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Abstract 

Introduction 

Glioblastoma is characterized by its remarkable heterogeneity and dismal prognosis. 

Histogram analysis of quantitative magnetic resonance imaging (MRI) is an important in vivo 

method to study intratumoral heterogeneity. With large amounts of histogram features 

generated, integrating these modalities effectively for clinical decision remains a challenge. 

 

Methods 

A total of 80 patients with supratentorial primary glioblastoma were recruited. All patients 

received surgery and standard regimen of temozolomide chemoradiotherapy. Diagnosis was 

confirmed by pathology. Anatomical T2-weighted, T1-weighted post-contrast and FLAIR 

images, as well as dynamic susceptibility contrast (DSC), diffusion tensor imaging (DTI) and 

chemical shift imaging were acquired preoperatively using a 3T MRI scanner. DTI-p, DTI-q, 

relative cerebral blood volume (rCBV), mean transit time (MTT) and relative cerebral blood 

flow (rCBF) maps were generated. Contrast-enhancing (CE) and non-enhancing (NE) regions 

of interest were manually delineated. Voxel intensity histograms were constructed from the 

CE and NE regions independently. Patient clustering was performed by the Multi-View 

Biological Data Analysis (MVDA) approach. Kaplan-Meier and Cox proportional hazards 

regression analyses were performed to evaluate the relevance of the patient clustering to 

survival. The histogram features selected from MVDA approach were evaluated using 

receiver operator characteristics (ROC) curve analysis. The metabolic signatures of the 

patient clusters were analyzed by multivoxel MR spectroscopy (MRS).  
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Results 

The MVDA approach yielded two final patient clusters, consisting of 53 and 27 patients 

respectively. The two patient subgroups showed significance for overall survival (p = 0.007, 

HR = 0.32) and progression-free survival (p < 0.001, HR = 0.33) in multivariate Cox 

regression analysis. Among the features selected by MVDA, higher mean value of DTI-q in 

the non-enhancing region contributed to a worse OS (HR = 1.40, p = 0.020) and worse PFS 

(HR = 1.36, p = 0.031). Multivoxel MRS showed N-acetylaspartate/creatine (NAA/Cr) ratio 

between the two clusters, both in the CE region (p < 0.001) and NE region (p = 0.013).  

Glutamate/Cr (Glu/Cr) ratio and glutamate + glutamine/Cr (Glx/Cr) of the cluster 1 was 

significantly lower than cluster 2 (p = 0.037, and 0.027 respectively) In the NE region. 

 

Discussion 

This study demonstrated that integrating multi-parametric and multi-regional MRI histogram 

features may help to stratify patients. The histogram features selected from the proposed 

approach may be used as potential imaging markers in personalized treatment strategy and 

response determination. 

Key words: Glioblastoma, heterogeneity, magnetic resonance imaging, histogram analysis, 
clustering.  
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Introduction 

 

Glioblastoma represents the most common primary brain malignant tumours in adults, 

characterized by its dismal prognosis (1). The remarkable heterogeneity of glioblastoma may 

cause the inconsistent treatment response of patients. There is a rising need for validated 

markers to assess interpatient variability, plan personalized treatment and predict treatment 

response. With recent advances in molecular biology, the diagnostic and/or prognostic 

significance of genetic markers is established (2, 3) . However, the assessment of these 

genetic markers relies on invasive biopsies or resections and may be prone to sampling errors.  

 

Magnetic resonance imaging (MRI) shows potential in capturing imaging features non-

invasively prior to treatment. The features extracted from MRI was shown to be able to reveal 

phenotypes with different molecular pathways and survivals (4).  Histogram features 

extracted from the quantitative MRIs can characterize tumor heterogeneity by measuring 

spatial variation within the whole tumor, which may be related with tumor malignancy and 

patient survival (5). Due to the emergence of multiple MRI sequences, considerable amounts 

of histogram features can be generated from the multiple MRI modalities. However, 

integrating these modalities effectively and selecting optimal histogram features for clinical 

decision remains a challenge.  

 

Although machine learning algorithms have achieved success in selecting relevant image 

features and stratifying patients (6), classical machine learning techniques that work on a 

single imaging modality may be ineffective on multiple imaging modalities. Therefore, new 

machine learning methodologies for patient stratification were needed. Given the success of 
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multi-view learning techniques in genomic studies, the purpose of this current study was to 

explore the multi-parametric and multi-regional histogram features with a previously reported 

multi-view feature selection and clustering methods (7). This multi-view method was 

developed to jointly analyze multiple genomic features. We hypothesized that it can be 

applied to multiple imaging modalities for more stable clustering results and better insights 

into the patient characterization (8, 9). The patient subgroups identified by this method may 

display different outcomes and different metabolic signatures. 

 

The advanced MRI sequences we used include perfusion and diffusion imaging, which may 

confer physiological information and compensate the non-specificity of conventional imaging. 

Dynamic susceptibility contrast (DSC) MRI is one of the most commonly-used perfusion 

techniques, which measures the kinetics of contrast agent passing through the capillary bed 

(10). Several biomarkers, including the relative cerebral blood volume (rCBV), mean transit 

time (MTT) and relative cerebral blood flow (rCBF) are estimated from the kinetics curve. 

Diffusion tensor imaging (DTI) is a method which may detect the tumor infiltration by 

measuring the magnitude and direction of water molecule movement (11). To interpret the 

high-dimensional tensor imaging, a decomposition into isotropic component (p) and 

anisotropic component (q) was proposed (12). This method measures the isotropic and 

anisotropic diffusion of water molecules and has shown its utility in predicting tumor 

progression (13) and patient survival (14). More recently, integrating these modalities was 

considered useful in revealing the intratumoral invasive component (15) and predicting IDH 

genotype in high-grade gliomas (16). In this study, we used the histogram features extracted 

from above multi-parametric and multi-regional quantitative MRI to stratify patient groups 

and assess the relevance to treatment outcome.  
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Methods 

Patients 

From July 2010 to August 2015, patients with supratentorial primary glioblastoma were 

prospectively recruited. Patients who had a history of previous brain tumor, cranial surgery, 

radiotherapy/chemotherapy, or contraindication for MRI scanning were excluded. This study 

was approved by the local institutional review board. Signed informed consent was obtained 

from each patient.  

 

A total of 80 patients were included into the study. All patients had good performance status 

(World Health Organization performance status 0-1) before surgery. Neuronavigation 

(StealthStation, Medtronic) and 5-aminolevulinic acid fluorescence were used to guide 

surgery for maximal safe resection. Standard regimen of temozolomide chemoradiotherapy 

was performed after surgery when patients were stable. Extent of resection was assessed 

according to the postoperative MRI scans within 72 hours, classified as gross total resection, 

subtotal resection or biopsy of the contrast enhancement. Patients’ treatment response was 

evaluated according to the Response Assessment in Neuro-oncology criteria (17).  

 

MRI Acquisition 

All MRI sequences were performed at a 3-Tesla MRI system (Magnetron Trio; Siemens 

Healthcare, Erlangen, Germany) with a standard 12-channel receive-head coil. MRI 

sequences were acquired as following: post-contrast T1-weighted sequence (TR/TE/TI 

2300/2.98/900 ms; flip angle 9°; FOV 256 × 240 mm; 176-208 slices; no slice gap; voxel size 

1.0 × 1.0 × 1.0 mm) after intravenous injection of 9 mL gadobutrol (Gadovist,1.0 mmol/mL; 

Bayer, Leverkusen, Germany); T2-weighted sequence (TR/TE 4840-5470/114 ms; refocusing 
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pulse flip angle 150°; FOV 220 × 165 mm; 23-26 slices; 0.5 mm slice gap; voxel size of 0.7 × 

0.7 × 5.0 mm); T2-weighted fluid attenuated inversion recovery (FLAIR) (TR/TE/TI 7840-

8420/95/2500 ms; refocusing pulse flip angle 150°; FOV 250 × 200 mm; 27 slices; 1 mm 

slice gap; voxel size of 0.78125 × 0.78125 × 4.0 mm). PWI was acquired with a dynamic 

susceptibility contrast-enhancement (DSC) sequence (TR/TE 1500/30 ms; flip angle 90°; 

FOV 192 × 192 mm; FOV 192 × 192 mm; 19 slices; slice gap 1.5 mm; voxel size of 2.0 × 2.0 

× 5.0 mm;) with 9 mL gadobutrol (Gadovist 1.0 mmol/mL) followed by a 20 mL saline flush 

administered via a power injector at 5 mL/s.  DTI was acquired with a single-shot echo-

planar sequence (TR/TE 8300/98 ms; flip angle 90°; FOV 192 × 192 mm; 63 slices; no slice 

gap; voxel size 2.0 × 2.0 × 2.0 mm). Multivoxel 2D 1H-MRS chemical shift imaging (CSI) 

utilized a semi-LASER sequence (TR/TE 2000/30-35 ms; flip angle 90°; FOV 160 × 160 mm; 

voxel size 10 × 10 × 15-20 mm). PRESS excitation was selected to encompass a grid of 8 

rows × 8 columns on T2-weighted images. 

 

Imaging Processing 

All other sequences were co-registered to the T2-weighted images in each subject. The 

coregistration was performed using the linear image registration tool (FLIRT) functions (18) 

in Oxford Centre for Functional MRI of the Brain (FMRIB) Software Library (FSL) v5.0.0 

(Oxford, UK) (19). After coregistration, DSC processing and leakage correction was 

performed with the NordicICE software (NordicNeuroLab, Bergen, Norway), in which the 

arterial input function was automatically defined. The relative cerebral blood volume (rCBV), 

mean transit time (MTT) and relative cerebral blood flow (rCBF) maps were calculated. DTI 

images were processed using the diffusion toolbox (FDT) in FSL (20), during which 

normalization and eddy current correction were performed. The decomposition of processed 
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DTI images into isotropic component (p) and anisotropic component (q) was performed using 

the previously described method (12).  

 

Regions of Interest 

Tumor regions of interest (ROIs) were manually delineated on the post-contrast T1 and 

FLAIR images using an open-source software 3D slicer v4.6.2 (https://www.slicer.org/) (21). 

The delineation was independently performed by a neurosurgeon with > 8 years of 

experience (CL), and a researcher with > 4 years of brain tumor image analysis experience 

(NRB), and then reviewed by a neuroradiologist with > 8 years of experience (TM). Non-

enhancing ROI, defined as the non-enhancing (NE) region outside of contrast-enhanced (CE) 

region, were obtained in MATLAB (MathWorks, Inc., Natick MA) by Boolean operations on 

contrast-enhancing and FLAIR tumor ROIs. For each individual subject, normal-appearing 

white matter was drawn manually in the contralateral white matter as normal controls. Each 

voxel value in the tumor ROI was normalized by dividing it by the mean voxel value of the 

contralateral normal-appearing white matter. Inter-rater reliability testing was performed 

using Dice similarity coefficient scores. 

 

Histogram Features 

Histogram analysis was performed in the Statistics and Machine Learning Toolbox of 

MATLAB (version 2016a). All image maps, rCBV, MTT and rCBF from the perfusion 

images and DTI-p and DTI-q from the diffusion images, were analyzed separately. The 

contrast-enhancing (CE) and non-enhancing (NE) regions of interest in each map were 

analyzed as independent regions. Histograms were constructed using 100 bins. A total of 10 

histogram features was calculated from each histogram, including mean, standard deviation, 
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median, mode, skewness, kurtosis, and 5th, 25th, 75th, 95th percentiles of the histogram. 

Therefore, altogether 100 histogram features were generated from the perfusion and diffusion 

maps of each subject. 

 

Multi-view Feature Selection and Multi-view Clustering 

The study design is summarized in Figure 1. Patient clustering was performed using a multi-

view late integration methodology called Multi-View Biological Data Analysis (MVDA), 

implemented in R and publicly available from GitHub (https://github.com/angy89/MVDA). 

Late integration methodologies allow analyzing each view independently and then merging 

the results (22),. For each case, we treated four categories of feature sets (CE-diffusion, NE-

diffusion, CE-perfusion, NE-perfusion) as individual views to maximize the characterization 

of the tumor, considering the histogram features were extracted from multiple imaging 

modalities and regions. The analysis was divided into multiple steps: I. In order to reduce the 

dimensionality and remove noisy information, the features were first clustered using the 

hierarchical ward clustering method for each view. The number of feature clusters was 

determined by the previously proposed VAL index (7). Clustering solutions with high 

correlation within each cluster and low correlation between the clusters were preferred. The 

number of features was reduced by selecting the centroids of the feature clusters which 

represent the features of each view. II. For each view, the patients were clustered by applying 

a hierarchical ward clustering method using the features selected from previous step. The 

number of patient clusters was also determined by the VAL index. III. The clustering results 

of each view were integrated in a late integration method. The vector of clustering 

assignment of each view was transformed in a binary membership matrix, with the patients 

on the rows and the clustering on the columns. These matrices were transposed and stacked 
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vertically to create a bigger matrix X with L rows (the clusters) and N columns (the patients). 

This matrix was then factorized in order to obtain two matrices P (with L rows and k columns) 

and H (with k rows and N columns). The difference between X and PH was as minimum as 

possible. In this settings H represented the membership matrices of the N patients to the final 

multi-view clusters. The number of multi-view cluster was set to 2 to dichotomize patients 

into subgroups with better and worse survivals.  

 

Leave-one-out Cross Validation of the Clustering 

A leave-one-out cross-validation (LOOCV) procedure was applied for constructing and 

validating the patient clusters. All steps of MVDA approach was repeated by leaving one 

patient out of the cohort at each repetition. The consensus analysis was performed in the 80 

clustering results obtained from the LOOCV approach. An 80 ×80 co-occurrence consensus 

clustering matrix M was created, where M (i, j) indicating percentage of times that the 

patients i and j were clustered together across the 80 dataset perturbations.  

 

Feature Ranking 

The importance of each selected feature was calculated using receiver operator characteristics 

(ROC) curve analysis, on the final multi-view clustering result. The analysis was performed 

by using an R package ‘Caret’(23). The final patient clustering results was used to train a 

learning vector quantization (LVQ) model and calculates a resampling based performance 

measure. The importance of each feature was ranked according to the area under the ROC 

curves (AUC). 
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Multivoxel MRS Processing 

MRS data were processed using LCModel (Provencher, Oakville, Ontario). All the 

concentrations of metabolite were calculated as a ratio to creatine (Cr). All relevant spectra 

from CSI voxels of interest were assessed for artefacts using previous criteria (24). The 

values of the Cramer–Rao lower bounds were used to evaluate the quality and reliability of 

CSI data and values with standard deviation (SD) > 20% were discarded. To account for the 

difference in spatial resolution, the T2-space pixels were projected to CSI space according to 

their coordinates using MATLAB. The proportion of T2-space tumor pixels occupying each 

CSI voxel was calculated. A selection rule was applied that only those CSI voxels were 

included when the proportion of tumor pixels were over 50%. Only CSI voxels contacting 

more than 50% tumor T2-voxels were included for further analysis. The weight of each CSI 

voxel was taken as the proportion of the tumor pixels in that CSI voxel. The summed 

weighted value was used as final metabolic value of the tumor ROI.  

 

Statistical Analysis 

All statistical analyses were performed in RStudio v3.2.3. Non-normal distributed CSI data 

were compared with Wilcoxon rank sum test using Benjamini-Hochberg procedure for 

controlling the false discovery rate in multiple comparisons. Kaplan-Meier and Cox 

proportional hazards regression analyses were performed to evaluate patient survival. For 

Cox proportional hazards regression, all the confounders, including IDH-1 mutation status, 

MGMT methylation status, sex, age, extent of resection and contrast-enhancing tumor 

volume were considered. For the Kaplan-Meier analysis, each feature was dichotomized for 

OS and PFS before the log-rank test by using optimal cutoff values calculated by 

‘surv_cutpoint’ function in the R Package “survminer”. Patients who were alive at the last 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235861doi: bioRxiv preprint 

https://doi.org/10.1101/235861


known follow-up were censored. Significance was accepted at a two-sided significance level 

of alpha < 0.05.    
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Results  

Patients and regions of interest 

The mean age of the patients was 57.4 years (range 22-73 years). The median overall survival 

of the patients was 461 days (range 52-1259 days) and the median progression-free survival 

was 264 days (range 37-1130 days). Patient characteristics were summarized in Table 1. 

Inter-rater reliability testing of regions of interest (ROIs) showed excellent agreement 

between the two raters, with Dice scores 0.85 ± 0.10 (mean ± standard deviation [SD]) for 

contrast-enhancing and 0.86 ± 0.10 of FLAIR ROIs respectively. The volumes of contrast-

enhancing and non-enhancing ROIs were 49.7 cm3 ± 28.1cm3 and 64.7 cm3 ± 48.3 cm3 

respectively.  

 

Feature Selection and Multi-view Clustering 

For the four different views, 5, 4, 7 and 6 centroid features were respectively selected by the 

algorithm and listed in Table 3 and demonstrated by Figure2. Using these centroid features 

and the optimal number of clusters, patients were firstly divided into 7, 8, 9 and 10 clusters 

respectively in the four views using hierarchical ward clustering. Late integration of the four 

views yielded a final clustering of two patient subgroups, with 53 and 27 patients in each 

subgroup respectively. Kaplan-Meier analysis showed significance for overall survival (Log-

rank, p = 0.020) and progression-free survival (Log-rank, p < 0.001) (Figure 5A &5B). 

Significant difference was also found in the overall survival (p = 0.007, HR = 0.32) and 

progression-free survival (p < 0.001, HR = 0.33) of the two patient subgroups, using 

multivariate Cox proportional hazards regression,   
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After the leave-one-out cross validation, the co-occurrence consensus clustering matrix was 

computed and showed that the two patient clusters generated from the unsupervised 

clustering were stable. The mean value of the co-occurrence consensus clustering matrix 

were 0.79 for patient cluster 1 and 0.68 for patient cluster 2. The co-occurrence consensus 

clustering results are demonstrated in Figure 3. 

 

Feature ranking 

To assess the importance of features, they were ranked according to the AUC, listed in Table 

6 and demonstrated by Figure 4. The top 5 most important features were: Mean-p-NE (mean 

value of DTI-p in the non-enhancing tumor regions) (AUC = 0.867), Mean-q-NE (mean 

value of DTI-q in the non-enhancing tumor regions) (AUC = 0.804), Prc25-rCBV-NE (25th 

percentile of rCBV in the non-enhancing tumor regions) (AUC = 0.776), Kurtosis-p-NE 

(kurtosis of DTI-p histogram in the non-enhancing tumor regions) (AUC = 0.748), Mean-q-

CE (mean value of DTI-q in the contrast-enhancing tumor regions) (AUC = 0.738).  

 

Multivariate survival analysis of individual features 

The multivariate survival modeling of PFS and OS were tested in 78 patients for whom all 

confounders including IDH-1 mutation and MGMT methylation status were available. The 

results of the multivariate Cox-regression analysis are shown in Table 4 and demonstrated by 

Figure 5C & 5D.  Four diffusion histogram features significantly contributed to patient 

survivals. Specifically, higher Mean-q-NE contributed to a worse OS (HR = 1.40, CI: 1.05- 

1.86, p = 0.020) and worse PFS (HR = 1.36, CI: 1.03- 1.79, p = 0.031). 
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Multivoxel MR Spectroscopy  

Due to the abovementioned MRS analytic rules excluding CSI voxels containing less than 50% 

tumor, CSI data were missing in four patients. Our results showed N-acetylaspartate/creatine 

(NAA/Cr) ratio of the cluster 1 was significantly higher than in cluster 2, both in the CE 

region (p < 0.001) and NE region (p = 0.013).  In the NE region, both glutamate/Cr (Glu/Cr) 

ratio and glutamate + glutamine/Cr (Glx/Cr) of the cluster 1 was significantly lower than 

cluster 2 (p = 0.037, and 0.027 respectively). No other metabolites showed significant 

differences. The metabolic results of the two patient clusters are demonstrated by Figure 6. 
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Discussion 

This study demonstrated that integrating multi-parametric and multi-regional MRI histogram 

features may help to stratify patients; the histogram features extracted from diffusion tensor 

imaging are particularly useful for predicting patient outcomes, as demonstrated by the 

multivariable Cox regression analysis.   

 

Histogram analysis of quantitative MRI offers a volumetric characterization of the tumor 

heterogeneity (25, 26). Several studies have investigated the utility of MRI histogram features 

in tumor heterogeneity evaluation and survival prediction (27, 28). However, only limited 

studies have included both perfusion and diffusion tensor imaging variables. In one of these 

studies, diffusion and  perfusion imaging features only showed marginal prognostic values 

(27). The multi-view approach we used can offer the advantage of the parallelized selection 

of features from different modalities. Being a late integration approach, the analyses on each 

view are independent and can be analyzed in parallel. It can also avoid the representation 

issues, since the clustering results generate from each independent view are the inputs to the 

final integration algorithms (7). With this algorithm, we finally separated patients into two 

groups, which showed survival difference. Our results may suggest that integrate these 

imaging features properly is crucial in patient stratification. 

 

We ranked the histogram features according to their importance in the patient clustering and 

tested them in the multivariate Cox regression model. Consistent with previous studies (29), 

our results showed that DTI histogram parameters were useful in survival prediction. 

Moreover, our results also suggested that diffusion tensor imaging have higher prognostic 

values over perfusion imaging. In the previous results, rCBV was reported to have 
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predicative values for patient survivals (30). Interestingly, although our results showed rCBV 

was useful in patient clustering, it failed to show a significant impact on survival in the 

multivariate analysis, which may challenge its robustness.  

 

Glioblastoma is recognized to preferentially migrate along the white matter tracts which may 

provide a ‘fast track’ for tumor infiltration and lead to the increased anisotropic movement. 

The diffusion of water molecules in the tumor core and peritumoral brain tissue is 

consequently altered. Our results showed the mean value of DTI-q may contribute to a worse 

patient survival. Further, as NAA is a marker of neurons, the increased NAA level in the 

worse patient group may suggest the more infiltrated tumor phenotype, which corresponds to 

the increased anisotropic movement of water molecules revealed by the elevated DTI-q value. 

Glutamate is a key neurotransmitter in the brain and is central for the neuronal functions (31). 

Previous MR spectroscopy study showed increased level of glutamate in oligodendroglioma 

(32), and in the necrotic regions of glioblastoma (33). These studies suggested  that the high 

extracellular levels of glutamate may be caused by the structural destruction in the tumor 

(31) , which corresponds to our current results, showing that cluster 2 may have more 

destructed neuronal fibers (lower NAA/Cr and higher Glx/Cr levels).  

 

Our study has some limitations. Firstly, although we used the leave-one-out cross validation, 

the patient population reported is from a single center. Secondly, although previous studies 

have validated the histological correlates of DTI-p and DTI-q by image-guided biopsies, our 

current findings need further biological validation. Lastly, as the 1H-MRS voxels were larger 

than T2 space voxels, we had fewer patients with lactate data available and the multivariate 

analysis was done with a smaller sample size.  
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In conclusion, our results showed that the multi-view clustering method can provide an 

effective approach of integrating multiple quantitative MRI features.  The histogram features 

selected from the proposed approach may be used as potential imaging markers in 

personalized treatment strategy and response determination. 
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Table 1. Clinical characteristics  
Variable Patient Number 
Age at diagnosis  
   <60 35 
   ≥60 45 
Sex  
   Male 58 
   Female 22 
Extent of resection (of enhancing 
tumor) 

 

   Complete resection  56 

   Partial resection 22 

   Biopsy 2 

MGMT-methylation status*  

   Methylated 23 

   Unmethylated 31 

IDH-1 mutation status  
   Mutant 7 
   Wild-type 73 
Tumor volumes(cm3) #  
    Contrast-enhancing  49.7 ± 28.1 

    Non-enhancing  64.7 ± 48.3 
Survival (days)  

Median OS (range) 461 (52-1259) 

    Median PFS (range)  264(37-1130) 

*MGMT-methylation status unavailable for 26 patients; #mean 
± SD of original data. SD: standard deviation; MGMT: O-6-
methylguanine-DNA methyltransferase; IDH-1: Isocitrate 
dehydrogenase 1; cm: centimeters; OS: overall survival; PFS: 
progression-free survival. 
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Table 2. Histogram features 
Feature Description 
Mean  mean intensity of voxels 
Standard deviation (SD)  standard deviation of intensity of voxels  
Median median intensity of voxels  
Mode most common intensity of voxels  
Skewness measure of the symmetry of the histogram 
Kurtosis measure of the tail of the histogram  
5th percentile (Prc5) fifth percentile of the intensity histogram  
25th percentile (Prc25) twenty-fifth percentile of the intensity histogram  

75th percentile (Prc75) seventy-fifth percentile of the intensity histogram  

95th percentile (Prc95) ninety-fifth percentile of the intensity histogram  
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Table 3. Features selected from multi-view clustering 
View Features 

View1: CE-diffusion 

Mean-p-CE 
Prc25-p-CE 
Kurtosis -p-CE  
Mean-q-CE 
Kurtosis-q-CE 

View2: NE-diffusion 

Mean-p-NE 
Kurtosis-p-NE  
Mean-q-NE  

Kurtosis-q-NE 

View3: CE-perfusion 

Prc75-rCBF-CE 

Prc5-rCBV-CE 

Kurtosis-rCBV-CE 

Kurtosis-rCBF-CE 

Prc95-MTT-CE 

Median-MTT-CE 

Kurtosis-MTT-CE 

View4: NE-perfusion 

Prc25-rCBV-NE 

SD-rCBV-NE 

Skewness-rCBV-NE 

Median-MTT-NE 

SD-MTT-NE 

Kurtosis-MTT-NE 
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Table 4. Cox multivariate modeling of survivals 

Variable 
Progression-free survival* Overall survival* 
HR 95%CI p value HR 95%CI p value 

Mean-p-CE 0.95 0.71-1.27 0.714 0.76 0.54-1.07 0.120 
Prc25-p-CE 0.88 0.66-1.17 0.369 0.79 0.56-1.10 0.165 
Kurtosis-p-CE 0.97 0.70-1.35 0.862 1.41 1.05-1.88 0.020 
Mean-q-CE 1.17 0.90-1.51 0.245 1.17 0.89-1.55 0.268 
Kurtosis-q-CE 0.99 0.79-1.25 0.948 0.97 0.75-1.26 0.834 
Mean-p-NE 0.79 0.58-1.08 0.143 0.74 0.53-1.04 0.083 
Kurtosis-p-NE 1.18 0.85-1.63 0.326 1.66 1.15-2.39 0.007 
Mean-q-NE 1.40 1.05-1.86 0.020 1.36 1.03-1.79 0.031 
Kurtosis-q-NE 0.98 0.76-1.26 0.872 1.11 0.89-1.38 0.359 
Prc75-rCBF-CE 1.05 0.82-1.34 0.702 1.05 0.80-1.37 0.732 
Prc5-rCBV-CE 1.05 0.82-1.35 0.680 1.07 0.82-1.38 0.618 
Kurtosis-rCBV-CE 0.87 0.67-1.14 0.316 0.80 0.49-1.31 0.385 
Kurtosis-rCBF-CE 0.94 0.69-1.27 0.680 0.96 0.71-1.30 0.791 
Prc95-MTT-CE 0.90 0.65-1.24 0.521 0.92 0.67-1.26 0.590 
Prc25-MTT-CE 0.95 0.72-1.25 0.723 1.06 0.79-1.44 0.694 
Kurtosis-MTT-CE 0.88 0.67-1.15 0.353 1.07 0.80-1.42 0.667 
Prc25-rCBV-NE 1.28 0.94-1.74 0.121 1.53 1.09-2.14 0.014 
Prc95-rCBF-NE 1.11 0.88-1.40 0.358 1.15 0.88-1.51 0.307 
Skewness-rCBV-NE 0.83 0.60-1.15 0.267 0.71 0.49-1.02 0.063 
Median-MTT-NE 1.03 0.78-1.35 0.861 1.34 0.99-1.81 0.060 
SD-MTT-NE 0.98 0.69-1.38 0.897 1.17 0.82-1.65 0.388 
Kurtosis-MTT-NE 0.86 0.63-1.19 0.375 1.02 0.74-1.40 0.918 
*Cox models accounted for IDH-1 mutation status, MGMT methylation status, sex, age, 
extent of resection and contrast-enhancing tumor volume. HR: hazard ratio; CI: confidence 
interval. 
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Table 5 Metabolic statistics 
 Contrast-enhancing tumor region Non-enhancing tumor region 

Metabolite 
Cluster 1 Cluster 2 p Cluster 1 Cluster 2 p 

Mean ± SD 95% CI Mean ± SD 95% CI Mean ± SD 95% CI Mean ± SD 95% CI 
Cho/NAA 0.60 ± 0.32 0.50-0.69 0.49 ± 0.26 0.38-0.60 0.091 0.54 ± 0.50 0.38-0.70 0.45 ± 0.19 0.37-0.53 0.689 
Cho/Cr 0.70 ± 0.24 0.63-0.77 0.63 ± 0.17 0.55-0.70 0.244 0.44 ± 0.13 0.40-0.48 0.40 ± 0.14 0.34-0.46 0.149 
NAA/Cr 0.76 ± 0.35 0.66-0.86 0.46 ± 0.27 0.35-0.58 <0.001 0.97 ± 0.32 0.86-1.07 0.76 ± 0.30 0.64-0.89 0.013 
GSH/Cr 0.31 ± 0.28 0.23-0.40 0.40 ± 0.36 0.23-0.57 0.245 0.34 ± 0.19 0.27-0.41 0.39 ± 0.27 0.26-0.51 0.687 
Glu/Cr 1.57 ±  0.86 1.31-1.83 1.54 ± 1.08 0.95-1.61 0.648 1.04 ± 0.41 0.89-1.18 1.37 ± 0.60 1.11-1.62 0.037 
Glx/Cr 1.89 ± 1.11 1.56-2.23 1.85 ± 1.29 1.31-2.40 0.651 1.41 ± 0.58 1.20-1.62 1.98 ± 1.04 1.54-2.42 0.027 
mIn/Cr 1.37 ± 0.88 1.12-1.62 1.28 ± 0.77 1.08-1.99 0.657 1.14 ± 0.41 1.00-1.27 1.16 ± 0.38 1.00-1.32 0.924 
Lac/Cr 6.37 ± 5.73 4.67-8.07 4.81 ± 4.14 2.93-6.69 0.448 1.13 ± 0.98 0.75-1.52 1.45 ± 2.62 0.11-2.80 0.087 
Cho: Choline; NAA: N-acetyl aspartate; GSH: glutathione; Glu: glutamate; Glx: glutamate + glutamine; mIn: myo-inositol; Lac: lactate; CI: confidence 
interval.  
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Figure 1. Study design. DTI-p and DTI-q maps were generated from diffusion tensor imaging (DTI). The 
relative cerebral blood volume (rCBV), mean transit time (MTT) and relative cerebral blood flow (rCBF) maps 
were generated from dynamic susceptibility contrast (DSC) imaging. Histogram features were extracted from 
the multiple modalities and regions (contrast-enhancing and non-enhancing), then were separated into four 
independent views. Each view was first clustered to select the centroid features, which later were used to cluster 
patients. The resulting clusters from each view were integrated to generate two patient clusters. The clusters 
were assessed using leave-one-out cross validation and survival analysis.  The metabolic signatures of the two 
clusters were compared.  
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Figure 2. Feature clustering and centroid features.  In each view, all features were clustered using the 
hierarchical ward clustering method. The centroid features (marked by yellow stars) were selected to represent 
each view. A: view 1 (perfusion histogram features in the contrast-enhancing regions); B: view 2 (perfusion 
histogram features in the non-enhancing regions); C: view 3 (diffusion histogram features in the contrast-
enhancing regions); D: view 4 (diffusion histogram features in the non-enhancing regions). 
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Figure 3. Patient clustering and co-occurrence consensus clustering matrix.  After multi-view clustering, 
consensus analysis was performed based on the 80 clustering results obtained after the leave-one-out cross 
validation. The mean value of the co-occurrence consensus clustering matrix was 0.79 for patient cluster 1 and 
0.68 for patient cluster 2. 
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Figure 4. Feature ranking. The selected features were ranked according to the area under the receiver operator 
characteristics curves (AUC) to assess their importance. 
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Figure 5.  Kaplan-Meier plots of survival analysis. Log-rank test showed patient cluster 2 displayed better OS 
(p = 0.020) (A) and PFS (p < 0.001) (B). Higher man value of DTI-q in the non-enhancing region (Mean-q-NE) 
was associated with a worse OS (p = 0.002) (C) and PFS (p < 0.001) (D).  
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Figure 6.  MRS results. N-acetylaspartate/creatine (NAA/Cr) ratio in cluster 1 was significantly higher than in 
cluster 2, both in the contrast-enhancing (CE) region (p < 0.001) (A) and non-enhancing (NE) region (p = 0.013) 
(B).  In the NE region, cluster 1showed significantly higher glutamate/Cr (Glu/Cr) ratio (p = 0.037) (C) and 
glutamate + glutamine/Cr (Glx/Cr) ratio (p = 0.027) (D) than cluster 2. 
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