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Abstract: 

 

Genome sequencing of pathogens is now ubiquitous in microbiology, and the sequence 

archives are effectively no longer searchable for arbitrary sequences. Furthermore, the 

exponential increase of these archives is likely to be further spurred by automated 

diagnostics. To unlock their use for scientific research and real-time surveillance we have 

combined knowledge about bacterial genetic variation with ideas used in web-search, to build 

a DNA search engine for microbial data that can grow incrementally. We indexed the 

complete global corpus of bacterial and viral whole genome sequence data (447,833 

genomes), using four orders of magnitude less storage than previous methods. The method 

allows future scaling to millions of genomes. This renders the global archive accessible to 

sequence search, which we demonstrate with three applications: ultra-fast search for 

resistance genes MCR1-3, analysis of host-range for 2827 plasmids, and quantification of the 

rise of antibiotic resistance prevalence in the sequence archives. 
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Whole genome sequencing (WGS) offers unparalleled resolution for problems as diverse as 

contact tracing, mapping the spread of drug resistance, identifying zoonoses, and 

investigating the underlying biology of infectious diseases. Sequence data is deposited in the 

global sequence archives (European Nucleotide Archive (ENA), Sequence Read Archive 

(SRA)) which are doubling every two years. This trend is expected to accelerate as affordable 

WGS-based diagnostic tests become a reality1-6. However, it is already impossible to search 

the archives for datasets with specific mutations (single nucleotide polymorphisms (SNPs)), 

genes or mobile elements. The ability to combine these queries would be transformative for 

global management of infectious disease, allowing instant access to datasets within any 

specified genetic distance (e.g. “has anyone in the world seen something within 20 SNPs of 

this strain before?), or with given drug resistance mutations, genes or plasmids. A key 

realization is that this can be achieved by focusing first on exact-match search (“is this 

precise sequence present?”) rather than alignment. 

 

This formulation, as an exact-search problem, is not a traditional approach in biology. In the 

1990s, when most species had one reference genome and within-species variation was less of 

a focus, BLAST7 and its successors8,9 revolutionized bioinformatics by providing online 

DNA alignment of queries against large databases of reference genomes. However, 

assemblies constitute only 17% of archived bacterial data (110,898 assemblies versus 

554,680 raw read datasets in the European Nucleotide Archive (ENA) as of October 2017) 

and generally only a fraction of those are indexed for BLAST search. Indeed, although high 

quality reference genomes are the gold standard, these are unachievable with short read data 
10-12, and bad references discard or confound data which may be of interest. More 

fundamentally, many sequence datasets contain populations rather than clonal isolates, for 

which haploid assembly is a fundamentally poor summary for such data. As the archives 

continue to scale-up, it becomes critical to be able to rapidly filter them down to small 

datasets for subsequent analysis. The core requirement is therefore to be able to search 

heterogeneous historical and modern data, whether assembled or not, for presence of 

arbitrary sequence. In this study, we combine computational techniques previously used in 

web-search, with knowledge of bacterial population genetics, to develop a data structure, the 

Bitsliced Genomic Signature Index (BIGSI), that solves this problem.  

 

The first scalable search engine for raw sequence was developed in 2016, the Sequence 

Bloom Tree (SBT)13, a k-mer (fixed-length DNA word) index, developed to enable detection 

of specific transcripts in RNA-seq data. However, SBT and its recent successors14-16  shared 

with previous similar methods (Cortex, vari, McCortex)17-20  a scaling dependence on the 

total number of k-mers in the union of datasets indexed. For species where there is 

considerable k-mer sharing between datasets (e.g. human), this works well. However, 

bacteria are fundamentally different: even within a species there can be enormous diversity 

due to horizontal transfer of DNA (Supplementary Figure 1), and we will show that this 

diversity renders previous methods unable to scale. We remove this limitation, and use BIGSI 

to index the entire bacterial and viral content of the ENA as of December 2016 (447833 

datasets; 170 Tbytes of data), using four orders of magnitude less storage than previous 
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methods. This is the first time the archives have been made accessible to search, and we 

make a version publicly available at http://bigsi.io. We demonstrate applications to basic 

biology and surveillance: ultra-fast search for the colistin resistance genes MCR1-3, mapping 

host ranges of 2827 plasmids, and plotting the changing prevalence of antibiotic resistance 

mutations and genes in the archives. 

 

 

 

 

High accuracy queries with a lossy compressed DNA index 

 

We developed a data structure suitable for storing bacterial genomic data, the bitsliced 

genomic signature index (BIGSI). We use the generic term “dataset” to refer to either 

assembled genomes or unassembled sequence read-files from clonal or non-clonal samples. 

BIGSI combines a k-mer index with constraints on sequence queries, described below. A 

bloom filter is a tool in computer science21 which stores data (here, k-mers) in a bit-vector 

(array of zeroes and ones) and answers set-membership queries  (“is this k-mer contained in 

the set?”) probabilistically. The false negative rate is zero, and the false positive rate is 

controlled by two parameters (size of bit-vector and the number of (hash) functions used to 

generate the binary encoding, see Figure 1), creating a trade-off between false-positive rate 

and compression. We describe how we set the bloom filter parameters below. The BIGSI 

encodes data as a matrix where each column is a bloom filter of the k-mers in a dataset. 

Figure 1 shows schematics of how data is processed and stored, and details are in Methods. 

Note that incorporating a new dataset simply requires a new column is added, without 

needing to rebuild the index. Our implementation supports both disk-based and in-memory 

stores; all measurements reported are from the disk-based store. Although we use this as a k-

mer index, it can be viewed as a probabilistic coloured de Bruijn graph17,22.  
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Figure 1: BIGSI encoding compared with naïve approach. a) BIGSI step 1: each input dataset (could be raw sequence data 
(FASTQ format) or assembly) is converted to a non-redundant list of kmers (with an optional denoising step to remove 
sequencing errors, detailed in Methods). A fixed set of 𝜼 hash functions (𝒉𝟏, 𝒉𝟐, …) is applied to each k-mer (𝜼 =3 in this 
figure), giving a tuple of positions which are all be set to 1 in a bit-vector (a Bloom Filter). b) BIGSI step 2. Each dataset is 
stored as a fixed length bloom filter, as a column in a rectangular matrix. To query the BIGSI for k-mer AAT, the 𝜼 hash 
functions are applied to the query k-mer, returning 𝜼 rows to be checked (namely 3,7,5 here). All columns (datasets) 
that have 1 in all of those 𝜼 rows contain the query k-mer: these rows that are checked are called “bitslices”. Adding a 
new dataset requires just adding a new column. c) Naïve encoding for contrast. A complete list of all k-mers in all 
datasets form the rows of a large matrix, and columns are datasets. For any given k-mer, entries are set to one for 
datasets containing that k-mer. When a new dataset is added, the matrix grows vertically (new k-mers added) and 
horizontally (new column for new dataset). 

To genotype a sequence, we query the index for all the k-mers within it. Exact matching 

requires all k-mers be present (threshold T=100%), and can be implemented as a fast AND 

operation on bit-vectors. Inexact matching, primarily used for long alleles, requires the 

presence of some proportion (T<100%) of k-mers be present, and is slower (See Figure 3a). 

Although BIGSI does not do an alignment, an approximation to a mega-BLAST alignment 

score can be inferred from the presence/absence pattern of kmers in the query; e.g if the k-

mer size is 31, each SNP difference causes a window of 31 absent k-mers (details in 

Methods). We show in Supplementary Figure 2 the strong correlation (r=0.998) between 

Mega-BLAST score and BIGSI score for 100 E. coli AMR genes using a BIGSI of RefSeq-

bacteria (release 81). 

 

To search for a single nucleotide polymorphism (SNP), we create a sequence for each allele, 

with k-mer -1 bases on either side. By requiring multiple k-mers in the sequence be present, 

we reduce the false positive rate for SNP allele detection exponentially. Indexing at a smaller 

k-mer (31) than our minimum query length (61) enables both compression and a low error 

rate. The theoretical false discovery rate for an SNP allele from a probe (flanks plus allele) of 

length (2k-1) with bloom filter parameters is 10-15 per column (see methods) - well below the 

expected error rate from the underlying sequence data.  
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We measured query speed by first building a BIGSI of 3,480 datasets of Mycobacterium 

tuberculosis obtained from23, and genotyping 68,269 SNPs. Searching all datasets for these 

SNPs took just under 90 minutes on a single CPU core - an effective genotyping rate of 

above 46,000 genotypes per second. 

 

We validated SNP genotyping accuracy using a subset of 100 of the M. tuberculosis datasets 

for which we had high quality SNP calls using samtools24 (see Methods). The concordance 

between methods was 99.997% with a total of only 286/682,690 discrepancies. We measured 

accuracy of longer allele detection by searching (with T=70% match) for a catalogue of E. 

coli Multi Locus Sequence Type (MLST) alleles and choosing the best scored allele for each 

gene. We then compared calls on a set of 954 datasets with the MLST allele calls from a 

high-quality caller: SRST225. Where both methods made a call (6483/6678 alleles), there was 

99.9% agreement; otherwise SRST2 failed (n=167), or BIGSI failed to find an allele version 

above T=70% (n=28).  

 

 

 

Scaling to millions of bacteria 

 

We benchmarked the empirical scaling properties of BIGSI against the Sequence Bloom Tree 

(SBT)13 on a dataset of 2000 bacteria of the taxon Enterobacteriaceae from the ENA, 

comparing build and query times, and peak storage requirements on 12 increasing subsets 

ranging from 100 to the complete 2000 samples. For the full dataset, SBT required 4.9 TB of 

intermediate storage to construct the index and took 3 days to build. In contrast, BIGSI 

required 6.2GB space and took 5 hours to build – 784x smaller and a 14x faster build time. 

For each subset, we queried the SBT/BIGSI for 705 antimicrobial resistance genes with an 

average length of 847 bp and total query length 597,753bp. Exact and inexact (T=80%) query 

times can be seen in Figure 2a. SBT and BIGSI returned identical hits from the exact match 

search. In the inexact search, there was only one discordant query, where BIGSI returned two 

extra hits, both close to the threshold of 80%, that were not returned by SBT. This was likely 

due to the different construction of the underlying bloom filters as they are both found by 

SBT when the threshold was lowered to 70%. Both methods inexact query time scaled 

similarly with number of datasets. Constructing SBTs with larger numbers of datasets quickly 

becomes prohibitive in both storage and construction time required. We did not compare with 

the successors to SBT as they either have even higher intermediate disk use than SBT14,15, or 

were published as this paper was being finalized16 (November 2017; see Methods).  

 

Finally, we simulated the scaling of storage requirements required to construct a SBT, and 

BIGSI for data sizes up to 1 million genomes in two regimes: firstly, for genomes with very 

high proportions of kmer-sharing, and secondly to species with lower proportions of kmer-

sharing (e.g., most bacteria) - see Methods for details, and Figure 2b). BIGSI scales linearly 

with number of datasets, performing identically in both cases. In the low-kmer sharing 

regime (which is our focus) SBT would require 4 orders of magnitude more storage than 

BIGSI to construct (25 Pb rather than 3.1 Tb). 
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Figure 2: Scaling properties of BIGSI. a)  Query times for 705 antimicrobial resistance genes when searching in a SBT 
(yellow) or BIGSI (green) for exact (T=100%, full lines) or inexact (T=80%, dotted lines) matches. Query times for BIGSI 
exact searches (T=100%) do not noticeably increase on this scale, as a result of the bit vector optimization possible for 
exact matching. b) Simulated scaling to 1 million datasets of peak data-structure storage requirements of BIGSI and SBT, 
comparing performance with high/low proportion of sharing of k-mers between datasets (note y axis is on log scale). In 
the high k-mer sharing regime only 100 new k-mers are introduced per dataset, whereas the low k-mer sharing regime 
introduces 10,000 new k-mers per dataset. Since BIGSI scales linearly with number of datasets and independently of the 
number of k-mers, it uses the same storage per dataset in each regime. However, SBT scales super-linearly with N since 
its bloom filter size depends on the total number of k-mers.  For 1 million genomes with low kmer sharing (right), which 
is the case we care about for global indexing, BIGSI would use 3.1 Terabytes whereas SBT would use 25 Petabytes. When 
we index the ENA below, we find each dataset adds 100,000 new k-mers on average, 10x more than the low kmer-
sharing regime simulated here, which would further penalize SBT. 

 

 

 

Indexing all bacterial and viral WGS data  

 

We set out to construct a BIGSI from all bacterial and viral WGS data-sets in the ENA 

“pathogens endpoint” (which contains all bacteria, all viruses and some eukaryote parasites, 

totaling 469,654 datasets). After excluding the eukaryotic genomes on the basis of size (see 

Methods), we were left with 447,833 datasets. The entire index required 1.5TB of storage, 

<1% of the original data size (170 TBytes) and contained more than 60 billion unique k-mers. 

Data download took 6 weeks, constructing bloom filters on the fly. Combining the bloom 

filters afterwards took approximately 2 days. We estimate that the intermediate storage 

required to build an SBT of the same data would have been >6.7PB. 

 

We base a number of large-scale analyses below on this index, which we refer to as the all-

microbial-index. In order to make statements about which genus mobile elements or alleles 

are found in we estimated the species and abundances present in each dataset of the all-
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microbial-index using the Bayesian abundance estimator Bracken26 (see Methods). We found 

over 90% of the datasets were from just 20 genera, and 65% were from the top 5 most 

common bacterial genera (Salmonella, Streptococcus, Staphylococcus, Escherichia and 

Mycobacterium); counts for the most prevalent bacterial genera are shown in Supplementary 

Figure 3. 

 

Application 1: ultrafast gene search 

 

As a practical example, we searched for exact matches of the colistin resistance genes MCR-

1/2/3, subject of intense scrutiny over the last 2 years27-31 across all 447,833 datasets in the 

all-microbial-index. Searching for all 3 genes took 1.73 s seconds in total, scanning 10x more 

genomes than previous publications. MCR-2 was not present, but we found MCR-1 in 169 

datasets of 3 species (E. coli, S. enterica, E. aerogenes) and MCR-3 in 34 datasets (E. coli, S. 

enterica, K. pneumoniae) (see Supplementary Table 1).  

 

 

Application 2: estimating the host-range of plasmids and conjugative systems 

 

We took 2827 plasmids from the ENA (see Methods, and Supplementary Table 2) and ran an 

inexact (T=40%) search for these in the all-microbial-index. We filtered these for hits with 

T>90% for downstream analysis. The total length of query sequence was 227 Mbp, and the 

query took 2120 CPU hours (11 days real time) on a single server using 8 cores and 1.5 Gb 

RAM per process. The search returned 665,619 hits with 121,758 unique accessions across 

258 genera. Since contamination could confound observations of a plasmid in a genus, we 

excluded from this analysis (Application 2) all datasets containing evidence of more than one 

genus at abundance above 0.1%. Only 41% (=184652) of datasets and 62% of search hits 

passed this filter. 
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Figure 3: 37 plasmid sequences found at least 5 times in more than one genus in the all-microbial-index. The heatmap 

shows the frequency of each plasmid within each genus; the tree on the left is a maximum likelihood rRNA tree of 

bacteria.  The plasmid at the left (AF012911) with extremely wide phylogenetic distribution is a known cloning 

vector. The large amount of sharing between Escherichia, Salmonella and Shigella is consistent with known 

promiscuity within Enterobacteriaceae  

We often identified plasmids shared by closely related genera, notably among Escherichia, 

Shigella and Salmonella, and among Enterococcus and Streptococcus. We found 37 plasmids 

present in at least five datasets of at least two genera (Figure 3, Supplementary Table 2 & 6); 

and 5 in multiple orders and families.The plasmid pETHIS-1 (entry: AF012911) was found in 

5 phyla, 10 taxonomic classes, and 17 genera. This plasmid is used as an expression vector 

and its identification in so many species serves as a positive control, confirming that BIGSI 

can spot similar plasmids across the database. Of more biological interest, the Tn916 

conjugative transposon encoding tetracycline resistance that was first found in Enterococcus 

faecium and known to have broad host range32 (entry: U09422) was found in Streptococcus 

(n=3951), Staphylococcus (n=1212), Enterococcus (n=43), Clostridioides (n=29), Listeria 

(n=19) and Erysipelothrix (n=11).  

 

 

Sampling biases in the ENA preclude inference about plasmid prevalence, but they do allow 

us to test if plasmids bearing antibiotic resistance (ABR) genes are more widely 

phylogenetically distributed than those bearing none. We used a large subunit ribosomal 

RNA tree to compare genera. We defined “phylogenetic spread” of a plasmid as the median 

of the patristic distances between all pairs of genera in which the plasmid is seen. We test 

whether plasmids with at least 3 ABR genes (abbrev. 3-ABR) are more widely distributed 

across the phylogeny than those with none, by comparing the two phylogenetic spread 

distributions (Figure 4). We find the 3-ABR plasmids are indeed more widely spread 

(p=0.0024, permutation test, see Methods and Supplementary Figure 4). Given the 

underlying data, we are most confident of this conclusion within the Enterobacteriaceae, 

beyond which we would want to replicate this with wider sampling of the phylogeny. 
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Figure 4: Comparison of phylogenetic spread (median of pairwise distances between all pairs of genera in which a 

plasmid is seen) of plasmids containing at least 3 antibiotic resistance genes (n=98, purple) with those bearing none 

(n=665, peach) – histograms are normalized to allow comparison (probability densities). Distance measured on the 

large subunit rRNA tree from SILVA. Units of phylogenetic spread are substitutions per site. 

 

 

The distribution of conjugative systems for transfer of DNA between bacteria was previously 

analysed in 1124 genomes33 using sensitive, but slow, protein profiles searches. We extended 

this analysis to the whole ENA, searching for exact matches in the all-microbial-index for the 

previously identified key components of these systems (relaxases (MOB) and type 4 

secretion systems). Of the 184,652 datasets, 36030 (19.5%) had a putative conjugative 

system - consistent with the previous estimate of 18%. This proportion varied by phylum, 

from 0.5% in Spirochaetes to 31.7% in Firmicutes (see Table 1, Supplementary Figure 4). At 

a finer scale these observations provide valuable information on the potential spread of 

antibiotic resistance genes. For example, focusing on datasets with relaxases of the type 

MOBT we observe genetic flux between Staphylococcus and Streptococcus, but not with 

Salmonella, and this information facilitates the assessment of the risk of spreading between 

taxa. This flux does not need to strictly follow phylogenetic lines. For example, we observed 

MOBQ in Salmonella and Streptococcus but not Staphylococcus, indicating a different 

probability of cross-genus (and cross-phylum) transfer by conjugation (data in 

Supplementary Table 4). 

 

 

Application 3: growth of antibiotic resistance prevalence in the archives 

 

Monitoring of antibiotic resistance burden is a significant goal that is currently unachievable, 

in particular because we discover new resistance genes and then need to search the entire 

back-catalog of genomes (such as with MCR1-3). We sought to prove the concept by running 

a typical scan across the ENA. We downloaded all 2157 sequences associated with antibiotic 

resistance from the CARD database (v1.1.7)34 and searched for these in the all-microbial-
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index with thresholds of 100% and 70%. The exact searches for a gene took on average 1.1s 

and returned 438 hits per queries gene, resulting in 944,862 hits in 193,582 unique accessions 

across 250 genera (full results in Supplementary Table 5). An inexact search (T=70%) on 

average took 34.4s and returned 5320 hits. We show in Figure 5a the increasing count of 

ABR genes in the archives, as a function of year of upload to the ENA/SRA. Restricting the 

analysis to Staphylococcus, we find (Figure 5b) the proportion of datasets containing mecA 

gene (causing methicillin resistance) dropping from a high of 70% in 2013 to 40% in 2016, 

during which period all the tet and aac genes also drop in prevalence. By contrast, essentially 

all resistance genes have gone up in prevalence in Klebsiella (Figure 5c).  
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Figure 5: a) counts of samples in the all-microbial index containing a range of ABR genes; each gene treated 

independently, so a single dataset containing both CTX-M and OXA for example, will be counted twice b) Year-by-

year frequency (defined by date of public availability) in Staphylococci (dominated by S. aureus) of mecA, and all tet 

and aac genes, which encode resistance to methicillin, tetracycline and aminoglycosides respectively. Archive-

prevalence dropping for all since 2013. c) Year-by-year frequency in Klebsiella of various ABR genes; increase in 

prevalence since 2014 may be due to increased Extended Spectrum Beta-Lactamase surveillance and sampling of 

KPC resistant Klebsiella globally. d) Year-by-year breakdown of M. tuberculosis datasets, classified by genotypes as 

resistant (R), pan-susceptible (S), multiple drug resistant (MDR), extensively drug resistant (XDR) as follows. All 

datasets were genotyped for variants from the resistance catalog from23, then classified as resistant or susceptible to 

12 antibiotics based on their genotype. Datasets were classed as MDR (multi-drug resistant) if resistant to isoniazid 

and rifampicin, as XDR (extensively drug-resistant) if MDR and also resistant to a fluoroquinolone, and any of 

capreomycin, kanamycin and amikacin, and as Resistant if resistant to any antibiotic but not MDR or XDR, and 

susceptible otherwise. 
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In M. tuberculosis, resistance is driven primarily by amino acid mutations1,35. Genotyping all 

datasets in the all-microbial-index simultaneously (of which 30,226 were M. tuberculosis) for 

the 206 resistance mutations from Walker et al. 23 took 103 minutes on a single-core, around 

10,000x faster than typing each dataset individually with the fast resistance prediction 

software, Mykrobe predictor1. The results show (Fig 5d) a rise in prevalence in the archive of 

MDR-TB since 2011 to a peak of 18.9% in 2016.  

 

Discussion 

 

There is an urgent need for a global infrastructure for surveillance and management of 

infectious disease - microbes know no borders, and evolve faster than we modify our 

responses36,37. Vital analytic and visualization tools for SNP-based analyses are being 

developed in response to emerging viral outbreaks38, but the problems of scalability, more 

variable genomes and mobile elements have not been addressed. We foresee a world where 

millions of bacterial and viral samples have been sequenced and shared, some from very 

controlled and high quality clinical and public-health sources providing high-value metadata 

(e.g. the open Genome Trakr database of food-borne pathogens in the USA), and others of 

varying provenance. A scalable online sequence search facility would be critical to this 

endeavor. It would provide data not just for urgent outbreaks, but also for monitoring global 

strain, plasmid and resistance prevalence in humans, animals and the environment. We have 

demonstrated the core operations needed for such a search tool, on a scale never before 

achieved, indexing the entire bacterial and viral WGS content of the global DNA archive. 

Since new datasets can be rapidly appended to the index, the ability to grow incrementally as 

new datasets are sequenced is guaranteed. Finally, the method is ready for a future where 

finished reference genomes become routine, as the index works equally for both raw data and 

assemblies. 

 

Searching the DNA archive is one example of a “document retrieval” problem, a subject 

which has been intensely studied and successfully implemented at massive scale by internet 

search engines. Our “search terms” are k-mers from SNPs/alleles, and our “web-pages” are 

raw read datasets or assemblies (see Figure 6). Similar approaches to ours (also using 

bitsliced signatures) have been used for text search39,40, but were largely abandoned after 

Zobel et al showed in 1998 that an alternative method (inverted indexes) performed better for 

natural language41. One notable exception this year was has been Microsoft Bing search 

engine42, which also revives them. For our use case, where each new bacterial dataset brings 

new variation, bitsliced signatures provide much better scaling than inverted indexes. Web 

and (microbial) DNA search have different dimensionality, as the language of bacterial 

genomes is vastly more complex than English. Our dataset was only 106 documents but 

contained 1010 unique words, and this would continue to increase with more data, whereas 

Google indexes 1012 documents containing (we estimate) 108 words with a much more slowly 

growing lexicon. As a result, we expect fruitful future interactions between the genomic and 

document retrieval communities. 

 

Google revolutionized the utility of the internet, and now search is intrinsic to how we 

interact with the online world. BLAST did something similar for molecular biology in the 

1990s, but does not scale even to the current archive. We are currently investigating 

implementing the BIGSI as a live service at the EMBL-EBI, updated as data is added to the 

ENA.  We believe our approach, and improvements that will surely follow, will put our 

shared DNA store at everyone’s fingertips.  
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Online Methods 

 

BIGSI construction and querying 

BIGSI indexes a set of N (number of datasets) bloom filters by position in the bloom filter. 

Each bloom filter must be constructed with the same parameters (m, 𝜂), where m is the bloom 

filter’s length in bits and 𝜂 is the number of hash functions applied to each k-mer. The same 

hash functions must also be used to construct each bloom filter. To construct a BIGSI, the N 

bloom filters are column-wise concatenate into a matrix. The row index and row bit-vectors 

are then inserted into a hash table or key-value store as key-value pairs so that row lookups 

can be done in O(1) time. This set of key-value pairs can be stored on disk, in memory or 

distributed across several machines. To insert a new bloom filter we simply append it as a 

column to the existing bitmatrix. To query the BIGSI for a k-mer we hash the k-mer 𝜂 times, 

look up the resulting keys in the key-value store, and take the bit-wise AND of the resulting 

bit-vectors (See Figure 1). 

 

Parameter choices 

The choice of BIGSI parameters (m, 𝜂), depends on: the maximum number of k-mers 

expected in any dataset (𝐾𝑚𝑎𝑥), the number of datasets (N) expected, the shortest length of 

the query sequence to be supported (𝐿𝑚𝑖𝑛), the k-mer size (k) and the maximum number of 

acceptable false discoveries per query (𝑞𝑚𝑎𝑥). Since each query of length (L) will consist of 

ℒ = L -k + 1 k-mers the expected number of false discoveries (V) for any query can be 

calculated as 𝑞 = 𝐸[𝑉] = 𝑁𝑝ℒ  where p is the false positive rate of the bloom filter. 

Parameters m and 𝜂 determine false positive rate for a bloom filter with 𝐾𝑚𝑎𝑥 elements – if 

there are fewer elements, then the false positive rate will be lower. We assume below that all 

bloom filters have the maximum number of k-mers inserted to give an upper bound on error 

rate. 

 

To keep q below a chosen threshold 𝑞 < 𝑞𝑚𝑎𝑥 for a given N and k, p must be chosen to 

satisfy q for the shortest query of length 𝐿𝑚𝑖𝑛: 

𝑝 ℒ𝑚𝑖𝑛 =
𝑞𝑚𝑎𝑥

𝑁
. 

Therefore, the desired bloom filter false positive rate is 

 

𝑝 = (
𝑞𝑚𝑎𝑥

𝑁
)

1

ℒ𝑚𝑖𝑛. 

  
 

Since, for a given number of inserted kmers (n), and desired false positive rate (p), optimal 

bloom filter parameters can be determined by the following formulae43 

 

𝑚 = −
𝑛𝑙𝑛(𝑝)

𝑙𝑛(22)
, 

𝜂 = −
𝑙𝑛(𝑝)

𝑙𝑛(2)
, 

 

 

which becomes: 

 

𝑚 = −
𝐾𝑚𝑎𝑥𝑙𝑛(𝑞𝑚𝑎𝑥/𝑁)

ℒ𝑚𝑖𝑛𝑙𝑛(22)
, 
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𝜂 =
𝑙𝑛(𝑞𝑚𝑎𝑥/𝑁)

ℒ𝑚𝑖𝑛𝑙𝑛(2)
. 

 

 

For example, given 

𝑁 = 106; 𝐾𝑚𝑎𝑥 = 107; 𝐿𝑚𝑖𝑛 = 50𝑏𝑝; 𝑘 = 31; 𝑞𝑚𝑎𝑥 = 10−6 

 

the resulting expected number of false positives per kmer-lookup per bloom filter (p), would 

be: 

 

𝑝 =  (
𝑞𝑚𝑎𝑥

𝑁
)

1
ℒ𝑚𝑖𝑛 =

1

10
3
5

= 0.2511 … 

 

Solving the above equations gives: 

 

𝑚 = 28,755,176; 𝜂 = 2 

 

BIGSI parameters for all-microbial-index 

We assume initially that a bacterial dataset contains at most 10 million k-mers since bacterial 

genomes are generally under 6 Mb in length, leaving 4 million k-mers available for some 

sequencing errors which escape de-noising, and genomic variation. Unless otherwise 

specified we use BIGSI parameters m=25,000,000, 𝜂 = 3 for all analyses. For these 

parameters, the upper bound on number of false discoveries, 𝑞𝑚𝑎𝑥 for an SNP allele from a 

probe (flanks plus allele) of length (𝐿𝑚𝑖𝑛 =2k-1=61) is 10-9 (if 𝐾𝑚𝑎𝑥 = 107, 𝑁 = 106). 
 

 

Code availability 

An open source (MIT license) implementation of BIGSI can be found at 

https://github.com/phelimb/BIGSI. BIGSI v0.1.2 supports both disk-based (via Berkeley-

DB in memory (via python dictionaries), and distributed in memory (via redis 

(https://redis.io), as used in Twitter) key-value stores. All the results discussed below use the 

Berkeley-DB, disk-based backend. 

 

Public instance 

We have made a public instance of our index of the ENA available at http://bigsi.io, where 

the user can paste sequence and search. The user receives a list of accessions containing the 

given query (which can be clicked on to get to the ENA webpage for the accession), and also 

the species abundance estimates from Bracken. This instance uses the redis in-RAM 

implementation and is hosted by CLIMB44  on a 3Tb RAM server.  

 

 

Scoring of BIGSI queries 

BIGSI search hits can optional be scored using an approximation to the ungapped alignment 

scoring scheme used by megaBLAST. To do this, we take the presence/absence vector for a 

query of ℒ k-mers. From this, we estimate the approximate number of mismatches of the 

query from the hit by counting the number of zeroes in contiguous runs of length greater than 

1, and dividing by the k-mer size. From these estimated mismatches and matches we 
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calculate a score for an ungapped alignment, with p-values calculated using the same scheme 

as BLAST. By default the costs are -2 for a mismatch and +1 for matched position.  

 

Comparison of query time and storage requirements of BIGSI and SBT 

We randomly chose 2,000 Enterobacteriaceae cleaned de Bruijn graphs from the all-

microbial-index accessions and we then further randomly sub-sampled these into collections 

of 10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000 datasets. Jellyfish v2.2.5 was 

used to count the unique k-mers in the set of cleaned graphs. A BIGSI of each set of datasets 

was built with parameters (m = 2.5 × 107;𝜂 = 3). A SBT was built for each set of datasets 

with 𝜂 = 1 and bloom filter size (m) equal to the count of the total number of k-mers in the 

collections of graphs. Construction and query time analyses were run on a Dell PowerEdge 

R820 with 32 cores and 1 Tb RAM. For reproducibility we give the precise commands: the 

search time comparison was run with ‘bt query‘and ‘cbg search‘, using k-mer thresholds 

100% and 80%. BIGSI was run in server mode (‘hug cbg‘) for the search profiling in order to 

exclude python boot up time overhead. 

 

Simulation of storage requirements for a BIGSI for N datasets is given by: 

 

𝐵𝐼𝐺𝑆𝐼𝑠𝑡𝑜𝑟𝑎𝑔𝑒[𝑏𝑦𝑡𝑒𝑠] =
𝑚𝑁

8
 

 

We model the storage for SBT as follows. Although it is possible to append to an SBT 

incrementally, as new microbial datasets will keep adding new k-mers, this will lead to 

saturation of the root-level bloom filter in the SBT, and a collapse in query performance. This 

can be avoided by reconstructing the SBT, ensuring the bloom filters are large enough to 

support the full set of k-mers. Thus, since the best case for a binary tree with N leaves is 2N-1 

nodes, we estimate: 

𝑆𝐵𝑇𝑠𝑡𝑜𝑟𝑎𝑔𝑒[𝑏𝑦𝑡𝑒𝑠] =
(2𝑁−1)𝑁𝑘

8
 

where 𝑁𝑘 is the total number of k-mers in the combined set of datasets and also equal to the 

size of the bloom filter required.  

We simulated two regimes. For high-kmer sharing, we assumed each new dataset added 

10,000 new k-mers, which corresponds  

 

No benchmarking of successors to SBT 

The split sequence bloom tree (SSBT)14, the allsome bloom tree15 and Mantis16 are more 

recent improvements on the SBT, focussed also on human transcriptomes. SSBT and 

Allsome modify their bloom filter trees compared with SBT, to capitalise on shared sequence 

between datasets. Although the ENA content is heavily biased towards a few genera, the 

amount of sharing between datasets is still much lower for these bacteria (several phyla) than 

for humans (one species), so the compression benefit will be lower. Pragmatically, both 

SSBT and Allsome have larger intermediate uncompressed indexes than the SBT, and so we 

did not benchmark against them.  

 

Mantis was published as we were finalising this paper (Nov. 2017), and so we have not 

benchmarked against it. As currently implemented, the data structure does not support 

incremental insertion, as it needs up-front the full set of k-mers and for each k-mer, the list of 

datasets containing it (“colour class”, stored as a bit-vector). However, this is not a 

fundamental limitation, and a (less efficient) iterative construction algorithm is known, 

though not implemented (pers. comm. Rob Patro). The scaling properties of the final index 
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for Mantis (for bacterial data) are likely to be better than SBT, SSBT and Allsome, since it 

can use compression on the colour class bit-vectors, avoiding a quadratic scaling of the 

colour-class matrix. Scaling will be superlinear but the exponent is data dependent, and 

unknown. Finally, there is currently an intermediate stage where the uncompressed colour-

class matrix is held in RAM, scaling quadratically in number of datasets, which again could 

be removed by reimplementation. 

 

 

Using an array of BIGSI for longer genomes 

A limitation of BIGSI is that 𝐾𝑚𝑎𝑥, the maximum number of k-mers per dataset, must be set 

in advance. One way to extend BIGSI to datasets with varying k-mer cardinality is to build a 

nested structure of multiple BIGSIs with different 𝐾𝑚𝑎𝑥, e.g. 𝐾𝑚𝑎𝑥 = 105, 106, 107, 𝑒𝑡𝑐 …, 

and insert each sequence into the appropriate level by k-mer counting before insertion.  

 

Genotyping accuracy measurement on TB 

Conservative SNP calls were made using Cortex17 (independent workflow, k=31) on 3480 

Mycobacterium tuberculosis datasets from Walker et al23. Singleton variants were discarded, 

and a non-redundant list of 68,695 SNPs was constructed. We generated “probe sets” 

consisting of a reference and alternate alleles of these variants from the NC_000962.3 

reference. An index of the 3,480 datasets was built and 100 random datasets were genotyped 

at the 68,695 sites as follows: Each allele of the probe-set is searched for in the BIGSI 

resulting in Boolean presence/absence of each allele. If only a reference allele is present the 

genotype is returned as 0/0, if only an alternate allele 1/1, if both 0/1 and if neither -/-. We 

compared the concordance of genotypes of the 100 random datasets with those generated 

with the samtools24 pipeline from Walker et al23, excluding filtered positions. As described in 

the main text, the concordance between methods was 99.997% with a total of 286/682,690 

discrepancies.  The majority of these discrepancies (203/286) were mixed (heterozygous) 

calls from BIGSI; samtools had been run with a haploid model it did not make any mixed 

calls, so we expect some of these were correct. 

 

 

Indexing of ENA snapshot 

The fastqs from accessions listed in Supplementary Table 6 were downloaded via ENA’s 
Globus FTP and included all WGS bacteria and viruses, but also eukaryotic parasites with 
larger genomes, which we did not intend to index. Most eukaryotic genomes were removed 
implicitly, since we set thresholds to exclude datasets with too many kmers for a 5Mb 
genome.  De Bruijn graphs (k=31) were constructed and cleaned from the downloaded fastq 
files using mccortex19 v0.0.3-539-g22e27b7.  
 
mccortex31 build -t 1 -m 7G -k 31 -s "DATASET_ID" -1 “FASTQ_FILES” 
mccortex31 clean -m 7GB -B 2 -U -T 
 
De Bruijn graph error cleaning and tip trimming were performed using mccortex. Bloom 
filters were built using the k-mers from the cleaned graphs with parameters (m = 
2.5 × 107;𝜂 = 3, 𝐾𝑚𝑎𝑥 = 107) with BIGSI v0.2 as follows: 
 
cbg init –k 31 –m 25000000 –h 3 
cbg bloom –c “CLEANED_GRAPH_FILE” 
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Of the full set of datasets, 4.6% (21,822/ 469,654) fastq files failed to produce a resulting 

bloom filter. Of these 21,822: 7,799 exceed the maximum number of k-mers allowed after 

error cleaning (namely 107) and 14,023 exceeded the maximum number of k-mers allowed in 

the raw dataset (namely ~7x109).   

 

The unique k-mers in the union of the cleaned graphs were counted using the redis (v3.2.6) 

hyperloglog (https://redis.io/commands#hyperloglog) approximate cardinality counter. In the 

union of all cleaned graphs there were 6.05 × 1010 ± 5 × 107 k-mers. We estimate this 

number would have been at least an order of magnitude higher without the denoising step 

where mccortex removed sequencing errors.  

  

 

Species identification 

The proportion of species in each dataset was determined using Kraken45 and Bracken26. 

Kraken v0.10.5 was run on the k-mers from each cleaned de Bruijn graph using the 

minikraken 20141208 database. The resulting taxonomy labels assigned by Kraken were then 

analysed by Bracken (commit version vfd88a06a) to estimate the proportion of k-mers 

originating from each species present in a dataset. Bracken failed to report species abundance 

for 12,889 datasets. The taxonomic data for the remaining 434,944 datasets is reported in 

Supplementary Table 6.  

  

 

Plasmid search and exclusion of contaminated datasets 

2,826 plasmid sequences were taken from the ENA plasmid pages 

(www.ebi.ac.uk/genomes/plasmid.html; December 2016) (See Supplementary Table 2) and 

downloaded from the ENA. We then queried the all-microbial-index for these sequences with 

a proportion of k-mers threshold of 40% (T=40%) present and filtered for hits with T >= 90% 

for downstream analysis. Queries were run with 1 GB cachesize (memory) per process and 

parallelised across 8 vCPUs.  

 

In order to determine distribution of plasmids across taxa, while avoiding ENA/SRA 

metadata errors, we filtered these hits for datasets which (were bacteria and) had no 

secondary genus above 0.1% frequency. This criterion was chosen to avoid multi copy 

plasmids from contaminating species establishing false positive hits within a non-host genus. 

41% (184652/447,833) of accessions and 62% (415,181/668,720) of search hits passed this 

filter. We then filtered for all plasmids which had been seen at least 5 times each in more than 

one genus and had less than 99% of their observations in the most frequent genus. We found 

37 plasmids across 13 genera matched these criteria. By simulating mixtures of S. enterica 

and E. coli at relative abundances of 0.0001, 0.001, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 

we found we could observe the minority species above 2% frequency (the limit of detection 

was not lower because we had applied Kraken after error-cleaning of de Bruijn graphs). All 

37 plasmids reported had at least one observation at a copy number of 5 (which, since we 

could detect contaminants at 2% frequency, would correspond to a copy number of above 

250 if it came from a contaminant) and 16/37 had an observation at 2000x copy number. 

 

Phylogenetic spread of plasmids 

We excluded contaminated samples as above, and plasmids with no hits in the all-microbial-

index. We used the APE R package to calculate a patristic distance matrix between all genera 

in the Silva46 23S rRNA-based phylogenetic tree built using RAxML with GTR-GAMMA 

distances (release s123_LSU, https://www.arb-silva.de/projects/living-tree/). For all 
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plasmids, we took the N genera in which they were found and calculated the N-choose-2 

distances between these using the above matrix. We then compared the cumulative 

distribution functions of the phylogenetic spread (since these intrinsically show how zero-

centred the distribution is) using a permutation test, with test statistic the difference in 95%-

quantiles. The 95% quantiles were 1.11 and 1.99 for non-ABR and 3-ABR plasmids 

respectively, and a permutation test with 1 million replicate permutations gave p=0.0024 – 

see Supplementary Figure 4 for the histogram. 

 

Identification of conjugative systems 

The relaxases (MOB) of the previously described types (MOB_B, MOB_C, MOB_CQ, 

MOB_F, MOB_H, MOB_P,MOB_T, MOB_V) and the ket T4SS components 

(VirB4_TRaU, VirD4_TcpA) were used as defined in Guglielmini et al 33 and Supplementary 

Data 1 in the all-microbial-index with T=100%. Full search results are available in 

Supplementary Table 7. Results were filtered for bacteria and contamination following the 

same method as described in “Plasmid search”. Accessions with at least one MOB and the 

two key components ofT4SS were said to contain a putative conjugative system. BIGSI does 

not return copy number, or location on chromosome or plasmid, so it was not possible to 

determine if the genes were co-located on a chromosome or on a plasmid.  

 

MCR-1,2,3 

We searched for MCR-1, MCR-2, MCR-3 in the all-microbial-index using kmer percent 

threshold T=100%. See Supplementary Table 1 for sequences and results. 

 
Searching for ABR genes in the ENA 

We downloaded all 2157 sequences associated with antimicrobial resistance from the CARD 

database (v1.1.7)34. We searched for these in the all-microbial-index with thresholds of 100% 

and 70%, using a 1 Gb cache size, and 8 CPUs. A full table of the search results can be found 

in Supplementary Table 5. 

  

Searching for M. tuberculosis variants in the ENA 

We searched the all-microbial-index for the variants from the catalogue described in 23 by 

generating “probe sets” consisting of a reference and alternate alleles of these variants from 

the NC_000962.3 reference and searching for these alleles. If only a reference allele is 

present the genotype is returned as 0/0, if only an alternate allele 1/1, if both 0/1 and if 

neither -/-. From the resulting genotypes, we classified each of the datasets as resistant or 

susceptible to 12 antibiotics following the model described in23. The date when this data was 

first available to the public was extracted from its ENA metadata. Datasets were classed as 

MDR (multi-drug resistant) if resistant to isoniazid and rifampicin, as XDR (extensively 

drug-resistant) if MDR and also resistant to a fluoroquinolone, and any of capreomycin, 

kanamycin and amikacin, and as Resistant if resistant to any antibiotic but not MDR or XDR, 

and susceptible otherwise. 

 

 

Data availability 

All supplementary tables can be found at Figshare here: 

https://doi.org/10.6084/m9.figshare.5702776 
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Table 1: Observations of putative conjugative elements across phyla. The counts of phyla with search hits for putative 
conjugative elements and the counts of all samples from each phylum in all-microbial-index. Dividing the ICE hits in the 
all-microbial-index by the counts of members of a phylum in all-bacteria is an estimate of the proportion of samples of 
each phylum-containing conjugative system. Confidence intervals are calculated using the Wilson interval. 

 

Phylum Count Total Proportion 

Firmicutes 25075 79022 31.7%( 31.4%-32.1%) 
Proteobacteria 10749 66386 16.2% (15.9%-16.5%) 
Bacteroidetes 45 1375 3.3% (2.5%-4.4%) 

Cyanobacteria 18 505 3.6% (2.3%-5.6%) 
Fusobacteria 6 427 1.4% (0.6%-3.0%) 
Acidobacteria 5 459 1.1% (0.5%-2.5%) 
Spirochaetes 3 600 0.5% (0.2%-1.5%) 

 

Supplementary Figures 
 

 
Supplementary Figure 1 | Cartoon comparison between human and E. coli genomes:  

Cartoon comparison of human genomes (above) and E. coli (below) as a representative bacterium. In humans, 

genetic variation is dominated by relatively sparse single nucleotide polymorphisms (SNPs), nucleotide diversity 

π=0.001, and less than 1% of a typical genome lies in a structural variant (SV) [1]. Human genomes are therefore 

relatively compressible. In stark contrast, genes make up around 88% of an E. coli genome [2], yet two E. coli 

genomes may only share around 60% of their genes [3], and conserved genes have much higher nucleotide diversity 

(0.02) [4]. Thus, bacterial genomes present different compression and indexing challenges to human genomes. 
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Supplementary Figure 2 | BIGSI scores vs megaBLAST scores:  

megaBLAST scores for a search of 100 antimicrobial resistance genes in a BLAST database of RefSeq-81 vs the 

equivalent BIGSI scores in a search of a BIGSI of RefSeq-81. Pearson correlation of the scores was r-0.998 
 

 
Supplementary Figure 3 | Counts of the most frequent bacterial genera in the SRA/ENA:  

Counts of the most frequent bacterial genera in the all-microbial-index. Over 90% of the datasets were isolates of 

these 20 genera and 65% from the top 5 most prevalent genera. 
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Supplementary Figure 4 | Histogram of permutations, 95% quantile difference test:  

The histogram of differences between the 95% quantile of 1million permutations of the probability densities from the 

pairwise distances of plasmids with at least 3 antibiotic resistance genes and those with None from Figure 4. The red 

bar shows the observed difference in 95% quantiles between the groups. 

 

 
Supplementary Figure 5 | Distribution MOB types among phyla:  

We show the proportion of each MOB type associated to with phyla based on a search of all known MOB types from 

Guglielmini et al. in the all-microbial-index. 
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