of these, a rare deletion 

CAA>C (MAF=0.003, AC=7) exhibited nominally significant association with high HDL-C 

(P=0.0427, Score test). The second allele was a common deletion (MAF=0.06, AC=138) 

that was not associated with high HDL-C (P=0.75, Score test). The third allele was the 

same common (MAF=0.26, AC=605) yet previously unreported insertion of CAA>CAAA 

at chr11:116,678,249 that was significantly associated with high HDL-C (P=8.9x10-4, 

Score Test) in the single variant analysis.  

 We hypothesized that these particular common alternative alleles were driving 

the nominally significant rare variant burden association signal for the APOA4-APOA5 

intergenic region. To test this, we removed it (and all other non-rare variants at 

multiallelic sites) and reassessed rare variant burden and found a complete attenuation 

of the association (P=0.43; Table 5), thus suggesting that the originally significant 

association of the cluster of APOA4-APOA5 intergenic variants with HDL-C was driven 

by common alleles alone. 
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Discussion 

Translating GWAS trait- and disease-associated common variants to bona fide causal 

variants, genes, and biological mechanisms has been a major challenge for human 

genetics. This is due in part to small effect sizes of GWAS variants, and thus 

resequencing of candidate genes at GWAS loci at the phenotypic extremes of complex 

traits has become a leading approach to identify rare variants with larger effects. To 

date, this approach has been applied to coding regions of GWAS candidate genes, yet 

coding variants account for only a small fraction (approximately 11%) of all variants 

tagged complex trait GWAS studies [23,24], underscoring the need to search the 

noncoding genome for rare, putatively causal variants. Here, we utilized an inexpensive, 

modular, and scalable targeted sequencing approach for identifying rare noncoding 

variants in candidate genes influencing HDL-C, a complex trait with 72 associated loci 

from GWAS [8]. Our proof-of-principle resequencing study of seven candidate gene 

regions in 797 extremely high HDL-C vs. 735 low HDL-C participants rediscovered and 

validated nearly all prior GWAS-implicated tag SNPs, and revealed nearly 2,000 

variants in noncoding regions of targets, including rare, novel noncoding variants that 

were nominally associated with HDL-C in our study. As such, our findings provide one 

of the first applications of a multiplexed targeted resequencing study of noncoding 

variants across multiple loci at the phenotypic extremes of a complex trait. 

 We rediscovered previously implicated variants in our cohort, along with the initial 

discovery of a few novel candidates requiring statistical support. Most notably, we found 

significant or nominally significant associations for a majority (55%) of GWAS-implicated 
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HDL-C variants overlapping our targeted regions with consistent directionality to prior 

associations of these variants. However, we replicated these associations at less than 

1/100th the cohort size of the most recent GWAS for HDL-C (188,577 participants [8], 

vs. 1532 participants in our study) through our phenotypic extremes-design. We also 

identified three rare (MAF < 0.01) or low frequency (MAF < 0.05) nonsynonymous 

coding variants associated with HDL-C levels with directionalities consistent with 

previous reports (CETP Ala390Pro [25], CETP Arg468Gln [26], and LIPG Asn396Ser 

[26-28]). Collectively, these findings support the utility of candidate gene and noncoding 

locus resequencing at the extremes of a continuous trait distribution to enrich for trait-

associated alleles, which may allow ascertainment of genetic associations in smaller 

populations than historical sizes for complex trait GWAS, such as understudied 

ethnicities and population isolates. 

 Our study also has important methodological implications for future targeted 

resequencing efforts. To date, MIP-sequencing has been applied to targeted 

sequencing of coding regions of candidate genes with a sample preparation cost of less 

than $1 per participant [12,29,30]. Our use of MIPs to interrogate noncoding regions of 

HDL-C candidate genes represents one of the first applications of this methodology for 

regulatory DNA regions. Our sequencing efforts were completed at a comparable cost 

to the prior applications, with similar target-coverage depths across coding and 

noncoding targets. Additionally, our modified dual-barcoding approach allowed us to 

multiplex all 1,532 samples for sequencing in a single lane of an Illumina HiSeq2500 

sequencing run with a median base coverage per participant of 110-fold; a robust depth 

for novel and rare variant identification at a sequencing cost of ~$2,000. Thus, our study 
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highlights the utility of a MIP-based approach for sequencing of noncoding regions at a 

low per-sample cost. 

 Several variants identified from our study lie in regions of candidate genes for 

which loss-of-function variants have been shown to raise HDL-C levels in humans. 

Specifically, multiple noncoding variants were found in high HDL-C participants were 

observed in CETP and LIPG. CETP is a circulating regulator of HDL metabolism with 

pharmacological and genetic inactivation, including coding and noncoding variants, 

associated with increased HDL-C in humans [15]. Similarly, we also identified multiple 

rare noncoding variants in LIPG among high HDL-C subjects. LIPG encodes endothelial 

lipase, an enzyme critical to HDL catabolism for which loss-of-function genetic variants 

are causal contributors to elevated HDL-C in humans [15]. Here, we expanded the 

allelic spectrum of rare noncoding variation in these two HDL-C modulating genes 

contributing to high HDL-C levels in humans. In both cases, the frequency of these 

mutations and our limited sample size requires further analysis in follow-up cohorts to 

demonstrate conclusive association of these rare alleles with HDL-C. 

While epidemiological findings have consistently supported an inverse association of 

high-density lipoprotein cholesterol (HDL-C) with CHD [31-33], the direct role that HDL-

C plays in modulating CHD risk has been highly controversial. Increasing evidence over 

the last decade has argued against the hypothesis that simply raising serum HDL-C 

levels will protect against CHD [34], most directly supported by the lack of efficacy of 

pharmacological elevation of serum HDL-C to lower CHD risk [35-38]. Subsequently, 

human genetic efforts identifying low-frequency or rare coding variants in candidate loci 

robustly associated with HDL-C elevation have not demonstrated a reduction in the 
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incidence of CHD or myocardial infarction [15]. Taken collectively, these studies raise 

basic questions regarding the causal role of HDL in CHD biology, HDL metabolism and 

the medical interpretation of the phenotypic extremes of the HDL-C spectrum. 

Elucidation of these facets of HDL biology is therefore likely to be central in determining 

how HDL ultimately underlies cardiovascular disease risk. 

 Our current study has limitations, which serve as opportunities for further study. 

First, our total cohort size of 1,532 participants limits both the ascertainment of the full 

spectrum of very rare variants that may underlie extremely high HDL-C levels as well as 

the power of our statistical tests of common variant association and rare variant burden. 

Second, our population of high and low HDL-C participants was largely of European 

ancestry, thus limiting our ability to extrapolate the variants discovered to other 

populations. Third, we employed conventional strategies for rare-variant grouping, 

which focused on gene-level aggregation. However, for noncoding sequences, it was 

not obvious which variant grouping strategy is optimally powered, which remains an 

open question in the field. Finally, because we selected a finite sequence of noncoding 

genome with genomic annotations that we believed a priori would be functional and lipid 

related (e.g., enhancer marks in liver), it remains possible that rare-variant burden either 

exists in other sequences we did not target here. 

 In conclusion, our MIP-based targeted sequencing approach has demonstrated 

the successful capture of noncoding regions for the discovery of rare, noncoding 

variants associated with HDL-C in a cohort of extremely high vs. low HDL-C 

participants. Though efforts to better identify the spectrum of noncoding variants 

underlying complex traits have initiated, including denser genotyping of noncoding 
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variants [39] and whole-genome sequencing [26], these approaches remain expensive 

and not readily applicable to the study of large populations or large case-control 

designs. Our results offer a scalable and cost-effective targeted approach that 

complement future, larger candidate loci resequencing efforts for the discovery of 

putatively causal noncoding variants. These efforts, coupled with appropriate functional 

investigation of identified variants for impact on gene regulation, may substantially refine 

the causal genes at loci implicated from GWAS studies and also help further explain the 

missing heritability underlying complex traits such as HDL-C. 
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Materials and Methods 

Ethics statement 

All human participants of this study and all analyses performed were completed 

following the Declaration of Helsinki [40] and were approved by the Institutional Review 

Board of the Perelman School of Medicine at the University of Pennsylvania and all 

participants provided informed consent. 

 

Subject selection and ascertainment 

1532 participants mostly of European ancestry, with either extremely high HDL-C 

(>95th percentile for age and sex), or low HDL-C (20 mg/dL or higher to 25th percentile 

for age and sex) were recruited for targeted sequencing (Table 1). Participants were 

recruited as part of the University of Pennsylvania High HDL Study (HHDL), a cross-

sectional study of genetic factors contributing to elevated HDL-C levels. Individuals with 

elevated HDL-C (>90th percentile for age and gender) were identified by physician 

referrals or through the Hospital of the University of Pennsylvania clinical laboratory. 

Plasma lipids for all subjects were measured after fasting by a clinical autoanalyzer 

(Hitachi). HDL-C percentiles for inclusion were calculated for individuals of European 

ancestry from the Framingham Heart Study Offspring cohort adjusted for age and sex. 

 

Molecular inversion probe design 

Molecular inversion probes (MIPs) were designed according to the method and pipeline 

previously described by O’Roak et al [12]. Briefly, MIPs capturing chosen targets were 

all designed using a common 30 bp linker sequence flanked by an extension arm of 16-
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20 bp and a ligation sequence of 20-24 bp, with a total MIP length of 70 bp. The unique 

arms of the MIPs that anneal to the target sequence by complementary base pairing 

were designed to amplify a specific 112-150 bp target region by gap-filling and 

circularization. After MIP capture, a PCR amplification reaction using Nextera-like 

(Illumina) sequencing adaptor-containing primers (Illumina) allowed amplification with 

the primers annealing to the 30 bp common linker sequence (Supplementary Figure 

1). Given prior demonstration of variability in MIP capture efficiency due to properties of 

annealing arm base pairing with sequences adjacent to individual targets, an initial set 

of 549 MIPs was designed to cover all of the proposed target in 88 unique non-

overlapping segments, and a pilot-phase MIP sequencing study was performed to 

evaluate per sample and per MIP coverage depth in an initial set of 95 DNA samples. 

Based on the coverage from this run, MIPs demonstrating less than 10-fold coverage 

per base for more than 50% of sequenced samples were redesigned and substituted in 

all additional runs. From this second and final pilot-phase sequencing run, 569 MIPs 

were included to capture the targeted regions from genomic DNA samples from the 

1,532 participants. 

 MIPs were designed to capture the coding sequences (exons) of the following 

genes (GRC37/hg19 coordinates): GALNT2 (chr1:230338882-230415202), APOA5 

(chr11:116660886-116663095), APOC3 (chr11:116700650-116703573), CCDC92 

(chr12:124421729-124428847), ZNF664 (chr12:124488089-124497396), SCARB1 

(chr12:125267297-125348261), CETP (chr16:56995891-57017572), and LIPG 

(chr18:47088681-47110124) (Figure 1 and Supplementary Table 1). The total protein-

coding sequence captured by the 569 MIPs corresponding to these regions was 9,075 
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bp. Noncoding genic regions at these loci such as 5� untranslated regions (UTRs), 3� 

UTRs, and intronic sequences were likewise targeted, for a total of 31,371 bases. 

Noncoding sequences, including 5�UTRs, 3�UTRs, intronic sequences and other 

intergenic noncoding sequences proximate to these loci, were chosen if they were 

previously shown to harbor variants significantly associated with HDL-C (P<5 x 10-8; 

GLGC + Metabochip GWAS), and also were found to overlap DNase I hypersensitivity 

sites in HepG2 cells (human hepatocellular carcinoma) from the ENCODE project [41] 

or enhancers in HepG2 cells from the Epigenome-Roadmap project [42]. Regions with 

250 bp flanking the positions harboring these elements were selected for MIP design. 

The total noncoding intergenic target across the loci for which MIPs were designed to 

capture was 10,874 bp. The entire sum of genomic territory for targeted resequencing 

was 51,320 bp. MIP oligonucleotides were purchased from Eurofins Genomics with 

high-purity salt-free purification at a scale of 50 nmol per oligonucleotide. Lyophilized 

MIPs were hydrated with 1x TE buffer to a concentration of 100 μM and stored at -20 

°C. 

 

MIP capture and amplification of targeted sequences 

MIP oligonucleotides were used to capture targets from genomic DNA derived from 

whole blood from the participants in a manner described previously. Hydrated MIP 

oligonucleotides were pooled together and phosphorylated with T4 polynucleotide 

kinase (NEB) at 37 °C for 45 min, followed by heat inactivation at 65 °C for 20 min. 

Phosphorylated MIPs were used to capture genomic targets by combining with genomic 

DNA from each participant (100 ng of each individual sample; ratio of 800:1 of each MIP 
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copy to haploid genome copy) using NEB Hemo Klentaq (NEB) and Ampligase for 24 

hrs at 60 °C in a thermocycler. 96 samples were individually captured in one reaction by 

individually plating reactions in a 96-well thermocycler plate. A total of 16 plates of 96 

samples apiece were processed. Reactions were digested with Exonuclease I and 

Exonuclease III (NEB) after incubations for 45 min at 37 °C and then 2 min at 95 °C. 

Digested MIP capture reactions were PCR amplified using primers with barcoded 

adapter sequences (Supplementary Table 2). In order to sequence all 1532 samples 

from a single multiplexed pool, a dual-barcoding strategy similar to that of Illumina’s 

Nextera protocol was employed. To provide unique combinations of forward and 

reverse primers for all 1536 samples (1532 individual subjects plus four ddH2O controls) 

across the 16 plates, a common forward barcoded adapter primer was used for each 

plate, and 96 unique reverse barcoded adapter primers were used for each of the 96 

samples within a plate. PCR reactions to ligate adapters and barcode MIP capture 

reactions were completed with iProof master mix reagent (Bio-Rad). Barcoded and PCR 

amplified MIP capture reactions were then pooled together at equal volumes, purified 

using AMPure magnetic bead purification (Agencourt) at 0.9-fold the total volume of the 

pooled reaction, and visualized on agarose gels. Purified, pooled capture reactions 

were then sequenced in paired-end mode (150 bp X 150 bp) on Illumina MiSeq and 

HiSeq2500 sequencers using standard Nextera sequencing reagents plus a custom 

pool of Nextera-like sequencing primers (Supplementary Table 3). All MIP 

oligonucleotides, adapters, PCR primers and sequencing primers were synthesized by 

Eurofins MWG Operon. 
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MIP sequencing 

Initial MIP sequences were obtained as paired-end FASTQ reads and generated in 

three separate sequencing runs (one lane of sequences from a single MiSeq run and 

two lanes of HiSeq2500 RapidRun from two independent runs). Coverage estimates 

were calculated on a per-run basis, whereas variant calling utilized reads from all three 

runs. De-multiplexing was performed using CASAVA v1.8.2’s bcl2fastq conversion 

script (Illumina), and all reads were inspected using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and processed using 

Trimmomatic v0.32 to remove adapter artifacts, sequencing artifacts, and low quality 

bases [43]. 

 

Read alignment and variant calling 

Sequences were aligned to the UCSC hg19 human genome build on a per-sample and 

per-sequencing run basis using BWA v0.7.8 (MEM algorithm) [44,45] and the resulting 

alignment files were compressed and sorted using SAMtools v0.1.19 [46]. The variant 

calling was conducted utilized Genome Analysis Toolkit v3.5 (GATK; [47]), and pre-

processing of each sample’s lane-specific alignment files was performed in accordance 

with the established GATK’s ‘Best Practices’ workflow [48,49]. This workflow featured 

duplicate read removal using Picard v1.141 (Picard website: 

http://broadinstitute.github.io/picard), and run-specific insertion-deletion (indel) 

realignment and base recalibration using GATK and hg19 “Gold Standard” variant 

catalogs (dbSNP v138 database: http:www.ncbi.nlm.nih.gov/SNP/, [50,51]). Run-

specific alignments were then merged for each sample, and subjected to a second 
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round of indel realignment and base recalibration with GATK. Preliminary sample-level 

variants were called using GATK’s HaplotypeCaller tool in gVCF mode at base-pair 

resolution, and all known variants were annotated with their corresponding dbSNP v138 

identities. Sample-level variant callsets were then combined and joint-genotyped with 

GATK. SNPs and indels called at this stage were evaluated using metrics collected by 

Picard and GATK, and then hard-filtered on the basis of variant-class-specific criteria 

(Supplementary Table 4) in order to flag potential false positives. To avoid the 

inclusion of soft-clipped adapter artifacts, all variants falling outside of the MIP target 

regions were removed using VCFtools v0.1.13 [52]. 

 

Validation by exome array genotyping 

Genomic DNA from 1,114 of the 1,500 participants whose samples passed QC were 

also subject to genotyping using the Exome Array (HumanExome BeadChip v1.0, 

Illumina, Inc., San Diego, CA). The Exome Chip contains >240,000 coding SNPs 

derived from all mutations found >2 times across >1 dataset among 23 separate 

datasets comprising a total of >12,000 individual exome and whole genome sequences. 

In total, 681 high HDL-C participants and 433 low HDL-C participants were genotyped 

using the Exome Array. 

 

Sample-level quality control of MIP sequencing 

Quality control of samples was performed using Variant Association Tools (VAT) v2.6.1 

rev2881 [53]. SNPs and indels were imported separately into VAT, sample-level and 

genotype-level summaries were created, and a number of filters were applied to remove 
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outliers using VAT and VCFtools. First, any samples with a high degree of missing 

genotype calls (>90% variant positions) for either SNP or indel variant sets were 

removed. Next, any samples with mean genotype quality scores below 10 were 

removed. Lastly, to identify any demographic outliers or cryptic relatedness, the MIP 

sequencing samples were compared to samples from the 1000 Genomes Project 

[17,18] (n=2504, Phase 3 v5a). Samples from the two datasets were combined and 

multidimensional scaling (MDS) was performed with PLINK v1.07 [54] using only 

variants in regions that overlapped with MIP targets. SNP and indel genotypes were 

analyzed separately. After plotting principle components, any outlier MIP sequencing 

samples that did not cluster with the other samples were flagged, and subsequently 

removed from downstream analyses. After applying all of these filters, 1500 of the 

original 1532 MIP sequencing samples (97.9%) were retained. 

 

Variant-level quality control of MIP sequencing 

Variant statistics, including minor allele frequency (MAF), genotype quality, call rates, 

novel and known variant counts, transition-transversion ratio (TS:TV), and insertion-

deletion ratio were computed across the MIP sequencing cohort variant sets using VAT. 

Again, SNPs and indels were analyzed separately. To reduce the rate of inaccurate 

variant calls, any variant with a high proportion of missing genotype calls (>90%) across 

the filtered samples was removed, as were variants with a low maximum genotype 

quality scores (<10). In addition, any variants that were no longer variable following 

earlier sample-level filtering were also removed. After applying all of these filters, 1956 

SNP variants and 689 indel variants were retained (2645 total variants). 
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Variant annotation 

The post-QC filtered and annotated SNP and indel call sets were then combined using 

VCFtools, and the union of these variants was used as input for variant annotation. 

Individual alleles at multiallelic sites were normalized using bcftools and then 

individually annotated with RefSeq gene coordinates for human genome build hg19 

(RefSeq database: http://www.ncbi.nlm.nih.gov/books/NBK21091/) using bcftools v1.3.1 

(http://samtools.github.io/bcftools/; [55]) to include features such as full gene lengths, 

protein coding sequences, exon and intron boundaries, and 5� and 3� UTRs. 

Following this, all variants were annotated using Ensembl’s Variant Effect Predictor 

(VEP) rel. 84 [56,57] in conjunction with the following plugins and tests to append 

transcript information and score the deleteriousness of different mutations: 

Ensembl_transcriptid, Uniprot_acc, Uniprot_id, Uniprot_aapos, SIFT_pred, 

Polyphen2_HDIV_pred, Polyphen2_HVAR_pred, LRT_pred, MutationTaster_pred, 

MutationAssessor_pred, FATHMM_pred, PROVEAN_pred, MetaSVM_pred, and 

MetaLR_pred [58-71]. In addition, the dbNSFP v2.9.1 [46] database plugin for VEP was 

used to evaluate missense (nonsynonymous) mutations, and the LOFTEE plugin 

[LOFTEE website: https://github.com/konradjk/loftee] was used to identify protein-

truncating variants predicted to disrupt gene function on the basis of annotation details 

and evolutionary sequence conservation. 

 

Association testing and statistics 
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 Association testing of all MIP sequencing variants was performed in the context 

of a framework that applied different tests on the basis of each variant’s MAF and 

protein-coding status (Supplementary Figure 9). Rare variants (MAF<0.01, n=1958 

multiallelic alternative alleles retained, n=1950 with multiallelics pruned) were 

aggregated in different groupings that underwent rare variant burden tests, whereas 

common and low frequency variants (MAF≥0.01, n=336) were individually subjected to 

single variant association tests. Different experimental P-value thresholds of 

significance were estimated and applied depending on the particular kind of test and/or 

grouping of variants involved. For all association tests the HDL-C levels of the samples 

were treated as a dichotomous phenotype of “high” (>95th percentile for age and 

gender) or “low” (<25th percentile for age and gender). Association testing was 

performed using EPACTS v3.2.6 (EPACTS website: 

http://csg.sph.umich.edu/kang/epacts/home), and R v3.2.5 (R Core Team 2015). 

 Rare variant burden tests were computed after grouping variants in different 

aggregations based on coding status. Rare variants that were identified as protein-

coding (with explicit CDS annotations, n=353) were grouped either together as a single 

group, “All coding”, or were divided up according to gene (n=8 groups). Each of these 

two aggregation strategies was then further refined to three groupings that included only 

coding variants that were flagged as either “Disruptive” (n=118), “Disruptive + Missense” 

(n=223), or “Loss-of-Function” (n=104). A total of 130 coding variants annotated as 

“benign” or “likely benign” were not tested. Following this categorization strategy, six 

aggregates of rare coding variants were independently tested for HDL-C association 

using the Collapsing burden test [72-75]. 
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 Similarly, rare variants in noncoding regions (n=1966 sites without specific ‘CDS’ 

annotations) were grouped either together as a single group denoted as “All noncoding”, 

or grouped by “genic region” (n=10 groups). These two aggregation strategies were 

then tested independently using the Collapsing burden test. 

To account for and correct multiple testing, the total number of variant groupings within 

the different aggregation strategies (coding=3+24; noncoding=1+10; total grouping=38) 

resulted in 38 hypotheses tested. This value was then Bonferroni-corrected (�=0.05) 

and resulted in an experimental threshold of P=1.32 x 10-3 for significant associations of 

rare variant burden to HDL-C. Associations were considered ‘nominally significant’ with 

P<0.01. 

 Meanwhile, single variant associations for high vs. low HDL-C levels were 

computed for all common and low frequency variants (MAF≥0.01, n=336) with the Score 

test statistic [76]. The biological sex and self-identified ethnicity (White [non-Ashkenazi], 

Black, Ashkenazi) of each sample were used as phenotypic covariates in the regression 

analysis. Single variant associations (n=336 tests) were considered statistically 

significant if P-values for associations were below the Bonferroni-corrected (�=0.05) 

experimental-wide threshold of P=1.49 x 10-4. Single variant associations with P<0.01 

were considered nominally significant. In order to investigate signals of rare variant 

burden for different genic regions and correct for multiallelic inflation, we also ran single 

variant association tests for all variants of all frequencies (n=2654). In this context, 

single variant associations (n=2645 tests) were considered statistically significant if P-

values for associations were below the Bonferroni-corrected (�=0.05) experimental-

wide threshold of P=1.89 x 10-5. Single variant associations with P<0.01 were 
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considered nominally significant. In the cases of very low allele counts of extremely rare 

variants, these tests should be approached with caution.  
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Figure 1. Candidate gene regions for MIP targeted sequencing. 
 
All coordinates correspond to genomic build GRC37/hg19. Blue boxes correspond to 
MIP target locations. 
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Figure 2. Concordance of variants identified from MIP sequencing with Exome 
Chip genotyping. 
 
Single nucleotide variants identified in the targeted regions by MIP-sequencing were 
compared to the discovery of those variants by genotyping on the Exome Chip in a 
subset of 1,114 participants who were included in both variant discovery efforts. A total 
of 38 SNPs that were included in the Exome Chip were found to overlap the targeted 
regions by MIPs. Box plot on the left shows the percentage of total SNPs that were 
found by both discovery methods for each individual (n=1,114 participants). Box plot on 
the right shows the percentage of individuals for which a given SNP was found to be 
concordant across the two discovery methods n=38 SNPs). Red line indicates those 
samples (left) and SNPs (right) for which concordance between MIP sequencing and 
the Exome Chip genotyping was >90%.  
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Table 1. Characteristics of participants for MIP targeted sequencing. 
 

 High HDL Cohort Low HDL Cohort  

 All 
(n=789) 

Males 
(n=228) 

Females 
(n=561) 

All 
(n=743) 

Males 
(n=454) 

Females 
(n=289) 

High vs. Low 
HDL Cohort 

(T-test) 
Age 
(SD) 

58 (13) 59 (15) 58 (12) 55 (13) 56 (12) 53 (15) P<0.0001 

Caucasian 
(%) 86.2 89.9 84.7 61.5 65.0 56.1 N/A 

Ashkenazi 
(%) 7.9 8.3 7.7 2.6 3.5 1.0 N/A 

Black 
(%) 4.6 2.2 5.5 27.5 23.3 33.9 N/A 

Total Cholesterol 
(mg/dL) 

240 (42) 227 (40) 245 (42) 177 (72) 172 (74) 185 (68) P<0.0001 

HDL-C 
(mg/dL) 

107 (21) 94 (19) 112 (19) 32 (11) 31 (12) 34 (8) P<0.0001 

LDL-C 
(mg/dL) 

127 (60) 127 (40) 127 (71) 100 (59) 96 (58) 105 (61) N.S. 

TG 
(mg/dL) 

77 (34) 78 (37) 77 (32) 266 (566) 270 (537) 259 (610) P<0.0001 

        

 
Participants were recruited from the Penn High HDL Study as previously described. All 
lipid measurements were performed on plasma collected after participants fasted 
overnight. Comparisons of absolute measurements were performed using a Student’s 
unpaired T-test of all High HDL Cohort participants vs. all Low HDL Cohort participants. 
All absolute data is reported as mean ± S.D. 
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Table 2. Variants identified by MIP sequencing of 1500 extreme HDL-C 
participants. 
 
   SNPs INDELs  

Chrom. Genic Region 
Target Size 
(bp) 

Common + 
Low Freq. Rare 

Common + 
Low Freq. Rare 

Total 
Variants 

1 GALNT2 9,636 63 271 14 110 458 

11 APOA5-APOC3 6,550 44 274 6 98 422 

12 SBNO1 530 7 33 - 6 46 

12 CCDC92-ZNF664 11,955 49 355 4 130 538 

12 SCARB1 7,815 38 247 7 102 394 

16 CETP 5,739 37 202 6 87 332 

18 LIPG  9,095 56 280 5 114 455 

Total 51,320 294 1662 42 647 2645 

Common + Low Frequency Variants (MAF≥0.01) 

Chrom. Genic Region 
Knowna 
Coding 

Knowna 
Noncoding 

Novelb 
Coding 

Novelb 
Noncoding 

Significant 
HDL-C associations 

(Score test)c 

1 GALNT2 4 56 - 17 - 

11 APOA5-APOC3 4 32 3 11 - 

12 SBNO1 - 2 - 5 - 

12 CCDC92-ZNF664 4 36 5 8 9 

12 SCARB1 6 26 1 12 - 

16 CETP 5 32 2 4 20 

18 LIPG 4 45 - 12 5 

Total 27 229 11 69 34 

Rare Variants (MAF<0.01) 

Chrom. Genic Region 
Knowna 
Coding 

Knowna 
Noncoding 

Novelb 
Coding 

Novelb 
Noncoding 

Significant 
HDL-C associations 

(Score test)d 

1 GALNT2 10 44 37 290 - 

11 APOA5-APOC3 8 26 52 286 - 

12 SBNO1 - 3 - 36 - 

12 CCDC92-ZNF664 10 45 66 364 - 

12 SCARB1 13 30 45 261 - 

16 CETP 18 26 42 203 2 

18 LIPG 8 59 44 283 - 

Total 67 233 286 1723 2 

       

       

 
a “Known” variants were those for which an rsID existed in dbSNP (v141), or were able 

to be ascertained in publically available variant databases including 1000 Genomes, 
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the NHLBI Exome Variant Server and the Exome Aggregation Consortium (ExAC) 
database. 

 
b “Novel” variants were all other variants not listed as “Known” above. 
 
c Number of single variant associations with HDL-C using the Score test [76], at or 

below the experimental significance threshold of P<1.49 x 10-4 (testing only 336 
common and low frequency variants). 

 
d Number of single variant associations with HDL-C using the Score test [76], at or 

below the experimental significance threshold of P<1.89 x 10-5 (testing all 2645 
variants). 

 
Single nucleotide variants (SNPs) and insertion-deletion variants (INDELs) were 
assessed for each gene region (GRC37/hg19) and were processed using sample-level 
and variant-level quality control filters (Materials and Methods). Minor alleles of 
identified variants were compared for frequency in the high vs. low HDL cohort by the 
Score test statistic. Noncoding variants included any variants that were not present in 
protein-coding regions of the gene regions, including splice-site, intronic, 5� UTR, 
3�UTR and intergenic variants.
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Table 3. Significant single variant associations with high HDL-C. 
 

Region Chrom. Position Variant 
dbSNP 
rsID Type 

Variant 
Call Rate MAFa † 

Score 
Statistic 

Score 
P-valueb 

CCDC92-
ZNF664 

12 124421453 T/C rs9863 noncoding 0.9993 0.4109 † 4.0051 6.20E-05 

12 124427306 T/A rs11057401 coding 1 0.3407 † 4.7169 2.40E-06 

12 124428162 T/A rs4930725 noncoding 0.9987 0.3632 † 4.2263 2.38E-05 

12 124428331 T/C rs4930726 noncoding 0.9873 0.3754 † 4.4037 1.06E-05 

12 124429279 G/A rs3186071 noncoding 0.9973 0.3259 † 4.1498 3.33E-05 

12 124430612 G/A rs4765305 noncoding 0.9660 0.4824 † 4.1397 3.48E-05 

12 124430812 G/A rs4765335 noncoding 0.9953 0.3985 † 4.0566 4.98E-05 

12 124431049 G/A rs11835839 noncoding 0.9740 0.4182 † 4.8946 9.85E-07 

12 124499839 C/T rs3768 noncoding 0.9993 0.2255 † 3.9722 7.12E-05 

CETP 

16 56995236 C/A rs1800775 noncoding 0.8893 0.3212 † 7.3626 1.80E-13 

16 56995814 G/A rs34498052 noncoding 0.9580 0.0010  5.3163 1.06E-07 

16 56996158 T/C rs3816117 noncoding 0.9920 0.4755 † 9.7746 1.45E-22 

16 56996211 G/A rs711752 noncoding 0.9880 0.4295 † 7.8694 3.56E-15 

16 56996288 G/A rs708272 noncoding 0.9887 0.4413 † 7.6112 2.72E-14 

16 56998918 A/G rs12720926 noncoding 0.9360 0.3650 † 7.8158 5.46E-15 

16 56999258 A/C rs7203984 noncoding 0.9747 0.2309 † -8.3195 8.83E-17 

16 56999328 C/T rs11508026 noncoding 0.9873 0.3964 † 9.4414 3.68E-21 

16 57001254 T/TCACA rs12720908 noncoding 0.9780 0.1953 † -7.8050 5.95E-15 

16 57001274 AC/A rs200751500 noncoding 0.8853 0.1325 † 5.9512 2.66E-09 

16 57001438 G/A rs12444012 noncoding 0.2433 0.4932 † 4.5664 4.96E-06 

16 57004889 G/A rs7205804 noncoding 0.9753 0.3568 † 6.9836 2.88E-12 

16 57005301 C/T rs1532625 noncoding 0.9840 0.3581 † 8.2715 1.32E-16 

16 57005883 G/A rs374409989 noncoding 0.8733 0.0023  5.3838 7.29E-08 

16 57007353 C/T rs5883 coding 0.9847 0.0735 † 5.4895 4.03E-08 

16 57007446 T/G rs11076176 noncoding 0.9940 0.1851 † -6.8759 6.16E-12 

16 57015091 G/C rs5880 (Ala390Pro) coding 1 0.0350 † -4.9197 8.67E-07 

16 57016092 G/A rs5882 coding 0.9973 0.3737 † -4.9708 6.67E-07 

16 57017319 G/A rs1800777 (Arg468Gln) coding 0.9973 0.0247 † -5.4589 4.79E-08 
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Region Chrom. Position Variant 
dbSNP 
rsID Type 

Variant 
Call Rate MAFa † 

Score 
Statistic 

Score 
P-valueb 

16 57017474 G/A rs289741 noncoding 0.9347 0.3574 † -5.2733 1.34E-07 

16 57017662 G/A rs1801706 noncoding 0.9913 0.1725 † 4.8147 1.47E-06 

16 57017796 G/A rs289743 noncoding 0.9440 0.2256 † -3.8050 1.42E-04 

LIPG 

18 47096016 G/A rs1320700 noncoding 0.9693 0.2775 † 4.1477 3.36E-05 

18 47158186 T/C rs10438978 noncoding 1 0.1920 † 4.7214 2.34E-06 

18 47158234 C/T rs9304381 noncoding 1 0.1767 † 4.6760 2.92E-06 

18 47167214 T/C rs4939883 noncoding 1 0.2073 † 4.6702 3.01E-06 

18 47179516 G/A rs1943973 noncoding 0.9947 0.1079 † 3.8348 1.26E-04 

           

 
a Common and low frequency variants with a minor allele frequency (MAF) > 0.01 are marked with a cross (†), while rare 

variants are not marked. 
 

b Single variant associations with HDL-C using the Score test [76]. Only variants with P-values below experimental 
significance threshold of P<1.49 x 10-4 are shown. 

 

Variants (SNPs and INDELs) across targets were compared for frequency of the minor allele in high vs. low HDL 
participants by Score test statistic. Score test P-values where P<0.01 were considered nominally statistically significant, 
whereas P-values below 1.27 x 10-5 were considered to exceed the experimental significance threshold accounting for all 
2645 variants called in this study. MAF refers to minor allele frequency within the sequencing cohort. Call rate refers to the 
fraction of 1,500 samples for which a particular variant position was sequenced and passed sample-level and variant-level 
quality filtering. 
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Table 4: Replication of GWAS-significant HDL-C associations with MIP sequencing. 
 

      GLGC + 
MetaboChip 

1000 
Genomes  MIP Sequencing 

Region Chrom. Position Variant 
dbSNP 
rsID  P-value MAF (EUR)  

Variant 
Call Rate 

MAF 
High HDL 
Cohort 

MAF 
Low HDL 
Cohort 

Score 
Statistic 

Score 
P-valuea * 

GALNT2 

1 230294715 C/A rs4846913  1.98E-26 0.5844  0.9880 0.5962 0.4645 1.7010 0.0889 

1 230294916 C/T rs2144300  4.00E-40 0.5844  0.9780 0.6367 0.5085 0.0547 0.9564 

1 230295245 C/T rs12065546  1.50E-15 0.8443  0.9807 0.8773 0.8463 2.7556 0.0059 * 

1 230295307 C/G rs17315646  1.35E-36 0.5844  0.9993 0.5774 0.4482 2.2484 0.0246 

1 230295691 G/A rs4846914  3.51E-41 0.5844  0.9927 0.5893 0.4564 2.0532 0.0401 

1 230295789 A/T rs10127775  7.64E-35 0.5844  0.9120 0.5681 0.4406 1.5240 0.1275 

1 230296153 C/T rs10864726  8.65E-24 0.5858  0.9940 0.5878 0.4460 2.6625 0.0078 * 

1 230296469 AC/A rs200933185  5.69E-10 -  0.7953 0.1834 0.1661 1.0820 0.2793 

APOA5-
APOC3 

11 116660686 G/A rs2266788  1.19E-35 0.9090  0.8913 0.9297 0.9201 1.2854 0.1987 

11 116660813 G/A rs619054  3.65E-23 0.2230  0.9593 0.2553 0.1887 2.4642 0.0137 

11 116661826 T/C rs2072560  1.13E-23 0.9195  0.8640 0.9137 0.8987 1.8017 0.0716 

11 116662331 G/T rs12287066  1.08E-20 0.9420  0.9987 0.0613 0.1051 -2.9418 0.0033 * 

11 116662407 G/C rs3135506  7.74E-16 0.9433  0.8920 0.0561 0.1040 -3.5221 0.0004 * 

11 116662579 C/T rs651821  7.72E-26 0.9195  0.9887 0.9320 0.8720 3.3135 0.0009 * 

11 116663596 C/T rs34003087  1.07E-08 0.0541  0.9967 0.0614 0.0443 1.4969 0.1344 

11 116663707 G/A rs662799  4.16E-37 0.9195  0.9987 0.9257 0.8805 3.0942 0.0020 * 

CCDC92
-ZNF664 

12 124427306 T/A rs11057401  4.53E-08 -  1 0.3821 0.2963 4.7169 2.40E-06 ** 

12 124428331 T/C rs4930726  1.53E-09 0.3641  0.9873 0.3977 0.3515 4.4037 1.06E-05 ** 

SCARB1 

12 125259888 A/G rs838876  7.33E-33 0.3259  0.9980 0.6141 0.6172 -2.1569 0.0310 

12 125260645 A/G rs838878  3.96E-30 0.3100  1 0.6508 0.5995 0.2166 0.8286 

12 125261441 G/A rs838879  9.37E-33 0.3100  0.3713 0.5610 0.4630 1.2783 0.2011 

12 125261593 C/T rs838880  6.38E-32 0.3259  0.9967 0.6066 0.5700 -1.3465 0.1781 

12 125261797 G/A rs838881  1.81E-31 0.3087  0.9813 0.6173 0.5785 -0.1513 0.8797 

12 125261813 C/T rs838882  1.63E-32 0.3087  0.9807 0.6075 0.5603 0.2010 0.8407 

12 125261839 T/C rs838883  5.10E-11 0.0950  0.9867 0.9451 0.9371 0.7610 0.4466 
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CETP 

16 56995236 C/A rs1800775  3.33E-644 0.4802  0.8893 0.7587 0.6003 7.3626 1.80E-13 ** 

16 56996211 G/A rs711752  1.287E-641 0.4222  0.9880 0.5267 0.3252 7.8694 3.56E-15 ** 

16 56999258 A/C rs7203984  3.59E-517 0.7770  0.9747 0.1199 0.3494 -8.3195 8.83E-17 ** 

16 56999328 C/T rs11508026  2.63E-318 0.4142  0.9873 0.5177 0.2677 9.4414 3.68E-21 ** 

16 57004889 G/A rs7205804  5.27E-675 0.4235  0.9753 0.4625 0.2465 6.9836 2.88E-12 ** 

16 57005301 C/T rs1532625  2.25E-397 0.4235  0.9840 0.4599 0.2497 8.2715 1.32E-16 ** 

16 57007353 C/T rs5883  1.76E-31 0.0607  0.9847 0.0961 0.0492 5.4895 4.03E-08 ** 

16 57015091 G/C rs5880  1.37E-233 0.9406  1 0.0193 0.0518 -4.9197 8.67E-07 ** 

16 57016092 G/A rs5882  2.21E-58 0.3325  0.9973 0.6063 0.6479 -4.9708 6.67E-07 ** 

16 57017474 G/A rs289741  7.64E-160 0.3219  0.9347 0.6115 0.6757 -5.2733 1.34E-07 ** 

16 57017662 G/A rs1801706  1.09E-15 0.1939  0.9913 0.2114 0.1314 4.8147 1.47E-06 ** 

16 57017762 C/G rs289742  1.97E-61 -  0.9413 0.8819 0.8741 -2.0851 0.0371 

LIPG 

18 47093790 C/T rs2000812  2.02E-08 0.7744  0.9833 0.8211 0.8420 0.4481 0.6541 

18 47093864 C/T rs2000813  1.08E-23 0.2902  0.9993 0.3155 0.2231 2.9368 0.0033 * 

18 47118219 T/C rs3786248  2.85E-14 0.0660  0.9780 0.0577 0.0305 1.7461 0.0808 

18 47118398 T/C rs9958734  1.52E-13 0.0660  0.9627 0.0737 0.0626 1.2914 0.1966 

18 47157400 T/C rs2000825  2.93E-24 0.8245  0.9967 0.8763 0.8354 3.3554 0.0008 * 

18 47158186 T/C rs10438978  1.56E-27 0.8179  1 0.8666 0.7452 4.7214 2.34E-06 ** 

18 47158234 C/T rs9304381  3.06E-24 0.8193  1 0.8711 0.7721 4.6760 2.92E-06 ** 

18 47164717 A/G rs7239867  6.22E-64 0.8259  0.9493 0.8507 0.8314 2.1619 0.0306 

18 47164926 T/C rs6507937  6.52E-24 0.8259  0.9893 0.8792 0.8433 3.6424 0.0003 * 

18 47167214 T/C rs4939883  1.80E-66 0.8193  1 0.8537 0.7272 4.6702 3.01E-06 ** 

18 47167407 T/C rs4939884  5.13E-24 0.8206  0.9900 0.8783 0.8515 3.4407 0.0006 * 

18 47179516 G/A rs1943973  2.75E-54 0.8430  0.9947 0.9105 0.8724 3.8348 0.0001 ** 

               

 
a Single variant associations with HDL-C using the Score test [76]. P-values below experimental significance threshold of 

P<1.49 x 10-4 are marked with a double asterisk (**), while nominally significant P-values are marked with a single 
asterisk (*). 
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Variants identified by MIP sequencing were compared for associations with HDL-C with the Global Lipids Genetics 
Consortium+MetaboChip (GLGC) GWAS results [8]. In the GLGC study, 49 variants exceeded genome-wide significant 
(P<5 x 10-8) in their associations with HDL-C are situated in regions that overlap with MIP sequencing targets. Of these 49 
GLGC variants, 17 recovered by MIP sequencing exceeded the experimental threshold (P<1.49 x 10-4) and another 10 
were nominally significant (P<0.01) using the Score test. In all of these cases, variants recovered by MIP sequencing 
displayed consistent directionality of association with HDL-C as the GLGC GWAS. The minor allele frequencies (MAF) as 
obtained for each GLGC variant from 1000 Genomes (European sample set) [17,18], and compared with the MAF of that 
variant observed in the MIP sequencing discovery cohort.  
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Table 5: Rare variant burden test associations of MIP sequencing variants with high HDL-C. 
 
CODING                   

Disruptivea 
Disruptive 

and missenseb Loss-of-functionc 

Chr Genic Region Variants � (SE) P-value Variants � (SE) P-value Variants � (SE) P-value 

1 GALNT2 15 0.03 (0.33) 0.92 34 0.10 (0.22) 0.64 15 0.03 (0.33) 0.92 

11 APOA5 15 -0.36 (0.30) 0.23 33 -0.37 (0.23) 0.10 14 -0.35 (0.31) 0.25 

11 APOC3 5 -0.38 (0.71) 0.59 7 -0.60 (0.65) 0.36 5 -0.38 (0.71) 0.59 

12 CCDC92 20 0.25 (0.27) 0.36 33 0.00 (0.22) 0.98 20 0.25 (0.27) 0.36 

12 ZNF664 2 2.11 (1.38) 0.13 14 0.37 (0.32) 0.25 2 2.11 (1.38) 0.13 

12 SCARB1 24 0.28 (0.27) 0.29 37 0.27 (0.21) 0.20 23 0.30 (0.27) 0.27 

16 CETP 23 -0.10 (0.27) 0.71 33 -0.06 (0.22) 0.77 12 -0.52 (0.45) 0.25 

18 LIPG  14 -0.10 (0.29) 0.73 32 0.01 (0.21) 0.95 13 -0.12 (0.29) 0.67 

- All Codingd 118 0.04 (0.14) 0.78 223 -0.09 (0.12) 0.44 104 0.01 (0.14) 0.95 

                      

NONCODING             

Non-rare alleles 
at multiallelic positions retainede 

Non-rare alleles 
at multiallelic positions removedf 

Chr Genic Region Variants � (SE) P-value Variants � (SE) P-value 

1 GALNT2 335 0.04 (0.12) 0.72 333 0.10 (0.12) 0.40 

11 APOA5 100 -0.10 (0.14) 0.51 100 -0.10 (0.14) 0.51 

11 APOA5-APOC3 intergenic  151 0.31 (0.12) 0.009  149 -0.02 (0.14) 0.89     

11 APOC3 62 0.30 (0.20) 0.13 62 0.30 (0.20) 0.13 

12 SBNO1 39 0.21 (0.21) 0.31 39 0.21 (0.21) 0.31 

12 CCDC92 251 -0.08 (0.12) 0.48 251 -0.08 (0.12) 0.48 

12 ZNF664 156 0.03 (0.13) 0.84 156 0.03 (0.13) 0.84 

12 SCARB1 292 0.20 (0.14) 0.15 290 0.16 (0.12) 0.17 

16 CETP 229 -0.06 (0.12) 0.63 229 -0.06 (0.12) 0.63 

18 LIPG  343 -0.34 (0.14) 0.02 341 -0.16 (0.12) 0.19 

- All Noncoding 1958 -0.63 (0.94) 0.50 1950 -0.27 (0.38) 0.48 
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a Disruptive coding variants included nonsense (stop-gained), frameshift, splice-donor, splice-acceptor, stop lost, start lost, 
inframe insertion, and inframe deletion variants as annotated from Ensembl’s Variant Effect Predictor (VEP) tool. 

 
b Collection of disruptive (a) plus missense coding variants. Missense variants were defined as nonsynonymous amino 

acid-altering variants using the dbNSFP database (v2.9.1). Variants were included in this grouping if they were identified 
as ‘deleterious’ or ‘damaging’ by one of the five in silico prediction tools: SIFT (deleterious), PolyPhen2 HDIV (‘possibly 
damaging’ or ‘probably damaging’), PolyPhen2 HVAR (‘possibly damaging’ or ‘probably damaging’), MutationTaster, and 
LRT (disruptive). 

 
c Loss-of-function variants were defined based on LoF prediction flags (HC, LC) generated by the VEP plugin LOFTEE. 

This set was then filtered to remove variants that were situated in unlikely open-reading-frames, single-exon genes, or 
had weak phylogenetic conservation scores. 

 
d No coding regions of the SBNO1 region were sequenced in this study. 
 
e Aggregation of rare noncoding variants included non-rare alleles at multiallelic positions also harboring rare variants. 
 
f Aggregation of rare noncoding variants with non-rare alleles at multiallelic positions removed. 
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Supplementary Figure File 
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Supplementary Figure 1 
Diagram of MIP target capture and sequencing reaction. 
 
Supplementary Figure 2 
Quality control metric distributions of SNPs and INDELs called from MIP 
sequencing data, before and after sample-level and variant-level filtering. 
 
Supplementary Figure 3 
Multidimensional scaling plots of quality-filtered SNPs called from MIP 
sequencing. 
 
Supplementary Figure 4 
Multidimensional scaling plots of quality-filtered INDELs called from MIP 
sequencing. 
 
Supplementary Figure 5 
Multidimensional scaling plots of 1000 Genomes samples using variants within 
MIP sequencing regions. 
 
Supplementary Figure 6 
Multidimensional scaling plots of quality-filtered SNPs using the merged set of 
MIP sequencing and 1000 Genomes samples and variants. 
 
Supplementary Figure 7 
Multidimensional scaling plots of quality-filtered INDELs using the merged set of 
MIP sequencing and 1000 Genomes samples and variants. 
 
Supplementary Figure 8 
Relative proportions of variant consequence annotations of quality-filtered SNPs 
and INDELs called from MIP sequencing. 
 
Supplementary Figure 9 
Association testing workflow diagram for MIP sequencing variants. 
 
Supplementary Figure 10 
Locus plot of association signals at the GALNT2 locus (chromosome 1) using 
GLGC GWAS and MIP sequencing variants. 
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Locus plot of association signals at the APOA4-A5-C3-A1 locus (chromosome 
11) using GLGC GWAS and MIP sequencing variants. 
 
Supplementary Figure 12 
Locus plot of association signals at SBNO1, CCDC92-ZNF664, and SCARB1 loci 
(chromosome 12) using GLGC GWAS and MIP sequencing variants. 
 
Supplementary Figure 13 
Locus plot of association signals at the CETP locus (chromosome 16) using 
GLGC GWAS and MIP sequencing variants. 
 
Supplementary Figure 14 
Locus plot of association signals at the LIPG locus (chromosome 18) using 
GLGC GWAS and MIP sequencing variants. 
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