
Version dated: December 17, 20171

2

Fast Bayesian Inference of Phylogenetic Models Using3

Parallel Likelihood Calculation and Adaptive4

Metropolis Sampling5

Venelin Mitov1,2, Tanja Stadler1,2
6

1Swiss Federal Institute of Technology in Zurich, Switzerland;7

2Swiss Institute of Bioinformatics, Switzerland8

Corresponding authors: Venelin Mitov, Department of Biosystem Sciences and9

Engineering, Swiss Federal Institute of Technology, Mattenstrasse 26, CH-4058 Basel,10

Switzerland; E-mail: vmitov@gmail.com.11

Tanja Stadler, Department of Biosystem Sciences and Engineering, Swiss Federal12

Institute of Technology, Mattenstrasse 26, CH-4058 Basel, Switzerland; E-mail:13

tanja.stadler@bsse.ethz.ch.14

Abstract15

Phylogenetic comparative methods have been used to model trait evolution, to test16

selection versus neutral hypotheses, to estimate optimal trait-values, and to quantify the17

rate of adaptation towards these optima. Several authors have proposed algorithms18

calculating the likelihood for trait evolution models, such as the Ornstein-Uhlenbeck (OU)19

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

mailto:vmitov@gmail.com
mailto:tanja.stadler@bsse.ethz.ch
https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

process, in time proportional to the number of tips in the tree. Combined with20

gradient-based optimization, these algorithms enable maximum likelihood (ML) inference21

within seconds, even for trees exceeding 10,000 tips. Despite its useful statistical22

properties, ML has been criticised for being a point estimator prone to getting stuck in23

local optima. As an elegant alternative, Bayesian inference explores the entire information24

in the data and compares it to prior knowledge but, usually, needs much longer time, even25

on small trees. Here, we propose an approach to use the full potential of ML and Bayesian26

inference, while keeping the runtime within minutes. Our approach combines (i) a new27

algorithm for parallel traversal of the lineages in the tree, enabling parallel calculation of28

the likelihood; (ii) a previously published method for adaptive Metropolis sampling. In29

principle, the strategy of (i) and (ii) can be applied to any likelihood calculation on a tree30

which proceeds in a pruning-like fashion, leading to enormous speed improvements. We31

implement several variants of the parallel algorithm in the form of a generic C++ library,32

”SPLiTTree”, capable to choose automatically the optimal algorithm for a given task and33

computing platform. We give examples of models of discrete and continuous trait evolution34

that are amenable to parallel likelihood calculation. As a complete showcase, we implement35

the phylogenetic Ornstein-Uhlenbeck mixed model (POUMM) in the form of an easy-to-use36

and highly configurable R-package that calls the library as a back-end. In addition to the37

above-mentioned usage of comparative methods, POUMM allows to estimate non-heritable38

variance and phylogenetic heritability. Using SPLiTTree, calculating the POUMM39

likelihood on a 4-core SIMD-enabled processor is up to 10× faster than serial40

implementations written in C and hundreds of times faster than serial implementations41

written in R. By combining SPLiTTree likelihood calculation with adaptive Metropolis42

sampling, the time for Bayesian POUMM inference on a tree of ten thousand tips is43

reduced from several days to a few minutes.44

Keywords: Parallel tree traversal, post-order traversal, pre-order traversal, pruning,45

discrete character, continuous trait, phylogenetic comparative models, Brownian motion,46

measurement error, stabilizing selection, environmental contribution47

Introduction48

2

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

The past decades have seen active developement of phylogenetic comparative49

models of trait evolution, progressing from null neutral models, such as single-trait50

Brownian motion (BM), to complex multi-trait models incorporating selection, interaction51

between trait values and diversification, and co-evolution of multiple traits (O’Meara 2012;52

Manceau et al. 2016). Recent works have shown that, for a broad family of phylogenetic53

comparative models, the likelihood of an observed tree and data conditioned on the model54

parameters can be computed in time proportional to the size of the tree (FitzJohn 2012;55

Ho and Ané 2014; Goolsby et al. 2016; Manceau et al. 2016). This family includes56

Gaussian models like Brownian motion and Ornstein-Uhlenbeck phylogenetic models as57

well as some non-Gaussian models like phylogenetic logistic regression (Paradis and Claude58

2002; Ives and Garland 2010; Ho and Ané 2014). All of these likelihood calculation59

techniques rely on post-order tree traversal also known as “pruning” (Felsenstein 1973,60

1981, 1983). Using pruning algorithms for likelihood calculation in combination with a61

gradient-based optimization method (Boyd and Vandenberghe 2004), maximum likelihood62

model inference runs within seconds on contemporary computers, even for phylogenies63

containing many thousands of tips (Ho and Ané 2014). Other important features of the64

maximum likelihood estimate (MLE) are its simple interpretation as the point in65

parameter space maximizing the probability of the observed data under the assumed66

model, and its theoretical properties making it ideal for hypothesis testing and for model67

selection via likelihood ratio tests and information criteria. However, major disadvantages68

of MLE are that, being a point estimate, it does not allow to explore the likelihood surface;69

gradient based optimization, while fast, is prone to getting stuck in local optima.70

As an elegant alternative, Bayesian approaches such as Markov Chain Monte Carlo71

(MCMC) allow to incorporate prior knowledge in the model inference and provide posterior72

samples and high posterior density (HPD) intervals for the model parameters (Slater et al.73

2012a; FitzJohn 2012). In contrast with ML inference, though, Bayesian inference methods74

3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

require many orders of magnitude more likelihood evaluations, in order to obtain a75

valuable posterior sample. This presents a bottleneck in Bayesian analysis, in particular,76

when faced with large phylogenies of many thousands of tips, such as transmission trees77

from large-scale epidemiological studies, e.g. Hodcroft et al. (2014). While big data78

provides sufficient statistical power to fit a complex model, the time needed to perform a79

full scale Bayesian inference often limits the choice to a faster but less informative80

ML-inference, or a Bayesian inference on a simplified model.81

In this article, we propose a general approach allowing to use ML and Bayesian82

inference to their full potential, even for complex models and for very large trees exceeding83

millions of tips. To achieve this goal, our approach combines two ideas: (i) the pruning84

algorithm for likelihood calculation can be accelerated by orders of magnitude through85

parallel processing (traversal) of the independent lineages in the tree; (ii) the number of86

iterations needed for MCMC convergence can be reduced several times by the use of87

adaptive Metropolis sampling (Vihola 2012; Scheidegger 2017). A nice property of the88

parallel pruning algorithm is that its parallel efficiency increases with the number of tips in89

the tree as well as with the complexity of the pruning operation. Thus, for large trees and90

complex models, the parallel speed-up is practically limited by the number of available91

processing cores and other hardware resources such as the memory bandwidth.92

We provide SPLiTTree: a C++ library for Serial and Parallel Lineage Traversal of93

Trees. The library is designed to be generic with respect to the tree topology, the type of94

data, the model parameters and the specific visit-node operation. It has been tested on95

large (N > 100, 000) balanced and highly unbalanced trees. Noticing that there is no96

one-size-fits-all strategy for optimal parallel speed-up (e.g. the parallelization may be97

useless or even slowing-down the performance in the case of a ladder tree or in the case of a98

memory intensive visit-node operation), SPLiTTree implements several parallelization99

strategies (e.g. classical serial traversal versus queue-based and range-based parallel100

4

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

traversal) and is capable to automatically select the fastest strategy for a given tree and101

computing hardware. In this way, the library allows the user to neglect complex technical102

aspects of parallel programming and focus on implementing the visit-node operation103

specific for the application of interest.104

We begin with a formulation of a general framework for parallel post-order tree105

traversal (pruning). Then, we give examples of models of discrete and continuous trait106

evolution, amenable to using the library for parallel likelihood calculation. These examples107

represent mere adaptations of previously published pruning algorithms to the terms of the108

framework (Felsenstein 1983; Pagel 1994; Ho and Ané 2014).109

We go on with a showcase demonstrating the combined use of parallel pruning and110

adaptive Metropolis sampling on a univariate phylogenetic Ornstein-Uhlenbeck mixed111

model (POUMM). Previously, we and other authors have used the POUMM in heritability112

analysis of epidemiological data (Mitov and Stadler 2016; Bachmann et al. 2017; Bertels113

et al. 2017; Blanquart et al. 2017). Here, we describe the pruning formulation of the114

POUMM likelihood, validate the technical correctness of the implementation and compare115

the performance of this implementation to several other implementations of OU-models of116

evolution including FitzJohn (2012) and Pennell et al. (2014). We report significant117

speed-ups, both for the time for single likelihood calculation as well as for the overall118

Bayesian inference of the model.119

Setup120

Through the rest of the article we will use the following notation. Given is a rooted121

phylogenetic tree T with a total of M nodes, including N < M tips denoted 1, ..., N ,122

M −N − 1 internal nodes denoted N + 1, ...,M − 1, and a root node denoted M (Fig. 1).123

Without restrictions on the tree topology, non-ultrametric trees (i.e. tips have different124

heights) and polytomies (i.e. nodes with any finite number of descendants) are accepted.125

5

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

We denote by Ti the subtree rooted at node i. For any tip or internal node i, we denote its126

parent node by Parent(i). For any node j, we denote by Desc(j) the set of its direct127

descendants (Desc(j) = φ if j denotes a tip). Furthermore, for any i ∈ Desc(j), we denote128

by ti the length of the branch leading to i and by hi the height of i, i.e. the sum of branch129

lengths from the root to i. The mean height of all tips in the tree is denoted by h̄. For two130

tips, i and k, we denote by h(ik) the height to their most recent common ancestor (mrca),131

and by dik the sum of branch lengths on the path from i to k (also called phylogenetic or132

patristic distance between i and k). Associated with each node i there is an input data in133

the form of a single or multivariate categorical or numerical value denoted zi. For tips, zi134

can be partially unobserved (having NA entries), while for internal nodes or the root it can135

also be fully absent (NULL). We denote by zi the sub-vector of input data for the nodes in136

Ti. Associated with each node, i, there is a vector of model parameters, Θi. We use bold137

style t, z and Θ when denoting the vectors of all branch lengths, input data and138

parameters.139

A general framework for parallel tree traversal140

Let FT (t, z,Θ) be a function of the branch lengths, the input data and the141

parameters. A post-order tree traversal algorithm can be used to calculate FT if, for all142

subtrees Tj of T , there exist functions Sj(t, z,Θ), hereby called ”states”, satisfying the143

following rules:144

(1) FT (t, z,Θ) can be calculated from SM(t, z,Θ);145

(2) For each node j ∈ {1, ...,M}, there exists a (recursive) relationship Rj between Sj146

and the set of states at j’s descendants, such that:147

Sj(t, z,Θ) = Rj

({
Si(t, z,Θ) : i ∈ Desc(j)

}
, t, z,Θ

)
. (1)

6

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

1

2

3

8

4

5

9

6

16

13

10

15 14

11

12

7

1

2

3

8

4

5

9

6

16

13

10

15 14

11

12

7

1

2

3

8

4

5

9

6

16

13

10

15 14

11

12

7

1

2

3

8

4

5

9

6

16

13

10

15 14

11

12
a

6

1

2

3

4

5

11

10

9

8

7

6

1

2

3

4

5

11

10

9

8

7

6

1

2

3

4

5

11

10

9

8

7

6

1

2

3

4

5

11

10

9

8

7

6

1

2

3

4

5

11

10

9

8

7

b

Figure 1: Parallel pruning. The trees from left to right depict generations of nodes that
can be processed in parallel. The processing of a node consists in calculating its state based
on the input data, the branch lengths and the states of the node’s direct descendants (eq.
1). black: nodes having one or more non-processed descendants; red: nodes ready to be
processed; grey: nodes processed in a previous generation. a) a balanced tree; b) a ladder.

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

We note that analogical terms can be defined for pre-order tree traversal. In this148

case the target functions are values ZT ,j(t, z,Θ) corresponding to the nodes j ∈ {1, ...,M},149

and rule (2) is updated to:150

(2’) ZM can be calculated from the input data. For each node j ∈ {1, ...,M − 1}, there151

exists a (recursive) relationship R′j between Zj and ZParent(j), such that:152

Zj(t, z,Θ) = R′j
(
ZParent(j)(t, z,Θ), t, z,Θ

)
. (2)

The states, i.e. the values of the functions Sj and Zj, may be deterministic or stochastic153

functions of the input tree and data. They can be real numbers, vectors, matrices or higher154

order combinations thereof.155

For the rest of the article, we focus on parallel post-order tree traversal or156

”pruning”, noting that the algorithms for parallel pre-order traversal are simple analogies.157

The SPLiTTree library implements both traversal types.158

Rule (2) ensures that calculating the state of a node j can be done independently159

from the calculation of any other node k, provided that neither j is an ancestor of k, nor k160

is an ancestor of j. Based on this observation, we develop two alternative parallel161

algorithms for calculating the root state SM described in the following subsections.162

Queue-based parallel pruning163

It is possible to parallelize the computation of the states Sj across multiple164

computing threads using a first-in-first-out list (queue) of the nodes in the tree (algorithm165

1). Initially, the queue is filled with all tips in the tree and a counter with the number of166

direct descendants is set for each internal or root node. Then, each thread takes a node i167

from the front of the queue, calculates its state and decrements the counter of Parent(i). If168

the counter of Parent(i) has become zero, Parent(i) is added to the queue, so that it will169

8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

be processed as soon as a free thread picks it from the queue. Assuming an unlimited170

number of threads and a negligible cost of the queue- and the counter- operations,171

algorithm 1 guarantees that a node will be processed immediately after all of its direct172

descendants have been processed. Thus, in theory, algorithm 1 maximizes the parallel173

execution. However, an implementation of the atomic operations on the queue and the174

counters would have to rely on a thread synchonization mechanism such as a mutex, which175

can be slow on some systems. Thus, a decent parallelization speed-up would only be176

possible if the overall cost of synchronization is insignificant compared to the functions Rj.177

Range-based parallel pruning178

We consider an alternative of algorithm 1 minimizing the synchronization overhead.179

This approach consists in splitting the tree into ”generations” of nodes, such that nodes180

within a generation can be processed in random order and in parallel, but only if all181

generations containing descendants of these nodes have already been processed (fig. 1). A182

“master” thread is responsible for launching a team of “worker” threads on each183

generation, starting from a generation of all tips, then taking their parents, and so on until184

reaching the root of the tree. To be efficient, this procedure requires that the data185

associated with the nodes in a generation occupy a consecutive region in the address-space.186

This eliminates the need for synchronization between the worker threads, because each187

worker thread can deduce its own portion based on its thread-id and the address-range of188

the generation. To orchestrate the worker teams, the master thread only needs to keep189

account of the address-ranges. Technically, this is accomplished by iterating over a vector190

of offsets (algorithm 2).191

In algorithm 2, the number of synchronization points is reduced to the number of192

generations, K. In balanced trees, K would increase logarithmically with N and, for big193

N , the tree would be split into a few generations of many nodes (fig. 1a). If there are no194

9

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 1: Queue-based parallel pruning

Input: T , t, z, Θ
Output: SM(t, z,Θ)
/* a vector of M states */

1 State←− [...]M ;
/* a vector of the numbers of remaining descendants for each node */

2 NumDesc←−
[
|Desc(i)| : i ∈ {1, ...,M}

]
;

/* initiate Queue with all tips: */

3 Queue←− [1, ..., N];
4 begin Parallel block
5 while (TRUE) do

/* if Queue is empty, thread waits. */

6 j ←−PopFirst(Queue);

7 State[j]←− Rj

({
State[i] : i ∈ Desc(j)

}
, t, z,Θ

)
;

8 if (j < M) then
/* the root has not been processed yet. */

9 NumDesc[Parent(j)]←− NumDesc[Parent(j)]− 1;
10 if (NumDesc[Parent(j)] == 0) then

/* If Queue is currently empty a waiting thread will be

notified. */

11 AddLast(Queue, Parent(j));

12 else
/* the root has been processed. */

/* Notify waiting threads by adding a stopping node-id to

Queue. */

13 AddLast(Queue, M + 1);
/* All work done, exit the loop. */

14 break;

15 return State[M];

10

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 2: Range-based parallel pruning

Input: T , t, z, Θ
Output: SM(t, z,Θ)
Data:
/* A pre-calculated vector with starting offsets for each generation:

*/

1 Range =
[
0, N,N + |G1|, N + |G1|+ |G2|, ...,M − 1,M

]
K+1

;

/* a vector of M elements */

2 State←− [0, ..., 0]M ;
/* The master thread iterates over the generations: */

3 foreach k ∈ {1, ..., K} do
/* The master thread starts a team of worker threads running equal

portions of the following loop: */

4 foreach j ∈ {Range[k] + 1, ..., Range[k + 1]} do

5 State[j]←− Rj

({
State[i] : i ∈ Desc(j)

}
, t, z,Θ

)
;

6 return State[M];

other blocking resources, such as memory bandwidth, the parallel speed-up would be195

nearly as high as the number of processing cores and the synchronization overhead would196

be negligible. Conversely, in strongly unbalanced trees, K would tend to increase linearly197

with N and the tree would be split into many generations of a few nodes (fig. 1b). This198

would result in low parallel speed-up and excessive synchronization cost. Also noteworthy199

is the fact that algorithm 2 reduces the number of synchronization points at the cost of200

some parallelization. If each worker thread gets assigned to an approximately equal201

number of nodes in a generation and if a few of the nodes take much longer time to process202

than the rest, then most of the worker threads would have to wait until the last node in the203

generation has been processed. These subtleties of the tree and input data indicate that204

there is no “one size fits all” strategy when it comes to optimizing the parallelization205

speed-up. The parallel pruning framework provides two ways to deal with these: (a)206

allowing the user to choose a parallelization mode before executing a pruning operation on207

a given tree and data; (b) providing a mode “auto”, in which the framework compares the208

11

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

execution time of different pruning algorithms during the first several calls on a given tree209

and data, choosing the fastest one for all subsequent calls.210

The SPLiTTree library211

We provide SPLiTTree in the form of an open source C++ library licensed under212

version 3.0 of the GNU Lesser General Public License (LGPL v3.0) and available on213

https://github.com/venelin/SPLiTTree.git. In its current implementation, the library uses214

the C++11 language standard, the standard template library (STL) and the OpenMP215

standard for parallel processing. The library is designed as a set of C++ template classes,216

generic with respect to the application specific details, such as the types of input data,217

model parameters and definitions of the node states, Si, and visit-node functions, Ri. The218

library defines two layers (fig. 2):219

• a framework layer defining the main logical and data structures. These include a220

linear algorithm for initial reordering and splitting of the input tree into generations221

of nodes, which can be visited in parallel, both during a post-order as well as222

pre-order traversal, and a growing collection of pre-order and post-order traversal223

algorithms, targeting different parallelization modes (e.g. queue-based versus224

range-based parallelization) on different computing devices (currently implemented225

for CPUs only).226

• a user layer at which the user of the library must write a227

CustomTraversalSpecification class defining all typedefs and methods of the228

interface TraversalSpecification. The most important of entity to define is the229

method VisitNode specifying the function Ri for each tip or internal node, i.230

The bridge between the two layers is provided by an object of the TraversalTask231

template class. Once the TraversalSpecification implementation has been written, the232

12

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

«implicit interface»
«template»

Tree<NodeType, LengthType>

protected fields:
num_tips_: uint
num_nodes_: uint
id_parent_: uvec
id_child_nodes: vector<uvec>
lengths_: vector<LengthType>
map_node_to_id:
 unordered_map<NodeType, uint>
map_id_to_node_: vector<NodeType>

public typedefs:
+ «i» NodeType
+ «i» LengthType

public constructor:
+ «i» Tree(
 branch_start_nodes: vector<NodeType> const&,
 branch_end_nodes: vector<NodeType> const&,
 branch_lengths: vector<LengthType> consi&)

public methods:
+ «i» FindNodeWithld(i: uint): NodeType const&
+ «i» FindIdOfNode(node: NodeType const&): uint
+ «i» LengthOfBranch(i: uint): LengthType const&
+ «i» FindIdOfParent(id_child: uint): uint
+ «i» FindChildren(i: uint): uvec const&
+ «i» OrderNodes(nodes: vector<NodeTyce> const&):
uvec

«implicit interface»
«template»

OrderedTree<NodeType, LengthType>

protected fields:
ranges_id_visit_: uvec
ranges_id_prune_: uvec

public constructor:
+ OrderedTree(
 branch_start_nodes: vector<NodeType> const&,
 branch_end_nodes: vector<NodeType> const&,
 branch_lengths: vector<LengthType> const&)

public methods:
+ «i» RangeldVisitNode(i_level: uint): pair<uint,uint>
+ «i» RangeldPruneNode(i_step: uint): pair<uint,uint>

«implicit interface»
«template»

TraversalSpecification<TreeType>

protected fields:
ref_tree_: TreeType const&

public typedefs:
+ «i» TreeType
+ «i» AlgorithmType
+ «i» ParameterType
+ «i» DataType
+ «i» StateType

public constructor:
+ «i» TraversalSpecification(
 tree: TreeType &,
 input_data: DataType &)

public methods:
+ «i» SetParameter(par: ParameterType &)
+ «i» InitNode(i: uint): void
+ «i» VisitNode(i: uint): void
+ «i» PruneNode(i: uint, i_parent: uint): void
+ «i» StateAtRoot(): StateType

«implicit interface»
«template»

TraversalAlgorithm<TreeType>

protected fields:
ref_spec_: TraversalSpec &
ref_tree_: TraversalSpec::TreeType const&

public typedefs:
+ «i» ModeType

public constructor:
+ «i» TraversalAlgorithm(
 tree: TraversalSpec::TreeType const &,
 spec: TraversalSpec &)

public methods:
+ «i» TraverseTree(mode: ModeType): void

PreOrderTraversal PostOrderTraversal

Framework layer

«template»
«runtime-entry-point-object»

TraversalTask<TraversalSpecification>

protected fields:
spec_: TraversalSpecification

tree_: TraversalSpecification::TreeType

algorithm_:
 TraversalSpecification::AlgorithrnType

public constructor:
+ TraversalTask(
 branch_start_nodes: vector<NodeType> const&,
 branch_end_nodes: vector<NodeType> const&,
 lengths: vector<LengthType> const&,
 input_data:
 TraversalSpecificcation::DataType const&)

public properties (access to components):
+ spec: TraversalSpecification &
+ tree: TraversalSpecification::TreeType &
+ algorithm: TraversalSpecification::AlgorithmType&

public methods:
+ TraverseTree(
 par: TraversalSpecification::ParameterType const&,
 mode: uint): TraversalSpecification::StateType

User layer

ThreePointMultivariate

ThreePointUnivariate

ThreePointPBM

ThreePointPMM

ThreePointPOUMM

Figure 2: A UML class diagram of the SPLiTTree library In the framework layer,
the class TraversalSpecification defines the application-specific data types and logic; the
class Tree serves as a base-class implementing common tree operations, such as constructing
a tree from a list of branches, checking the validity of the input (e.g. lack of cycles or isolated
branches), finding the parent and the descendants of a node, etc; the class OrderedTree

maintains the order of the nodes in a tree so that they can be split in contiguous generations
for parallel post-order or pre-order traversal; the class TraversalAlgorithm serves as a base
class and an implicit interface for its two subclasses implementing the two supported types
of tree traversal: PreOrderTraversal and PostOrderTraversal. At the user layer are the
user defined implementations of the TraversalSpecification interface (shown in green)
and an instance of the TraversalTask class, which constructs all necessary internal objects
and serves as a runtime entry point to the framework.

13

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

user instantiates a TraversalTask object passing the tree and the input data as arguments.233

This triggers the creation of the internal objects of the framework, i.e. an OrderedTree234

object maintaining the order in which the nodes are processed and a PreOrderTraversal235

or a PostOrderTraversal object implementing different parallelization modes of the two236

traversal types. In the ideal use-case, the TraversalTask’s TraverseTree() method will237

be called repeatedly, varying the model parameters, the input data and branch lengths on a238

fixed tree topology. This encompasses all scenarios where a model is fitted to a fixed tree239

and data, e.g. ML or Bayesian PCM inference. In the current version of the framework any240

change in the tree topology invalidates the associated TraversalTask object, so a new one241

has to be created. Thus, in the case of inferring a tree topology, the overall performance242

would depend on the frequency of changes in the topology per traversal and the time for243

re-creating the TraversalTask object relative to the total time of one traversal.244

Examples245

In this section, we show example usages of the parallel traversal framework. In each246

of these examples, we solve a particular problem, such as calculating the likelihood of a247

continuous Markov model for a categorical or a continuous trait. In terms of the248

framework, the task boils down to formulating the node states Sj(t, z,Θ) and the recursive249

functions Rj satisfying rules (1) and (2).250

Example 1: Models of categorical trait evolution.—251

Consider a trait taking values in {0, 1} evolving independently along the lineages of252

a phylogenetic tree, T with branch lengths t. A continuous-time Markov model can be253

used to characterize the transitions of the trait value along each branch (Felsenstein 1983;254

Pagel 1994). This model assumes constant rates of change from 0 to 1, q01 and from 1 to 0,255

q10, representing the probability that the change has occurred during an infinitesimal256

14

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

interval of time. These rates are used to define a rate matrix:257

Q =

 −q01 q01

q10 −q10

 . (3)

Given Q, the transition probability matrix P(t) for an arbitrary long period t is258

given by259

P(t) =

 P00(t) P01(t)

P10(t) P11(t)

 = C

 eλ1t 0

0 eλ2t

C−1 (4)

where λi are the eigenvalues of Q and C is a matrix, which’s ith column represents the ith260

eigenvector of Q (Pagel 1994). Assuming that the value at the root is known to be zM , we261

want to find the probability with which the model specified by the parameters262

Θ = (q01, q10) generates an N -vector of values, z observed at the tips. This represents the263

conditional likelihood LT (t, z,Θ, zM). The pruning algorithm for calclulating L relies on264

calculating the “fragmentary” likelihood Li(b) = P (zi|zi = b; Θ) for each node i and each265

b ∈ {0, 1} (Felsenstein 1983). In terms of the framework, we define the state Sj(t, z,Θ) of a266

node j as the pair < Lj(0), Lj(1) >. Following eq. 4 in (Felsenstein 1983), the recursive Rj267

are given by:268

Sj(t, z,Θ) =


〈δ(zj = 0), δ(zj = 1)〉 if j is a tip〈∏

i∈Desc(j)
[∑

zi
P0zi(ti)Li(zi)

]
,
∏

i∈Desc(j)
[∑

zi
P1zi(ti)Li(zi)

]〉
if j is internal,

(5)

where we use the Kronecker delta function δ(x = y) equalling to 1 if x = y and 0,269

otherwise. In the above eqation 5, the values Li(zi) are available from the descendants’270

15

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

states Si. Finally, the conditional likelihood LT (t, z,Θ, zM) is given by LM(zM), which is271

one of the two members in SM .272

The above model can be extended to a multivariate case, such as calculating the273

probability of a nucleotide or aminoacid sequence alignment as is the case in (Felsenstein274

1983). Suppose that there are p nucleotide sites, which are evolving independently. Then,275

the state for a node j would represent a p× 4 matrix276

Sj(t, z,Θ) =


L
(1)
j (A) L

(1)
j (C) L

(1)
j (T) L

(1)
j (G)

...
...

...
...

L
(p)
j (A) L

(p)
j (C) L

(p)
j (T) L

(p)
j (G)

 , (6)

where the letters A, C, T and G denote the nucleotides and the superscript in parentheses277

denotes a site in the alignment. To define the recursive functions Rj, equation 5 can be278

extended to accomodate one row of Sj (four possible values instead of two) and evaluated p279

times to obtain the full state.280

The model can also be extended to support correlated evolution between the sites.281

As shown in (Pagel 1994), this involves extending the rate matrix Q to embed transition282

rates between pairs, triplets or higher order combinations of sites in the sequence.283

Accounting for correlated evolution between combinations of sites dramatically increases284

the computational complexity, but does not present a conceptual change from the point of285

view of the pruning operation. Thus, accommodating such models in the framework,286

although involved technically, should not present a conceptual challenge.287

We should not omit mentioning other software libraries implementing parallel288

likelihood computation of different Markov models of sequence evolution. For example,289

several high level tools for ML and Bayesian tree inference, e.g. Drummond et al. (2012);290

Bouckaert et al. (2014); Ronquist and Huelsenbeck (2003), use the library BEAGLE which291

distributes the computation for the independent sites of the sequence alignment among292

16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

multiple CPU or GPU cores (Ayres et al. 2012). SPLiTTree operates on a different level,293

namely, it parallelizes the computation for independent lineages in the tree. Both294

approaches are interesting because they fit well to different sizes of the input data - while295

BEAGLE achieves significant parallel speed-ups in long alignments comprising many296

thousands nucleotide or codon columns (Ayres et al. 2012), SPLiTTree is better suited to297

shorter alignments of potentially many thousands of species.298

Example 2: Models of continuous trait evolution.—299

Ho and Ané (2014) noticed that the computational complexity in multivariate300

Gaussian and some non-Gaussian models concentrates in the calculation of determinants301

|VΘ| and quadratic quantities of the form QΘ = X′ΘV−1Θ YΘ, where VΘ represents the302

variance covariance matrix expected under the model specified by Θ and the matrices XΘ303

and YΘ represent centered observed data at the tips in the tree. For example, in the case304

of Brownian motion and Ornestein-Uhlenbeck models, the log-likelihood function is equal305

to the log-density of a multivariate Gaussian distribution:306

ln f(z|Θ) = −1

2

(
N ln(2π) + ln |VΘ|+ (z− µΘ)′V−1Θ (z− µΘ)

)
, (7)

where VΘ = Σ and VΘ = µ (table 1).307

Ho and Ané (2014) developed a pruning algorithm which allows to calculate |VΘ|308

and QΘ simultaneously and without constructing or allocating the matrix VΘ in memory,309

provided VΘ has a ”3-point structure”. Then, they showed several examples of Gaussian310

models such as Brownian motion and Ornstein-Uhlenbeck, as well as non-Gaussian models,311

such as phylogenetic logistic and Poisson regression, where VΘ is or can be ”converted” to312

a 3-point structured matrix (discussed later). Adapting the notation from (Ho and Ané313

2014, p. 399), we define the node states as Sj(t, z,Θ) =
〈
pA,j, pj, µ̂Y,j, µ̃

′
X,j, ln |V|j,Qj

〉
.314

The recursive functions Rj follow immediately from points 1 and 2 of the algorithm (Ho315

17

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1: Population properties at the tips of the phylogeny under BM and OU models and
their mixed counterparts The acronyms are: PBM - Phylogenetic Brownian motion (with-
out non-heritable component); PMM - Phylogenetic Mixed Model (adding a non-heritable
component to PBM); POU - Phylogenetic Ornstein-Uhlenbeck (without non-heritable com-
ponent), also known as ”Hansen’s model” or Single Stationary Peak (SSP); POUMM - Phy-
logenetic Ornstein-Uhlenbeck Mixed Model (adding a non-heritable component to the POU
model. Expressions for the OU-models were adapted from (Hansen 1997). µΘ,i: expected
value at tip i; VΘ,ii: expected variance for tip i; VΘ,ij: expected covariance of the values of
tips i and j.

PBM PMM POU POUMM

Θ: < gM , σ > < gM , σ, σe > < gM , α, θ, σ > < gM , α, θ, σ, σe >

µΘ,i: gM gM e−αhigM +
(
1− e−αhi

)
θ e−αhigM +

(
1− e−αhi

)
θ

VΘ,ii: σ
2 hi σ2 hi + σ2

e
σ2

2α

(
1− e−2αhi

)
σ2

2α

(
1− e−2αhi

)
+ σ2

e

VΘ,ij: σ
2 h(ij) σ2 h(ij)

σ2

2α
e−αdij

(
1− e−2αh(ij)

)
σ2

2α
e−αdij

(
1− e−2αh(ij)

)
and Ané 2014):316



Sj(t, z,Θ) = 〈 pA,j = 0,

pj = 1
tj
,

µ̂Y,j = yΘ,j,

µ̃′X,j = x′Θ,j,

ln |V|j = ln tj,

Qj = x′Θ,jyΘ,j 〉

if j ≤ N

Sj(t, z,Θ) = 〈 pA,j =
∑

i∈Desc(j) pi,

pj =
pA,j

1+tjpA,j
,

µ̂Y,j =
∑

i∈Desc(j)
pi
pA
µ̂Y,i,

µ̃′X,j =
∑

i∈Desc(j)
pi
pA
µ̃′X,i,

ln |V|j =
∑

i∈Desc(j) ln |V|i + ln(1 + tjpA,j),

Qj =
∑

i∈Desc(j) Qi + ln(1 + tjpA,j) 〉

otherwise.

(8)

18

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

The caveat in applying the 3-point algorithm is that except for BM models and OU317

models (ultrametric trees only), the matrix VΘ does not necessarily satisfy the 3-point318

condition (Ho and Ané 2014). As the authors show, it is still possible to use the algorithm319

in that case, provided that VΘ satisfies a ”generalized 3-point condition” (Ho and Ané320

2014). More precisely, in most of their examples, the authors showed that there exist a321

transformation of the branch lengths, t̃, diagonal matrices D1 and D2 with non-zero322

diagonal elements and a 3-point structured matrix ṼΘ, such that ṼΘ is equal to the323

variance-covariance on the tree T̃ with the transformed branch lengths and324

VΘ = D1ṼΘD2. If so, the algorithm is applied to ṼΘ using t̃ and transformed data325

X̃ = D−12 X, Ỹ = D−11 Y. Then the quadratic form of interest, QΘ, would be equal to the326

resulting quadratic form at the root, QM and the determinant |VΘ| is obtained by the327

formula:328

|VΘ| = |D1||ṼΘ||D2| (9)

We note that finding a suitable transformation of the branch lengths remains a329

model specific task. We give an example of such branch transformation in the next330

showcase, referring the reader to (Ho and Ané 2014) for further examples.331

A showcase: The phylogenetic Ornstein-Uhlenbeck332

mixed model333

Here, we describe a phylogenetic Ornstein-Uhlenbeck mixed model of continuous334

trait evolution, which we and other authors have used previously to analyze the evolution335

of set-point viral load in HIV patients (Mitov and Stadler 2016; Bachmann et al. 2017;336

Bertels et al. 2017; Blanquart et al. 2017). To calculate the likelihood, we will use the fact337

that the variance covariance matrix of the POUMM has a generalized 3-point structure.338

19

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

We will use a simulation based method to validate the technical correctness of the model.339

Then, we will report a benchmark comparing the times for likelihood calculation between340

different serial and parallel pruning implementations in the SPLiTTree library, as well as341

two third-party serial pruning implementations of the same likelihood calculation. Finally,342

we will report the performance gain for the Bayesian inference of the model upon343

combining parallel pruning with adaptive Metropolis sampling on a real dataset.344

The model345

Consider a real valued trait evolving independently along the lineages of a phylogenetic346

tree, T with branch lengths t. The phylogenetic Ornstein-Uhlenbeck mixed model347

(POUMM) decomposes the trait value as a sum of a non-heritable component, e, and a348

genetic component, g, which (i) evolves continuously according to an Ornstein-Uhlenbeck349

(OU) process along branches; (ii) gets inherited by the branches descending from each350

internal node. In biological terms, g is a genotypic value (Lynch and Walsh 1998) that351

evolves according to random drift with stabilizing selection towards a global optimum; e is352

a non-heritable component, which can be interpreted in different ways, depending on the353

application, i.e. a measurement error, an environmental contribution, a residual with354

respect to a model prediction, or the sum of all these. The OU-process acting on g is355

parameterized by an initial genotypic value at the root, gM , a global optimum, θ, a356

selection strength, α>0, and a random drift unit-time standard deviation, σ. Denoting by357

Wt the standard Wiener process (Grimmett and Stirzaker 2001), the evolution of the358

trait-value, z(t), along a given lineage of the tree is described by the equations:359

20

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

z(t) = g(t) + e (10)

dg(t) = α[θ − g(t)]dt+ σdWt (11)

g(0) = gM , (12)

The stochastic differential equation 11 defines the OU-process, which represents a random360

walk tending towards the global optimum θ with stronger attraction for bigger difference361

between g(t) and θ (Ornstein and Zernike 1919; Uhlenbeck and Ornstein 1930). The model362

assumptions for e are that they are independent and identically distributed (i.i.d.) normal363

with mean 0 and standard deviation σe at the tips. Any process along the tree that gives364

rise to this distribution at the tips may be assumed for e. For example, in the case of365

epidemics, a newly infected individual is assigned a new e-value which represents the366

contribution from its immune system and this value can change or remain constant367

throughout the course of infection. In particular, the non-heritable component e does not368

influence the behavior of the OU-process g(t). Thus, if we were to simulate trait values z369

on the tips of a phylogenetic tree T , we could first simulate the OU-process from the root370

to the tips to obtain g, and then add the white noise e (i.e. an i.i.d. draw from a normal371

distribution) to each simulated g value at the tips. The POUMM represents an extension372

of the phylogenetic mixed model (PMM) (Lynch 1991; Housworth et al. 2004), since, in the373

limit α→ 0, the OU-process converges to a Brownian motion (BM) with unit-time374

standard deviation σ. Both, the POUMM and the PMM, define an expected multivariate375

normal distribution for the trait values at the tips. The mean vectors and the376

variance-covariance matrices of these distributions are written in table 1. Note that the377

trait expectation and variance for a tip i depends on its height (hi), and the trait378

covariance for a pair of tips (ij) depends on the height of their mrca (h(ij)), and, in the379

21

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

case of POUMM, on their patristic distance (dij) (table 1).380

Calculating the likelihood381

The POUMM likelihood is defined as the multivariate probability density of an382

observed vector z at the tips of T for given model parameters Θ =< gM , α, θ, σ, σe >:383

``(Θ) = ln(f(z|T , t,Θ)). (13)

The probability density function, f is multivariate Gaussian with mean vector µΘ384

and variance-covariance matrix VΘ written in table 1. Since VΘ has a generalized 3-point385

structure (Ho and Ané 2014), we can apply the recursion in eq. 8, upon a transformation386

of the branch lengths and the data. This is obtained through adapting the transformation387

for an non-mixed OU-model in a ultrametric tree (Ho and Ané 2014) to accommodate the388

non-heritable variance:389

t̃i = σ2

2α

[
e2αT

(
e2αhi − e2αhParent(i)

)]
+ σ2

e

e2αui
δ(i ≤ N) for i ∈ {1, ...,M − 1} (14)

390

X̃i = Ỹi = zi−µi
eαui

for i ∈ {1, ..., N}, (15)

where X̃ and Ỹ are identical N -vectors, T is the maximum tip-height in the tree and391

ui = T − hi for i ∈ {1, ..., N}. After running the post-order traversal, using eq. 8 as a392

visit-node operation, we apply eq. 9, to obtain |VΘ| and eq. 7 to obtain the log-likelihood.393

We note that the branch transformation (eq. 14) can be done ”locally” on every394

branch, using pre-calculated heights of the parent and daughter nodes connected by the395

branch. Thus, it is safe to include the transformation in the visit-node operation and the396

22

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

parallelization of pruning would not suffer. Otherwise, the transformation would have had397

to be done in a preprocessing step. Again, this is a model specific consideration.398

Combined maximum likelihood and Bayesian inference of the model399

We implement maximum likelihood and Bayesian inference of the POUMM400

parameters, Θ, using the L-BFGS-R convex optimization algorithm (R-function optim)401

and a variant of the Random Walk Metropolis (RWM) Markov Chain Monte Carlo402

(MCMC) sampling (Metropolis et al. 1953). This combined inference capitalizes on two403

practical ideas:404

• A MCMC has higher chance to converge to the target posterior distribution faster if405

it has been started from a previously estimated MLE;406

• If an MCMC encounters a point in the parameter space that has higher likelihood407

than a previously inferred MLE, running maximum likelihood optimization from that408

point is more likely to find the global likelihood optimum.409

An important step in RWM is the choice of a proposal (jump) distribution shape410

matrix used as a scaling factor on each next proposal in the Metropolis algorithm.411

Choosing the shape matrix with respect to the scale and the correlation structure of the412

parameter space minimizes the number of iterations needed for MCMC convergence and413

mixing. Thus, numerous variants of the RWM have been proposed, performing ”on-the-fly”414

adaptation of the shape matrix based on what has been ”learned” about the parameter415

space from the past RWM iterations (Haario et al. 2001; Vihola 2012). Of these variants,416

we chose the adaptive Metropolis sampling with coerced acceptance rate, because it is417

shown to be robust with respect to the posterior distribution, it performs a relatively cheap418

adaptation of the shape (Vihola 2012) and it has an implementation in the R within the419

package adaptMCMC (Scheidegger 2017).420

23

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

The fitting of the POUMM model was implemented as a pipeline including the421

following steps:422

1. Perform three MLE searches using the R-function optim and the L-BFGS-B method423

(Byrd et al. 1995), starting from three randomly chosen points in parameter space;424

2. Run three MCMC chains as follows: (i) a chain sampling from the prior distribution;425

(ii) a chain sampling from the posterior distribution and started from the MLE found426

in step 1; (iii) a chain sampling from the posterior distribution and started from a427

random point in parameters space.428

3. If the parameter tuple of highest likelihood sampled in the MCMC has a likelihood429

higher than the MLE found in step 1, repeat the MLE search starting from that430

parameter tuple;431

By running MLE first and starting an MCMC chain from the MLE candidate, we432

increase the chance that at least one of the MCMCs would converge faster to the posterior433

distribution. By comparing the posterior samples from two MCMCs initiated from434

different starting points, it can be assessed whether the MCMCs have converged to the true435

posterior. We do this quantitatively by the use of the Gelman-Rubin convergence436

diagnostic (Brooks and Gelman 1998) implemented in the R-package coda (Plummer et al.437

2006). Values of the Gelman-Rubin (G.R.) statistic significantly different from 1 indicate438

that at least one of the two posterior samples deviates significantly from the true posterior439

distribution. By visual comparison of posterior density with prior desnity plots, it is440

possible to assess whether the data contains information differring from the prior441

knowledge for a given parameter. In step 3, we capitalize on the chance that the MCMCs442

have explored a wider region of the parameter space than the likelihood optimization.443

The POUMM R-package444

24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

We implement the model in the form of an R-package called POUMM, which445

embeds the SPLiTTree library as an Rcpp module. Before model fitting, the user can446

choose from different POUMM parametrizations and prior settings (function447

specifyPOUMM). A set of standard generic functions, such as plot, summary, logLik, coef,448

etc., provide means to assess the quality of a fit (i.e. MCMC convergence, consistence449

between ML and MCMC fits) as well as various inferred properties, such as high posterior450

density (HPD) intervals (more details in the package user guide).451

Technical correctness452

To validate the correctness of the Bayesian POUMM implmentation, we used the453

method of posterior quantiles (Cook et al. 2006). In this method, the idea is to generate454

samples from the posterior quantile distributions of selected model parameters (or455

functions thereof) by means of numerous “replications” of simulation followed by Bayesian456

parameter inference. In each replication, “true” values of the model parameters are drawn457

from a fixed prior distribution and trait-data is simulated under the model specified by458

these parameter values. We perform these simulations on a fixed tree of size N = 4000.459

Then, the to-be-tested software is used to produce a posterior distribution of parameters460

based on the simulated trait-data. Next, the posterior quantiles of the “true” parameter461

values (or functions thereof) are calculated from the corresponding posterior samples462

generated by the to-be-tested software. By running multiple independent replications on a463

fixed prior, it is possible to generate large samples from the posterior quantile distributions464

of the individual model parameters, as well as any derived quantities. Assuming correctness465

of the simulations, any statistically significant deviation from uniformity of these posterior466

quantile samples indicates an error in the to-be-tested software (Cook et al. 2006).467

Two phylogenetic trees were used for the simulations:468

25

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

• Ultrametric (BD, N = 4000) - an ultrametric birth-death tree of 4000 tips generated469

using the TreeSim R-package (Stadler et al. 2013; Boskova et al. 2014) (function call:470

sim.bd.taxa(4000, lambda = 2, mu = 1, frac = 1, complete = FALSE));471

• Non-ultrametric (BD, N = 4000) - a non-ultrametric birth-death tree of 4000 tips472

generated using the TreeSim R-package (Stadler et al. 2013; Boskova et al. 2014)473

(function call: sim.bdsky.stt(4000, lambdasky = 2, deathsky = 1,474

timesky=0)).475

Simulation scenarios of 2000 replications were run using the prior distribution476

< gM , α, θ, σ, σe >∼ N (5, 25)× Exp(0.1)× U(2, 8)× Exp(0.4)× Exp(1). The goal of using477

this prior was to explore a large enough subspace of the POUMM parameter space, while478

keeping MCMC convergence and mixing within reasonable time (runtime up to 30 minutes479

for two MCMCs of 106 adaptive Metropolis iterations at target acceptance rate of 1%).480

From the above prior, we drew a sample of n = 2000 parameter tuples, {Θ(1), ...,Θ(n)},481

which were used as replication seeds. For a given Θ(i), we simulate genotypic values482

g(i)(T ,Θ(i)) according to an OU-branching process with initial value g
(i)
M and parameters483

α(i), θ(i), σ(i). Then, we add random white noise (∼ N (0, σ2
e
(i)

)) to the genotypic values at484

the tips, to obtain the final trait values z(i).485

For the two simulated trees, we executed a total of 2× 2000 = 4000 replications.486

The resulting posterior quantile distributions for the each tree are shown on Fig. 3. We487

notice that the posterior quantiles for all relevant parameters are uniformly distributed.488

This is confirmed visually by the corresponding histograms (fig. 3), as well as statistically,489

by a non-significant p-value from a Kolmogorov-Smirnov uniformity test at the 0.01 level.490

This observation validates the technical correctness of the software.491

Performance on simulated data492

26

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

n=1940

n=1922

n=1848

n=1919

n=1846

n=1705

n=1861

n=1696

n=1874

n=1519

g0 θ α σ σe

U
ltr. (B

D
 4

0
0
0)

N
o
n

−
u
ltr. (B

D
 4

0
0
0)

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

0

1

2

3

4

5

0

1

2

3

4

5

Posterior quantiles

D
e
n

s
it
y

Figure 3: Posterior quantiles from simulations on a ultrametric and a non-ultrametric tree
(N = 4000). The number n at the top of each histogram denotes the number of replications
out of 2000 which reached acceptable MCMC convergence and mixing after one million iter-
ations. Uniformity was confirmed using a Kolmogorov-Smirnov test which was insignificant
for all parameters (P-value above 0.1).

27

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

We ran a performance benchmark on a MacBook Pro laptop (Retina, 15-inch, Late493

2013) running a 2.3GHz Intel(R) Core i7 processor with 4 physical cores. We used the494

R-package apTreeshape (Bortolussi et al. 2012) to generate tree topologies of sizes495

N ∈ {100, 1000, 10, 000, 100, 000}. To generate the trees, we used the function496

rtreeshape() with a biased model. A parameter p in this model controls the497

disproportion of branching rates for the left and right lineages starting from a given parent498

node. For each N , we used four settings for p as follows:499

1. p = 0.5 corresponding to equal left and right branching rates and resulting in500

balanced trees;501

2. p = 0.1 corresponding to unbalanced trees in which one of any two sibling branches502

(sharing the same parent node) splits at rate p = 0.1, while the other splits at rate503

p′ = 1− p = 0.9 (time units are arbitrary, so we can assume that the rates correspond504

to splitting probabilities per unit time).505

3. p = 0.01 corresponding to very unbalanced trees (splitting rates of p = 0.01 and506

p′ = 0.99 for any couple of sibling branches;507

4. p = 0.01/N corresponding to a ladder-like tree (see fig. 1b).508

This resulted in a total of 16 tree topologies. For each topology, random branch509

lengths were assigned overwriting the default branch lengths of 1 assigned by510

rtreeshape(). For each tree, we generated random trait-values using random parameters511

of the POUMM model.512

We compared serial and parallel likelihood calculation within the POUMM package513

to serial pruning implementations provided in the R-packages geiger (Pennell et al. 2014),514

and diversitree (FitzJohn 2012). All packages including C or C++ code were compiled515

from source-code using the R-command install.packages('package-directory',516

28

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

repos=NULL, type='source'), and the same C++ compiler and compiler arguments517

(version 16.0.0 of the Intel compiler, command icpc with options -O2 -march=native).518

Time for preprocessing the tree.—519

Each of the tested packages implements a preprocessing step initializing cached520

data-structures that are re-used during likelihood calculation. In the case of POUMM, this is521

the constructor of the class TraversalTask (fig. 2); in the case of diversitree, this is the522

function make.ou; in the case of geiger, this is the internal function bm.lik. We note that523

the time for creating the cache structure is not important in scenarios of fitting524

comparative models to a fixed tree and data (created once, at the beginning of the525

inference process). These times become important in the case when the tree topology is526

inferred together with the model parameters from trait and sequence alignment data.527

We measured the preprocessing time on the 16 trees (table 2). The times scaled528

linearly with the size of the tree for the packages POUMM and diversitree. For these two529

packages the time was not affected by the unbalancedness of the tree. For geiger, we530

observed higher time complexity, both in N as well as in the unbalancedness (longer times531

for unbalanced trees). For N = 100, 000 and p = 0.01/N , both, diversitree and geiger532

failed with a stack-overflow error. The relatively short POUMM times indicate that533

SPLiTTree could potentially be used for phylogenetic inference models.534

Time for one POUMM likelihood calculation.—535

We distinguish the different implementations according to three criteria:536

• Mode: denotes whether the implementation is single threaded using one physical core537

of the CPU (serial) or multi-threaded, running 8 virtual threads on 4 physical cores538

(parallel);539

• Order: denotes the order in which the prune-able nodes are processed. We tested540

29

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 2: Times for tree-preprocessing in milliseconds.

N Implementation p=0.5 p=0.1 p=0.01 p=0.01/N
100 geiger 5 6 9 9
100 diversitree 4 4 4 4
100 POUMM 2 2 2 1

1,000 geiger 18 26 78 414
1,000 diversitree 20 20 22 30
1,000 POUMM 3 2 3 3

10,000 geiger 358 449 1,345 355,396
10,000 diversitree 207 211 227 1,338
10,000 POUMM 14 13 13 15

100,000 geiger 20,215 21,629 36,349 -
100,000 diversitree 2,421 2,619 2,883 -
100,000 POUMM 130 131 131 140

three possible orders: postorder (Mode=serial only) - the nodes are processed541

sequentially without paying attention to their allocation in the memory - no SIMD542

operations are possible; queue-based (Mode=parallel only) - the nodes are processed543

according to their entering order in the queue (see algorithm 1) - no SIMD operations544

are possible, synchronized access to the queue; range-based (Mode=parallel only) -545

the nodes in each pruning generation are processed in order of their allocation in546

memory - SIMD operations are possible, no need for a synchronized access to a queue547

(see algorithm 2).548

• Implementation: the R-package and the back-end used (R or C++).549

To measure the likelihood calculation times we used the R-package microbenchmark550

(Mersmann 2015) with argument times set to 100. The resulting average times in551

milliseconds are shown on fig. 4.552

On small trees of 100 tips, the fastest implementations were the serial C++553

implementations from the packages POUMM and diversitree (about 0.03 ms); the554

POUMM range-based parallel implementation was nearly as fast on balanced trees555

(p = 0.5) but was progressively slower on unbalanced trees. The geiger implementation was556

30

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

M/V=22M/V=22M/V=22M/V=22M/V=22M/V=22M/V=22 M/V=154M/V=154M/V=154M/V=154M/V=154M/V=154M/V=154 M/V=1176M/V=1176M/V=1176M/V=1176M/V=1176M/V=1176M/V=1176 M/V=9524M/V=9524M/V=9524M/V=9524M/V=9524M/V=9524M/V=9524 M/V=9M/V=9M/V=9M/V=9M/V=9M/V=9M/V=9 M/V=44M/V=44M/V=44M/V=44M/V=44M/V=44M/V=44 M/V=317M/V=317M/V=317M/V=317M/V=317M/V=317M/V=317 M/V=2299M/V=2299M/V=2299M/V=2299M/V=2299M/V=2299M/V=2299 M/V=3M/V=3M/V=3M/V=3M/V=3M/V=3M/V=3 M/V=8M/V=8M/V=8M/V=8M/V=8M/V=8M/V=8 M/V=43M/V=43M/V=43M/V=43M/V=43M/V=43M/V=43 M/V=294M/V=294M/V=294M/V=294M/V=294M/V=294M/V=294 M/V=2M/V=2M/V=2M/V=2M/V=2M/V=2M/V=2M/V=2M/V=2M/V=2M/V=2M/V=2M/V=2M/V=2 M/V=2M/V=2M/V=2M/V=2M/V=2M/V=2M/V=2 M/V=2M/V=2M/V=2M/V=2M/V=2M/V=2M/V=2 M/V=2M/V=2M/V=2M/V=2

p = 0.5 (balanced) p = 0.1 p = 0.01 p = 0.01/N (ladder)

100 1,000 10,000 100,000 100 1,000 10,000 100,000 100 1,000 10,000 100,000 100 1,000 10,000 100,000

0.02

0.06

0.10

0.20

0.60

1.00

2.00

6.00

10.00

20.00

60.00

100.00

200.00

600.00

1,000.00

2,000.00

6,000.00

N

T
im

e
 [
m

s
]

Mode

serial

parallel

Order

postorder

queue−based

range−based

Implementation

POUMM (C++)

diversitree (R)

diversitree (C++)

geiger (C++)

Figure 4: Likelihood calculation times for R and C++ implementations of the pruning
algorithm. The labels M/V on top denote the average number of nodes per generation
(Visit-range) (see algorithm 2).

31

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

nearly an order of magnitude slower (0.2 ms). The POUMM queue-based parallel557

implementation was nearly 100 times slower (nearly 2 ms), presumably due to the excessive558

synchronization overhead. The serial R implementation from the diversitree package was559

the slowest (above 2 ms), which was expected, since the R interpreter is notorious for its560

slow speed compared to compiled languages like C++.561

On bigger balanced trees (N > 100, p = 0.5), the POUMM range-based parallel562

implementation took over, reaching up to 4× speed-up with respect to the POUMM563

range-based serial implementation, up to 6× speed-up with respect to the POUMM564

postorder serial implementation and up to 10× speed-up with respect to the diversitree565

serial C++ implementation. This reveals a consistent speed-up from SIMD operations for566

all trees except the ladder tree, where parallelization of the internal nodes is not possible567

(see fig. 1b). The time for the other serial implementations and the POUMM queue-based568

parallel implementation scaled up by a factor of 10 for each higher value of N .569

There was no significant difference in the times for the serial implementations and570

the queue-based parallel implementation when comparing their performance on balanced571

versus unbalanced trees. For the POUMM range-based parallel implementation, though,572

the parallel speed-up was progressively less pronounced, in particular, for N < 1000 and for573

ladder trees. Still, the speed-up was very good for N ≥ 10, 000 and p ≥ 0.01.574

Improved MCMC convergence and MLE inference through adaptive Metropolis sampling.—575

To measure the MCMC convergence speed-up from the adaptive Metropolis576

sampling, we reran one simulation scenario (2000 replications on a non-ultrametric tree of577

4000 tips) with disabled adaptation. As a criterion for convergence, we used the absolute578

difference from 1 of the Gelman-Rubin convergence diagnostic (Brooks and Gelman 1998)579

(the closer |G.R.− 1| is to 0, the better the convergence). When enabling adaptive580

Metropolis sampling, more than 1600 (80%) of the 2000 replications had reached581

32

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

|G.R.− 1| < 0.01 after a million iterations. Conversely, when disabling adaptive Metropolis582

sampling, less than 300 (15%) of the replications had reached |G.R.− 1| < 0.01 after a583

million iterations (the 80% quantile of |G.R.− 1| was equal to 0.57, indicating very power584

convergence). We also noticed that 1455 out of 2000 replications (73%) of the POUMM585

inferences with enabled adaptative Metropolis sampling resulted in an improved MLE after586

running the MCMC chains, compared to 1045 (50%) when disabling adaptation. These587

observations show that adaptive Metropolis sampling considerably accelerates the MCMC588

convergence towards the posterior distribution and can be used to improve the MLE589

inference when using a weak prior or a prior that does not strongly contradict with the590

evidence (likelihood).591

Performance on real data592

This showcase would be incomplete if we don’t provide an assessment of the performance of593

the combined parallel likelihood and adaptive MCMC approach on a real dataset. We have594

used the POUMM package to estimate the heritability of set-point viral load in a data-set595

of 8,483 HIV patients. While the results of this analysis have been reported elsewhere596

(Mitov and Stadler 2016), here, we briefly report the times and the quality statistics for the597

MCMC inference of the model with and without adaptation.598

First, we ran the classical RWM Metropolis sampler with a default identity shape599

matrix for two MCMCs of ten million iterations on the above-mentioned hardware (2.3GHz600

Intel(R) Core i7 processor with 4 cores), using the fastest (range-based) parallel likelihood601

calculation. The total time for the two MCMCs was 3:18 hours. The run resulted in poor602

mixing and very low effective posterior sample size for most of the inferred parameters of603

the model (fig. 5a,b). The Gelman-Rubin statistic was greater than 1.1 for all parameters604

and the effective sample size was below 400 for all parameters, falling below 50 for α and σ.605

33

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

σ σe

α θ

5e+06 1e+07 5e+06 1e+07

5e+06 1e+07 5e+06 1e+07

4.35

4.40

4.45

4.50

0.70

0.75

0.80

20

30

40

2

3

4

iteration

v
a

lu
e

a

σ σe

α θ

5e+05 1e+06 5e+05 1e+06

5e+05 1e+06 5e+05 1e+06

4.30

4.35

4.40

4.45

4.50

0.725

0.750

0.775

0.800

0.825

10

20

30

40

50

2

3

4

5

iteration

v
a

lu
e

c

σ σe

α θ

2 3 4 0.70 0.75 0.80

20 30 40 4.35 4.40 4.45 4.50

0

10

20

0

10

20

0.00

0.05

0.10

0.0

0.3

0.6

0.9

value

d
e
n

s
it
y

b

σ σe

α θ

2 3 4 5 0.7250.7500.7750.8000.825

10 20 30 40 50 4.30 4.35 4.40 4.45 4.50

0

5

10

15

20

0

5

10

15

20

0.00

0.02

0.04

0.06

0.0

0.2

0.4

0.6

value

d
e
n

s
it
y

d

Figure 5: Sample trace- and density plots from a POUMM fit to a tree and virulence data
8483 HIV patients (Mitov and Stadler 2016) a,b: no adaptation of the proposal shape matrix
(ten million iterations); c,d: on-the-fly adaptation of the proposal shape matrix from the first
100,000 out of one million iterations. The colors correspond to the different chains.

34

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

Next, we ran the adaptive Metropolis sampler for two MCMCs of one million606

iterations. Adaptations has been enabled only for the first 100,000 iterations in each607

MCMC. The total runtime was 25 minutes. The two chains mixed very well and the608

effective sample size for all parameters exceeded 1200 (fig. 5c,d). The difference |G.R.− 1|609

was below 0.01 for all parameters, proving that the MCMCs have converged to the same610

distribution, which is very likely the true posterior distribution for the model parameters.611

Discussion612

SPLiTTree can in principle be used for any algorithm that runs a pre-order or613

post-order tree traversal. However, our benchmarks have shown that a performance gain614

from parallelization will in most cases depend strongly on the application and the topology615

of the tree. To cope with this issue, SPLiTTree implements both, serial as well as different616

parallel modes of the tree traversal and can chose between these implementations during617

the initial steps of the inference procedure.618

The examples in this article focused on models of discrete and continuous trait619

evolution. Another family of models where SPLiTTree could be used are population620

models, e.g. models with structured populations. For example, when calculating the621

likelihood for a phylogenetic tree under a structured birth-death model, the calculations622

proceed in a pruning fashion (Kühnert et al. 2016) and may be improved with respect to623

speed using our approach. However, the structured coalescent likelihood for a tree is a624

function of all co-existing lineages even for approximate methods (Müller et al. 2017), and625

thus a pruning formulation is not available.626

We did not develop examples of pre-order traversal. One such example is the627

simulation of traits evolving along the tree, which can be used for validation and628

approximate inference of phylogenetic models. In complex phylogenetic comparative629

models, where an exact calculation of the likelihood is elusive or computationally630

35

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

intractable, it is possible to use simulations of trait evolution along the tree for631

approximate likelihood calculation (Kutsukake and Innan 2013) or approximate Bayesian632

computation (ABC) (Slater et al. 2012b). Both approaches are computationally intensive633

and could benefit from parallel execution using our framework.634

The POUMM R-package joins a growing collection of tools implementing phylogenetic635

OU inference. Among others, these include the R-packages ape v4.0 (Paradis et al. 2004),636

ouch v2.9-2 (Butler and King 2004), GLSME v1.0.3 (Hansen and Bartoszek 2012),637

diversitree v0.9-9 (FitzJohn 2012), geiger v2.0.6 (Pennell et al. 2014), surface638

v0.4-1 (Ingram and Mahler 2013), mvMORPH v1.0.8 (Clavel et al. 2015), bayou v1.0.0639

(Uyeda et al. 2015), OUwie v1.50 (Beaulieu and OMeara 2016), phylolm v2.5 (Ho and640

Ané 2014), RPANDA v1.1 (Manceau et al. 2016). Compared to these packages POUMM641

provides fast Bayesian inference using the combined parallel likelihood and adaptive642

sampling approach. Another feature of POUMM is that it implements different643

re-parametrizations of Θ =< gM , α, θ, σ, σe >. This is helpful in Bayesian inference,644

because it allows to express the prior distribution in application-specific terms, such as645

phylogenetic heritability (Lynch 1991; Housworth et al. 2004).646

Outlook647

The past decade has seen a rapid advance in the production of multi-core and SIMD648

processors. At the same time, it appears that the maximum clock frequency of a single649

processing unit is approaching the maximum achievable for semi-conductor based650

architectures. This brings the need for development of novel parallel algorithms651

capitalizing on the multi-core technology. The parallel tree traversal library should enable652

parallel computation for a vast set of applications facing the challenges of increasing model653

complexity and volumes of data in phylogenetic analysis.654

36

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Material655

Data from the performance benchmarks and simulations for technical correctness is656

available on the dryad database. The POUMM package and user guide is available at657

https://CRAN.R-project.org/package=POUMM. The package also includes the source658

code of the SPLiTTree framework.659

Funding660

V.M. and T.S. thank ETH Zürich for funding. T.S. is supported in part by the661

European Research Council under the 7th Framework Programme of the European662

Commission (PhyPD: Grant Agreement Number 335529).663

Acknowledgements664

We thank Dr. Krzysztof Bartoszek for valuable insights on the Ornstein-Uhlenbeck665

process.666

*667

References668

Ayres, D. L., A. Darling, D. J. Zwickl, P. Beerli, M. T. Holder, P. O. Lewis, J. P.669

Huelsenbeck, F. Ronquist, D. L. Swofford, M. P. Cummings, A. Rambaut, and M. A.670

Suchard. 2012. BEAGLE: An Application Programming Interface and High-Performance671

Computing Library for Statistical Phylogenetics. Systematic Biology 61:170–173.672

37

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://CRAN.R-project.org/package=POUMM
https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

Bachmann, N., T. Turk, C. Kadelka, A. Marzel, M. Shilaih, J. Böni, V. Aubert,673

T. Klimkait, G. E. Leventhal, H. F. Günthard, R. Kouyos, and Swiss HIV Cohort Study.674

2017. Parent-offspring regression to estimate the heritability of an HIV-1 trait in a675

realistic setup. Retrovirology 14:33.676

Beaulieu, J. M. and B. OMeara. 2016. OUwie: Analysis of Evolutionary Rates in an OU677

Framework .678

Bertels, F., A. Marzel, G. Leventhal, V. Mitov, J. Fellay, H. F. Günthard, J. Böni, S. Yerly,679

T. Klimkait, V. Aubert, M. Battegay, A. Rauch, M. Cavassini, A. Calmy, E. Bernasconi,680

P. Schmid, A. U. Scherrer, V. Müller, S. Bonhoeffer, R. Kouyos, R. R. Regoes, and Swiss681

HIV Cohort Study. 2017. Dissecting HIV Virulence: Heritability of Setpoint Viral Load,682

CD4+ T Cell Decline and Per-Parasite Pathogenicity. Molecular biology and evolution .683

Blanquart, F. o., C. Wymant, M. Cornelissen, A. Gall, M. Bakker, D. Bezemer, M. Hall,684

M. Hillebregt, S. H. Ong, J. Albert, N. Bannert, J. Fellay, K. Fransen, A. J. Gourlay,685

M. K. Grabowski, B. Gunsenheimer-Bartmeyer, H. F. G nthard, P. Kivel, R. Kouyos,686

O. Laeyendecker, K. Liitsola, L. Meyer, K. Porter, M. Ristola, A. van Sighem,687

G. Vanham, B. Berkhout, P. Kellam, P. Reiss, C. Fraser, and BEEHIVE collaboration.688

2017. Viral genetic variation accounts for a third of variability in HIV-1 set-point viral689

load in Europe. Plos Biology 15:e2001855.690

Bortolussi, N., E. Durand, M. Blum, and O. Francois. 2012. apTreeshape: Analyses of691

Phylogenetic Treeshape. R package .692

Boskova, V., S. Bonhoeffer, and T. Stadler. 2014. Inference of Epidemiological Dynamics693

Based on Simulated Phylogenies Using Birth-Death and Coalescent Models. PLoS694

Computational Biology (PLOSCB) 10(4) 10:e1003913.695

38

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

Bouckaert, R. R., J. Heled, D. Kühnert, T. G. Vaughan, C.-H. Wu, D. Xie, M. A. Suchard,696

A. Rambaut, and A. J. Drummond. 2014. BEAST 2 - A Software Platform for Bayesian697

Evolutionary Analysis. PLoS Computational Biology (PLOSCB) 10(4) 10:e1003537–.698

Boyd, S. P. and L. Vandenberghe. 2004. Convex Optimization. Cambridge University699

Press.700

Brooks, S. P. and A. Gelman. 1998. General methods for monitoring convergence of701

iterative simulations. Journal of Computational and Graphical Statistics 7:434–455.702

Butler, M. A. and A. A. King. 2004. Phylogenetic comparative analysis: A modeling703

approach for adaptive evolution. American Naturalist 164:683–695.704

Byrd, R. H., P. Lu, J. Nocedal, and C. Y. Zhu. 1995. A limited memory algorithm for705

bound constrained optimization. SIAM Journal on Scientific Computing 16:1190–1208.706

Clavel, J., G. Escarguel, and G. Merceron. 2015. mvmorph: an r package for fitting707

multivariate evolutionary models to morphometric data. Methods in Ecology and708

Evolution 6:1311–1319.709

Cook, S. R., A. Gelman, and D. B. Rubin. 2006. Validation of Software for Bayesian710

Models Using Posterior Quantiles. Journal of Computational and Graphical Statistics711

15:675–692.712

Drummond, A. J., M. A. Suchard, D. Xie, and A. Rambaut. 2012. Bayesian phylogenetics713

with BEAUti and the BEAST 1.7. Molecular biology and evolution 29:1969–1973.714

Felsenstein, J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous715

characters. American Journal of Human Genetics 25:471–492.716

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood717

approach. Journal of molecular evolution 17:368–376.718

39

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

Felsenstein, J. 1983. Statistical Inference of Phylogenies. Journal of the Royal Statistical719

Society. Series A (General) 146:246.720

FitzJohn, R. G. 2012. Diversitree: comparative phylogenetic analyses of diversification in721

R. Methods in Ecology and Evolution 3:1084–1092.722

Goolsby, E. W., J. Bruggeman, and C. Ané. 2016. Rphylopars: fast multivariate723

phylogenetic comparative methods for missing data and within-species variation.724

Methods in Ecology and Evolution 8:22–27.725

Grimmett, G. and D. Stirzaker. 2001. Probability and Random Processes. Oxford726

University Press.727

Haario, H., E. Saksman, and J. Tamminen. 2001. An adaptive metropolis algorithm.728

Bernoulli. Official Journal of the Bernoulli Society for Mathematical Statistics and729

Probability 7:223–242.730

Hansen, T. F. 1997. Stabilizing Selection and the Comparative Analysis of Adaptation.731

Evolution; international journal of organic evolution 51:1341–1351.732

Hansen, T. F. and K. Bartoszek. 2012. Interpreting the evolutionary regression: the733

interplay between observational and biological errors in phylogenetic comparative734

studies. Systematic Biology 61:413–425.735

Ho, L. s. T. and C. Ané. 2014. A linear-time algorithm for Gaussian and non-Gaussian736

trait evolution models. Systematic Biology 63:397–408.737

Hodcroft, E., J. D. Hadfield, E. Fearnhill, A. Phillips, D. Dunn, S. O’Shea, D. Pillay,738

A. J. L. Brown, o. b. o. t. U. H. D. R. Database, and t. U. C. Study. 2014. The739

Contribution of Viral Genotype to Plasma Viral Set-Point in HIV Infection. PLoS740

pathogens 10:e1004112.741

40

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

Housworth, E. A., E. P. Martins, and M. Lynch. 2004. The phylogenetic mixed model. The742

American Naturalist 163:84–96.743

Ingram, T. and D. L. Mahler. 2013. SURFACE: detecting convergent evolution from744

comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike745

Information Criterion. Methods in Ecology and Evolution 4:416–425.746

Ives, A. R. and T. J. Garland. 2010. Phylogenetic Logistic Regression for Binary747

Dependent Variables. Systematic Biology 59:9–26.748

Kühnert, D., T. Stadler, T. G. Vaughan, and A. J. Drummond. 2016. Phylodynamics with749

Migration: A Computational Framework to Quantify Population Structure from750

Genomic Data. Molecular biology and evolution 33:msw064–2116.751

Kutsukake, N. and H. Innan. 2013. Simulation-Based Likelihood Approach for752

Evolutionary Models of Phenotypic Traits on Phylogeny. Evolution; international journal753

of organic evolution 67:355–367.754

Lynch, M. 1991. Methods for the Analysis of Comparative Data in Evolutionary Biology.755

Evolution; international journal of organic evolution 45:1065–1080.756

Lynch, M. and B. Walsh. 1998. Genetics and Analysis of Quantitative Traits. Sinauer757

Associates Incorporated.758

Manceau, M., A. Lambert, and H. Morlon. 2016. A unifying comparative phylogenetic759

framework including traits coevolving across interacting lineages. Systematic Biology760

66:syw115–568.761

Mersmann, O. 2015. Accurate Timing Functions [R package microbenchmark version762

1.4-2.1] .763

41

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953.764

Equation of State Calculations by Fast Computing Machines. The Journal of Chemical765

Physics 21:1087–1092.766

Mitov, V. and T. Stadler. 2016. The heritability of pathogen traits - definitions and767

estimators. bioRxiv Page 058503.768

Müller, N. F., D. A. Rasmussen, and T. Stadler. 2017. The Structured Coalescent and Its769

Approximations. Molecular biology and evolution 34:2970–2981.770

O’Meara, B. C. 2012. Evolutionary Inferences from Phylogenies: A Review of Methods.771

Annual Review of Ecology, Evolution, and Systematics 43:267–285.772

Ornstein, L. S. and F. Zernike. 1919. The theory of the Brownian Motion and statistical773

mechanics. Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam774

21:109–114.775

Pagel, M. 1994. Detecting Correlated Evolution on Phylogenies - a General-Method for the776

Comparative-Analysis of Discrete Characters. Proceedings of the Royal Society777

B-Biological Sciences 255:37–45.778

Paradis, E. and J. Claude. 2002. Analysis of comparative data using generalized estimating779

equations. Journal of theoretical biology 218:175–185.780

Paradis, E., J. Claude, and K. Strimmer. 2004. APE: Analyses of Phylogenetics and781

Evolution in R language. Bioinformatics 20:289–290.782

Pennell, M. W., J. M. Eastman, G. J. Slater, J. W. Brown, J. C. Uyeda, R. G. FitzJohn,783

M. E. Alfaro, and L. J. Harmon. 2014. geiger v2.0: an expanded suite of methods for784

fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30:2216–2218.785

42

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

Plummer, M., N. Best, K. Cowles, and K. Vines. 2006. CODA: Convergence Diagnosis and786

Output Analysis for MCMC. R News 6:7–11.787

Ronquist, F. and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference788

under mixed models. Bioinformatics 19:1572–1574.789

Scheidegger, A. 2017. adaptMCMC. R package .790

Slater, G. J., L. J. Harmon, and M. E. Alfaro. 2012a. Integrating Fossils With Molecular791

Phylogenies Improves Inference Of Trait Evolution. Evolution; international journal of792

organic evolution 66:3931–3944.793

Slater, G. J., L. J. Harmon, D. Wegmann, P. Joyce, L. J. Revell, and M. E. Alfaro. 2012b.794

Fitting Models of Continuous Trait Evolution to Incompletely Sampled Comparative795

Data Using Approximate Bayesian Computation. Evolution; international journal of796

organic evolution 66:752–762.797

Stadler, T., D. Kühnert, S. Bonhoeffer, and A. J. Drummond. 2013. Birth-death skyline798

plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV).799

PNAS 110:228–233.800

Uhlenbeck, G. E. and L. S. Ornstein. 1930. On the Theory of the Brownian Motion.801

Physical Review 36:823–841.802

Uyeda, J. C., J. Eastman, and L. Harmon. 2015. bayou: Bayesian Fitting of803

Ornstein-Uhlenbeck Models to Phylogenies .804

Vihola, M. 2012. Robust adaptive Metropolis algorithm with coerced acceptance rate.805

Statistics and Computing 22:997–1008.806

43

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235739doi: bioRxiv preprint

https://doi.org/10.1101/235739
http://creativecommons.org/licenses/by-nc-nd/4.0/

