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Abstract1

Resistance against different antibiotics appears on the same bacterial strains more often than expected by2

chance, leading to high frequencies of multidrug resistance. There are multiple explanations for this obser-3

vation, but these tend to be specific to subsets of antibiotics and/or bacterial species, whereas the trend is4

pervasive. Here, we consider the question in terms of strain ecology: explaining why resistance to different5

antibiotics is often seen on the same strain requires an understanding of the competition between strains with6

different resistance profiles. This work builds on models originally proposed to explain another aspect of strain7

competition: the stable coexistence of antibiotic sensitivity and resistance observed in a number of bacterial8

species. We first demonstrate a partial structural similarity in these models of coexistence. We then generalise9

this unified underlying model to multidrug resistance and show that models with this structure predict high10

levels of association between resistance to different drugs and high multidrug resistance frequencies. We test11

predictions from this model in six bacterial datasets and find them to be qualitatively consistent with observed12

trends. The higher than expected frequencies of multidrug resistance are often interpreted as evidence that13

these strains are out-competing strains with lower resistance multiplicity. Our work provides an alternative14

explanation that is compatible with long-term stability in resistance frequencies.15

Author summary16

Antibiotic resistance is a serious public health concern, yet the ecology and evolution of drug resistance are not17

fully understood. This impacts our ability to design effective interventions to combat resistance. From a public18

health point of view, multidrug resistance is particularly problematic because resistance to different antibiotics19
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is often seen on the same bacterial strains, which leads to high frequencies of multidrug resistance and limits20

treatment options. This work seeks to explain this trend in terms of strain ecology and the competition21

between strains with different resistance profiles. Building on recent work exploring why resistant bacteria22

are not out-competing sensitive bacteria, we show that models originally proposed to explain this observation23

also predict high multidrug resistance frequencies. These models are therefore a unifying explanation for24

two pervasive trends in resistance dynamics. In terms of public health, the implication of our results is that25

new resistances are likeliest to be found on already multidrug resistant strains and that changing patterns of26

prescription may not be enough to combat multidrug resistance.27

1 Introduction28

Antibiotic resistance and, in particular, multidrug resistance (MDR) are public health threats. Multidrug29

resistant infections are associated with poorer clinical outcomes and higher cost of treatment than other30

infections [1, 2] and there is concern that the emergence of pan-resistant strains (pathogens resistant to all31

available antibiotics) will render some infections untreatable [3].32

From the point of view of finding effective treatment options, multidrug resistance is particularly prob-33

lematic because resistance to different antibiotics tends to be concentrated on the same strains: positive34

correlations between resistance to different drugs have been found in multiple species (including Strepto-35

coccus pneumoniae, Neisseria gonorrhoeae, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae,36

Pseudomonas aeruginosa and Mycobacterium tuberculosis) [2]. In other words, the frequency of MDR strains37

is higher than we would expect from the frequencies of individual resistance determinants if these were dis-38

tributed randomly in the population (’MDR over-representation’).39

Understanding the causes of this MDR over-representation is important for limiting the impact of re-40

sistance. A number of possible explanations have been suggested (Table 1) [2], but the extent to which41

these processes contribute to the trend remains uncertain. Many of the proposed mechanisms are specific42

to subsets of antibiotics and/or species. The pattern of MDR over-representation, on the other hand, is43

pervasive: correlations have been observed between resistance to antibiotics acting through different mecha-44

nisms, and between chromosomal and mobile genetic element (MGE) associated resistance determinants [2].45

Explanations for MDR over-representation must therefore be either sufficiently general or sufficiently diverse46

to account for this pervasiveness.47

In this paper, we approach the problem of explaining MDR over-representation in terms of strain ecol-48

ogy: explaining why resistance to different antibiotics is often seen on the same strain requires an under-49

standing of the competition between strains with different resistance profiles. For models of such compe-50

tition to be credible, they must capture observed trends in resistance dynamics whilst being ecologically51

plausible. Developing models that fulfil these criteria has not been trivial: sensitive and resistant strains52
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Table 1: Processes which may contribute to MDR over-representation..

Process Notes
Shared resistance
mechanisms

Particularly relevant for antibiotics of the same class (e.g. β-lactamases
and some penicillin-binding protein mutations conferring resistance against
multiple β-lactams), but also applicable for some drugs of different classes:
there are examples of efflux pumps acting on multiple drugs in numerous
species [4] and evidence for clinical relevance of efflux pumps in multidrug
resistance [5]. However, MDR over-representation is also observed where
efflux pumps are not thought to be a major mechanism of resistance (e.g.
between β-lactams and other classes of antibiotics in S. pneumoniae [2]).

Linkage between re-
sistance genes (when
resistance is associ-
ated with particular
alleles)

In discussing linkage between resistance genes (i.e. resistance genes being in-
herited together), it is helpful to distinguish between resistance mechanisms
where a particular allele of a gene confers resistance (e.g. changes to the
protein targeted by the antibiotics) and those where resistance is associated
with the presence of a resistance gene (e.g. enzymes that break down the
drug). When resistance is associated with specific alleles, genetic linkage is
not a plausible mechanism for generating MDR over-representation: a priori,
linkage is no more likely to promote association between resistance determi-
nants than association between resistance to one antibiotic and sensitivity to
another.

Linkage between re-
sistance genes (when
resistance is associ-
ated with presence of
gene)

When resistance is associated with presence of a particular gene, absence of
the gene from a particular MGE does not necessarily imply sensitivity to the
antibiotic (the gene may be present on another element). As a consequence,
spread of the MGE will spread resistance for resistance genes present on the
element, but not spread sensitivity when resistance genes are absent. Linkage
would thus favour association between resistance determinants. Even in this
case, however, we would expect the effect of linkage to be transient: recom-
bination and mutation eventually eliminate resistance determinants which do
not confer a fitness advantage, even from mobile genetic elements. For ex-
ample, in the PMEN1 pneumococcal lineage, there is evidence for loss of
aminoglycoside resistance from the Tn916 transposon which encodes tetra-
cycline, and sometimes macrolide, resistance [6].

Correlated drug expo-
sure of individual host

Correlated drug exposure could arise either through use of combination ther-
apy or through sequential drug exposure if the first choice of drug fails. In
practice, however, it is unclear how significant a role these mechanisms play
in MDR over-representation. In the United Kingdom for example, monother-
apy accounts for 98% of primary care prescriptions [7]. It is unclear whether
treatment failure rates (below 20% for the most commonly prescribed antibi-
otics in UK primary care [7]) and patterns of subsequent drug prescription
are enough to drive selection for multidrug resistance.

Cost epistasis (lower
than expected fitness
cost when multiple re-
sistance determinants
are present)

There is evidence of cost epistasis between resistance determinants occurring
in laboratory competition experiments for some antibiotics (e.g. between
streptomycin and rifampicin resistance in Pseudomonas aeruginosa [8] and
in E. coli [9]; streptomycin and quinolone resistance in E. coli [10]; and
rifampicin and ofloxacin resistance in Mycobacterium smegmatis [11]). Fur-
thermore, for plasmid-associated resistance genes, cost epistasis could also
arise if the presence of the plasmid in itself incurs a significant fitness cost
(rather than the fitness cost depending on the specific resistance genes it
carries). However, the extent to which epistasis plays a role in vivo remains
unclear [12]. In particular, we would not, a priori, expect to observe cost
epistasis between resistance determinants operating through entirely differ-
ent mechanisms.
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compete for the same hosts and simple models of competition therefore predict that the fitter strain will53

out-compete the other (‘competitive exclusion’) [13]. However, this is rarely observed: resistance frequen-54

cies have remained intermediate over long time periods in a number of species. For example, sustained55

intermediate resistance frequencies are observed in Europe for various antibiotics and numerous species,56

including E. coli, S. aureus and S. pneumoniae (European Centre for Disease Prevention and Control57

Surveillance Atlas, available at https://atlas.ecdc.europa.eu). Stable coexistence is also observed in surveil-58

lance data from multiple other locations (Centre for Disease Dynamics, Economics and Policy, available at59

https://resistancemap.cddep.org/AntibioticResistance.php). For further review of evidence for stable coexis-60

tence, see references [13, 14].61

Recent work has explored the role of i) host population structure [15, 16, 17], ii) pathogen strain structure62

[15, 14] and iii) within-host dynamics [18] in maintaining the coexistence of antibiotic sensitivity and resistance.63

In this paper, we identify a structural similarity in the first two categories of model: in these models, coexistence64

is maintained by mechanisms that introduce heterogeneity in the fitness benefit gained from resistance within65

the pathogen population. We show that models with this structure also predict high levels of association66

between resistance to different antibiotics: all resistance determinants will tend to be found where the fitness67

benefit gained from resistance is the greatest. The observed high frequency of multi-drug resistance is therefore68

in line with ecologically plausible models of coexistence, making these models a parsimonious explanation for69

both trends.70

2 Results71

2.1 Heterogeneity in the fitness effect of resistance: a generalised model of co-72

existence73

In this section, we discuss competitive exclusion and previously proposed coexistence mechanisms in the74

context of multidrug resistance. We identify a structural similarity in plausible models of coexistence [16, 15,75

14] and show that, in a multidrug context, models with this structure predict MDR over-representation. The76

model we present captures the dynamics of a bacterial species which is mostly carried asymptomatically (e.g.77

E. coli, S. aureus or S. pneumoniae), so the probability of a host being exposed to antibiotics does not depend78

on whether the host is infected with the pathogen [19]. Key results, however, are also applicable when this is79

not the case (see Discussion).80

2.1.1 Competitive exclusion in single and multi-drug systems81

The coexistence of antibiotic sensitivity and resistance has been previously discussed in the context of compe-82

tition between two strains (sensitive and resistance strains [13, 15, 14] or two resistant strains with different83

resistance profiles [16]). Simple models of such competition predict competitive exclusion [13]; we start by84
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briefly re-introducing this result and then demonstrate that competitive exclusion also applies in a multidrug85

context.86

We consider a SIS (susceptible-infectious-susceptible) model of resistant and sensitive variants of an87

otherwise genetically homogeneous pathogen (one strain) circulating in a homogeneous host population.88

To avoid ambiguity later in the paper, we will refer to the sensitive and resistant variants as ‘sub-strains’.89

Uninfected hosts (U) become infected with the resistant (Ir) or the sensitive (Is) sub-strain at rate βr and90

βs; infections are cleared at rate µr and µs; the sensitive sub-strain experiences an additional clearance rate91

τ corresponding to the population antibiotic consumption rate (we assume immediate clearance following92

antibiotic exposure); and resistance is associated with a fitness cost affecting transmission (βr = βscβ , where93

cβ ≤ 1) and/or clearance (µr =
µs
cµ

, where cµ ≤ 1). The dynamics of this model are described by:94

dIs
dt

= βsIsU − (τ + µs)Is

dIr
dt

= βrIrU − µrIr
(1)

This system allows an equilibrium solution where both Is and Ir are non-zero (i.e. stable coexistence of95

sensitivity and resistance) only when βs
τ+µs

= βr
µr

. In other words, the resistant and sensitive sub-strains coexist96

only when their basic reproductive numbers (the average number of new infections an infected host gives rise97

to in a fully susceptible population) are equal. When this is not the case, the model predicts competitive98

exclusion: when resistance provides a fitness advantage ( βs
τ+µs

< βr
µr

), only the resistant sub-strain will be99

observed, and vice-versa when the sensitive sub-strain is fitter than the resistant sub-strain ( βs
τ+µs

> βr
µr

).100

Defining overall fitness cost c = cµcβ and strain clearance rate µ = µs to simplify notation, this threshold101

can be expressed as resistance being selected for when:102

c[1 +
τ

µ
] > 1 (2)

Thus, as reported previously [14], the fitness effect of resistance, which determines whether the resistant103

sub-strain out-competes the sensitive sub-strain, depends on the population antibiotic consumption rate, the104

fitness cost of resistance and the strain’s mean duration of carriage ( 1
µ ), because longer carriage episodes105

have a greater risk of antibiotic exposure than shorter carriage episodes [14].106

We now extend this model to n antibiotics: sub-strains can be either sensitive or resistant to each antibiotic,107

giving a total of 2n competing sub-strains. Similarly to the single drug model presented above, resistance to108

each antibiotic j has a transmission associated fitness cost cβj and/or a clearance associated fitness cost cµj .109

We assume no cost epistasis between resistance determinants: the fitness cost of resistance to an antibiotic110

does not depend on which other resistances are present on the sub-strain. Note that this assumption is not111
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necessary for the demonstration of competitive exclusion in a multidrug context, but becomes important in112

later sections of paper. For consistency, we introduce it here. Therefore, a sub-strain k, resistant to the set113

of antibiotics R, has transmission rate βk = β
∏
j∈R cβj and clearance rate µk = µ∏

j∈R cµj
where β and µ are114

the transmission and clearance rates of the fully sensitive sub-strain. In addition, each sub-strain is cleared115

by the antibiotics it is sensitive to (set of antibiotics S), giving a total clearance rate of λk = µk +
∑
j∈S τj ,116

where τj is the consumption rate of antibiotic j. The dynamics of each sub-strain are therefore described by:117

dIk
dt

= βkIkU − λkIk (3)

for all k ∈ {1, ..., 2n} and with U = 1−
∑
k Ik. At equilibrium, λkβk = U holds for all strains with non-zero118

frequency - we therefore recover the result from the single drug model: sub-strains can only coexist when they119

have the same reproductive number. When this is not the case, the frequency of resistance to each antibiotic120

is either 0% or 100% and a single resistance profile with the highest reproductive number βk
λk

is expected to121

out-compete all others. In a multidrug context, therefore, coexistence-maintaining mechanisms are necessary122

to explain why multiple different resistance profiles are observed.123

2.1.2 Coexistence through heterogeneity in the fitness effect of resistance: single drug context124

In this section, we note a structural similarity in plausible models of coexistence: a number of recently proposed125

coexistence mechanisms work by introducing variation in the fitness effect of resistance within either the host126

population or the pathogen population. We show that models with this structure can be simplified to a127

series of independent SIS models, which will allow us to gain insight into the pattern of association between128

resistance to different antibiotics in a multidrug context. We start by presenting a simple model for conceptual129

insights; additional complexity is explored in later sections.130

In the first class of models we consider, coexistence arises from host population structure: assortatively131

mixing groups within the host population promote coexistence if the groups differ in the fitness effect of132

resistance, thus creating niches for resistance and sensitivity within the host population. This variation has133

been proposed to arise from between-group variation in the rate of antibiotic consumption (e.g. different134

antibiotic consumption in hospital and community settings [16], or between different age groups [15, 17])135

or between-group variation in clearance rate (e.g. age-specific clearance rate [14]). For assortative mixing136

between host groups to promote coexistence, transmission between groups must be very low: even modest137

transmission between groups causes the groups to act as a single population and therefore abolishes coexistence138

[17] (see also Section 2.2). By treating this very low transmission as no transmission, we can represent host139

structure by modelling each of the host groups as a separate SIS model, with dynamics captured by Equation 1.140

In other words, we model competition between sensitivity and resistance within each host group as independent141
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of the other host groups (Figure 1).142

In the second class of models, coexistence arises from heterogeneity within the pathogen, rather than host,143

population: the heterogeneity in fitness effect of resistance arises from the presence of strains with different144

durations of carriage, maintained by balancing selection on the duration of carriage locus (e.g. serotype-specific145

acquired immunity allowing coexistence of serotypes with different durations of carriage in the pneumococcus146

[20]) [14]. Hence, similarly to assortatively mixing host groups in the first class of models, strains with different147

durations of carriage act as niches for sensitivity and resistance: coexistence is maintained by competition148

between sensitivity and resistance occurring independently within each strain. By assuming no recombination,149

we can again represent competition between sensitivity and resistance within each strain as a separate SIS150

model (Figure 1). Note that this class of models requires the presence of balancing selection maintaining151

diversity at the duration of carriage locus. In the simplified representation, this balancing selection is not152

modelled explicitly - coexistence of the strains differing in duration of carriage is assumed (see Supporting153

Information 1 for further discussion of this point).154

Thus models in which coexistence arises from heterogeneity in the fitness effect of resistance - either within155

the host or pathogen population - can be represented by a series of independent SIS models. We refer to156

these individual SIS models as strata. In the case of a single strain circulating in a structured host population,157

the strata correspond to assortatively mixing host groups (e.g. age classes). In the case of multiple strains158

circulating in a homogeneous host population, the strata correspond to different strains (e.g. serotypes in159

the pneumococcus). When both strain and population structure are present, each stratum corresponds to a160

particular strain circulating in a particular host group. Following from Equation 2, resistance out-competes161

sensitivity in stratum pi (host group p and strain i) when:162

c(1 +
τp
µpi

) > 1. (4)

2.1.3 Coexistence through heterogeneity in the fitness effect of resistance: multidrug context163

We now extend this model to multiple antibiotics, which may differ in fitness cost and consumption rate.164

We assume no cost epistasis between resistance determinants: resistance to antibiotic a has the same fitness165

cost, ca, in presence and absence of resistance to antibiotic b. We also assume that different antibiotics are166

consumed in the same proportions in all host groups: antibiotic a accounts for proportion γa of total antibiotic167

consumption, with
∑n
a=1 γa = 1, where n is the number of different antibiotics. The consumption rate of168

antibiotic a for host group p is therefore γaTp, where Tp is the total antibiotic consumption rate of group p.169

Under these assumptions, following from Equation 2, resistance to antibiotic a out-competes sensitivity in
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limited mixing between groups

balancing selection on strain

A. Coexistence maintained by population structure

B. Coexistence maintained by strain structure

Figure 1: Illustration of how host population (panel A) and strain (panel B) structure maintain coexistence
by introducing heterogeneity in the fitness effect of resistance and thus creating niches for sensitivity and
resistance within the population. Each of the SIS model diagrams represents the resistance dynamics described
by Equation 1. A: The resistance dynamics of assortatively mixing host groups can be modelled as independent
SIS models by assuming no transmission between groups. Heterogeneity in the fitness effect of resistance
arises from between host group differences in antibiotic consumption rate or clearance rate. B: The resistance
dynamics of pathogen strains maintained by balancing selection can be modelled as independent SIS models
by assuming no recombination. Heterogeneity in the fitness effect of resistance arises from between strain
differences in clearance rate.
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host group p and strain i when:

ca[1 +
γaTp
µpi

] > 1 (5)

As before, there is no coexistence within the strata: below this threshold, sensitivity out-competes resis-170

tance. In a multi-drug context, a single resistance profile will therefore out-compete all others within each171

stratum.172

Equation 5 simplifies the dynamics of multidrug resistance in that it does not account for the effect of173

exposure to antibiotics other than a or for the effect of the absence/presence of resistance to these antibiotics.174

In absence of resistance to other antibiotics, the clearance rate experienced by the strain depends on the rate175

at which these other antibiotics are consumed. In the presence of resistance to other antibiotics, the clearance176

rate may depend on the fitness cost of these resistances (if fitness cost affects clearance rate). We will177

pursue our reasoning using this simplified model because it captures the mechanism leading to the association178

between resistance to different antibiotics. The additional complexity arising from the effect of resistance on179

clearance rate does not meaningfully alter our results (Section 2.2).180

2.1.4 Heterogeneity in the fitness effect of resistance: predicted patterns of resistance181

We can separate Inequality 5 into stratum (i.e host group and pathogen strain) and antibiotic related effects182

(left-hand and right-hand sides of Inequality 6, respectively):183

Tp
µpi

>
1

γa
(
1

ca
− 1) (6)

We call the ratio
Tp
µpi

resistance proneness (Ppi) and the ratio 1
γa
( 1
ca
− 1) resistance threshold (Ta). Ppi184

reflects how advantageous resistance is within stratum pi. High antibiotic consumption (high τp) and low185

clearance rate (low µpi) lead to high resistance proneness. Ta reflects how advantageous resistance against186

antibiotic a needs to be for it to be selected for. High fitness cost (low ca) and making up a low proportion187

of total antibiotic consumption (low γa) lead to high resistance threshold. Rewriting Equation 6 using this188

notation, resistance to antibiotic a is selected for in stratum pi when:189

Ppi > Ta (7)

Resistance proneness depends only on stratum and resistance threshold depends only on antibiotic. As a190

consequence, the ordering of strata by resistance proneness is independent of antibiotic and the ordering of191

antibiotics by resistance threshold is independent of stratum. Therefore, for a set of m strata, with resistance192
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proneness P1 < P2 < ... < Pm and for a set of n antibiotics, with resistance thresholds T1 < T2 < ... < Tn,193

the following will hold:194

Pi > Ta ⇒ Pi > Tb ∀ b < a (8)

Pi < Ta ⇒ Pi < Tb ∀ b > a (9)

That is, if resistance to antibiotic a is selected, resistance to antibiotics with a lower resistance threshold195

will also be selected for. Conversely, if resistance to a is not selected for, resistance to antibiotics with a higher196

resistance threshold will also not be selected for. Thus, the ordering of antibiotics by resistance threshold197

(T1 < T2 < ... < Tn) determines the ordering of antibiotics by resistance frequency: the higher the resistance198

threshold, the lower the resistance frequency and resistance to a particular antibiotic will only be seen on199

resistance profiles with all more frequent resistances. Therefore, the fitness variation model predicts non-zero200

frequencies for only n+1 out of the 2n possible resistance profiles: the only profile with resistance multiplicity201

of m (i.e. resistance to m antibiotics) will be the one with the m most common resistances (Figure 2). This202

pattern of resistance is referred to as ‘nested’ and predicts strong association between resistance to different203

antibiotics, with all resistance pairs in complete linkage disequilibrium (D’ = 1, where D’ is the normalised204

coefficient of linkage disequilibrium (LD) - see Methods).205

2.2 Extension: additional complexity206

In this section, we explore how introducing additional complexity to the simplified model affects our predictions207

about association between resistance determinants and nestedness.208

2.2.1 The effect of resistance on clearance rate209

The model presented above ignores the effect of the absence/presence of resistance to other antibiotics on the210

resistance threshold of antibiotic a. As discussed, this is a simplification because i) in the absence of resistance211

against other antibiotics, the exposure to these antibiotics will contribute to clearance and ii) the presence of212

resistance to other antibiotics will affect clearance if the fitness cost of resistance increases clearance rate. In213

a multidrug context therefore, Equation 5 is an approximation.214

In Supporting Information 3, we show that this approximation does not meaningfully affect our predic-215

tions about association between resistance determinants and nestedness of resistance profiles. The effect of216

resistance on clearance rate does not give rise to incomplete linkage disequilibrium (D′ < 1) and non-nested217

resistance profiles, except under very specific circumstances: if the fitness cost of resistance affects clearance218

rate and more commonly prescribed antibiotics also have higher fitness cost. Even when incomplete linkage219

disequilibrium is possible theoretically, the parameter range under which it arises is extremely narrow (see220
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Figure 2: Example of a set of resistance profiles from a system with five strata and four antibiotics. Each row
in the table corresponds to the resistance profile of one isolate - i.e. there are three isolates from each strata
(equal sampling/size of strata is not necessary). Competitive exclusion within a stratum means all isolates
from one stratum have the same resistance profile. The strata have been arranged from top to bottom in
order of decreasing resistance proneness (Ppi =

Tp
µpi

). The antibiotics have been arranged left to right in

order of increasing resistance threshold (Ta = 1
γa
( 1
ca
− 1)), or, equivalently, decreasing resistance frequency.

Resistance to a particular antibiotic outcompetes sensitivity in a stratum when the resistance proneness of the
stratum is greater than the resistance threshold of the antibiotic. Resistance proneness being independent of
antibiotic and resistance threshold being independent of stratum leads to nested resistance profiles (i.e. rarer
resistances only observed in the presence of more common ones) and complete linkage disequilibrium between
resistances. See Supporting Information 2 for an example of a set of non-nested resistance profiles.
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Supporting Information 3), suggesting incomplete linkage disequilibrium and non-nested resistance profiles221

being observed because of the effect of resistance on clearance rate is unlikely.222

2.2.2 Intergroup transmission and recombination223

In the model presented above, strata are fully independent, with no transmission between host groups and224

no recombination. As discussed, this is a simplification: coexistence can be maintained in the presence of225

mixing between strata if the rate of mixing is low enough [17]. In order to investigate the effect that mixing226

between strata has on our predictions about the association between resistance determinants, we construct227

i) a model with three different antibiotics and five host groups differing in clearance rate with transmission228

allowed between host groups and ii) a model with three different antibiotics and five strains differing in229

clearance rate with recombination allowed at the duration of carriage locus (see Methods for details). In both230

models, complete linkage disequilibrium is maintained in the presence of mixing between strata (Figure 3):231

mixing does not introduce any source of selection that would favour non-nested resistance profiles.232

We also investigate the effect of recombination at the resistance loci in the strain structured model (see233

Methods). (We do not implement recombination in the population structured model: we assume recombi-234

nation requires co-infection and expect no co-infection in this model because of competitive exclusion within235

each host group.) Unlike recombination at the duration locus, recombination at the resistance loci breaks up236

linkage disequilibrium (Figure 3), decreasing the magnitude of association between resistance determinants.237

However, this effect is gradual and high levels of LD are maintained even at unrealistically high rates of238

recombination (see Supporting Information 4).239

2.2.3 Imperfectly correlated strata240

In the simple model we present, the prediction of complete LD arises because we can separate the variation241

in the fitness effect of resistance into strata-related (i.e. pathogen and host) and antibiotic-related effects.242

This separability means that resistance proneness of a stratum is independent of antibiotic, which gives rise243

to complete LD between resistance to different antibiotics and resistance profiles with nested structure. This244

separability requires two assumptions: first, that the fitness cost of a particular resistance is the same in all245

strata (i.e. no variation in the fitness cost of resistance between strains) and second, that different types of246

antibiotics are consumed in the same proportions in all strata (i.e. variation in the rate at which host groups247

consume antibiotics, but not in the mixture of antibiotic types).248

Both of these requirements may represent oversimplifications of resistance dynamics. In the case of the249

first assumption, there is no direct evidence for stable variation in the fitness cost of resistance (i.e. variation in250

fitness cost maintained by balancing selection, preventing the lower fitness cost phenotype reaching fixation).251

However, the processes determining fitness cost are not fully understood and the fitness cost of resistance252

mutations is thought to depend on both genetic background and environment [21]. It is therefore difficult to253

12

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 10, 2019. ; https://doi.org/10.1101/233957doi: bioRxiv preprint 

https://doi.org/10.1101/233957
http://creativecommons.org/licenses/by-nd/4.0/


Transmission between host groups

0.000 0.002 0.004 0.006 0.008 0.010
0.0

0.2

0.4

0.6

0.8

1.0

Intergroup Transmission

R
es
is
ta
nc
e
Fr
eq
ue
nc
y

Antibiotic
A
B
C

0.000 0.002 0.004 0.006 0.008 0.010
0.0

0.2

0.4

0.6

0.8

1.0

Intergroup Transmission

M
ea
n
LD

0.000 0.002 0.004 0.006 0.008 0.010
0.0

0.2

0.4

0.6

0.8

1.0

Recombination

R
es
is
ta
nc
e
Fr
eq
ue
nc
y

Antibiotic
A
B
C

0.000 0.002 0.004 0.006 0.008 0.010
0.0

0.2

0.4

0.6

0.8

1.0

Recombination

R
es
is
ta
nc
e
Fr
eq
ue
nc
y

Antibiotic
A
B
C

0.000 0.002 0.004 0.006 0.008 0.010
0.0

0.2

0.4

0.6

0.8

1.0

Recombination

M
ea
n
LD

0.000 0.002 0.004 0.006 0.008 0.010
0.0

0.2

0.4

0.6

0.8

1.0

Recombination

M
ea
n
LD

Recombination at duration locus Recombination at resistance loci

Figure 3: Strain frequencies and mean linkage disequilibrium (LD) between resistances in three models with
three antibiotics (A, B and C) consumed at different rates. Left: a model with host population structure (five
assortatively mixing host groups) with increasing levels of intergroup transmission. The rate of intergroup
transmission on the x-axis (parameter m in the model represented by Equation 10, see Methods) reflects
the proprotion of transmission events that occur between, instead of within, host group. Middle: a model
with strain structure (five strains differing in duration of carriage) with increasing rates of recombination at
the duration of carriage locus. Recombination rate on the x-axis (parameter r in the model represented by
Equation 11, see Methods) reflects the probabilitity of co-infection, the probability of recombination occuring
during co-infection and the probability of the recombinant strain being transmitted. Right: the same model
with strain structure (five strains differing in duration of carriage) with increasing rates of recombination at
the resistance loci.

rule out that stable between-strain variation might exist. Similarly, the assumption about antibiotic prescription254

rates is generally plausible, but might not hold in all contexts. For example, prescription rates of different255

antibiotic classes are highly correlated between US States (mean correlation over 0.9, based on data from the256

Center for Disease Dynamics, Economics & Policy, available at https://resistancemap.cddep.org). However,257

correlations between relative prescription rates may not be so high between all host groups, such as children258

and adults. For example, fluoroquinolones are primarily used in adults but not children [22] which may explain259

why association between resistances is weaker for fluoroquinolones than for other antibiotics [2].260

To test the extent to which antibiotic-specific resistance proneness affects predictions about resistance261

profiles, we simulate strata with increasingly uncorrelated resistance proneness for different antibiotics (see262

Methods). The frequency of nested resistance profiles and the average linkage disequilibrium decreased with263

decreasing correlation (Figure 4). However, the effect was gradual: imperfectly correlated resistance proneness264

gives rise to relatively high frequencies of nested resistance profiles and above zero mean D′. The association265

between resistance determinants is only lost (mean D′ = 0) when resistance proneness is fully uncorrelated.266

The fitness variation model therefore predicts association between resistance determinants even when the267

fitness variation giving rise to coexistence is not identical for all antibiotics.268
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Figure 4: The extent of predicted association between resistance to different antibiotics depends on the
extent to which the fitness effect of resistance is correlated for the different antibiotics. The figure shows the
proportion of nested resistance profiles and mean D’ between resistance pairs for simulated data with varying
concordance in resistance proneness to different antibiotics (see Supporting Information 2 for examples of
nested and non-nested resistance profiles). Concordance in resistance proneness is measured as spearman
correlation in resistance proneness across antibiotics. Each data point corresponds to one simulated dataset
(1000 simulated datasets for each level of discordance, see Methods). The simulated datasets have the same
dimensions and resistance frequencies as the Maela pneumococcal dataset (Table 2). The proportion of nested
resistance profiles in the Maela dataset is 0.71 and the mean D’ is 0.46.

2.3 Model predictions are consistent with trends in bacterial datasets269

2.3.1 High levels of association between resistance determinants270

The fitness variation model predicts high levels of linkage disequilibrium between resistance to different an-271

tibiotics and a high proportion of resistance profiles with a nested structure. We measured these quantities in272

six bacterial datasets for which data on resistance to multiple antibiotics was available (four hospital datasets273

from the United States for different species and two pneumococcal datasets from Massachusetts and Maela274

- see Methods for additional details) and found trends consistent with our predictions (Table 2).275

2.3.2 Duration of carriage predicts resistance multiplicity276

The fitness variation model predicts that duration of carriage and antibiotic consumption rate within strata277

will determine resistance multiplicity. Fully testing this prediction is challenging, because we do not have a278

full understanding of which host and pathogen characteristics are relevant in defining the strata. To partially279

test the prediction, we test the association between duration of carriage and resistance using a dataset of280

pneumococcal carriage episodes and associated durations of carriage [23] (‘Maela dataset’, see Methods).281

The average resistance multiplicity of a serotype is indeed positively associated with the serotype’s average282

duration of carriage (Kendall rank correlation 0.27 95% CI 0.05-0.46, n = 38 excluding serotypes with fewer283

than 10 observations). A caveat here is that the direction of causality for this association is not entirely clear:284
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Species Setting n Drugs D̂′ (min,max) Nested
Pseudomonas aeruginosa Hospital (USA) 1380 9 0.59 (0.18,0.97) 0.61
Escherichia coli Hospital (USA) 5715 13 0.56 (-1,1) 0.65
Klebsiella pneumoniae Hospital (USA) 1426 13 0.77 (0.15,1) 0.77
Staphylococcus aureus Hospital (USA) 4519 9 0.60 (0.05, 1) 0.86
Streptococcus pneumoniae Community (Maela) 2244 6 0.46 (-0.66,0.95) 0.71
Streptococcus pneumoniae Community (Massachusetts) 603 4 0.58 (0.32,1) 0.82

Table 2: Mean pairwise LD between antibiotic pairs (D̂′) and proportion of resistance profiles that are nested
for six bacterial datasets (see Methods for details of datasets). The ”n” column indicates the number of
isolates in the dataset and the ”drugs” column indicates the number of drugs resistance was tested for.
Positive D′ indicates resisistance determinants tend to appear together. The values in parentheses give the
range of pairwise D′ in the dataset. Note that in the instances where the minimum D′ value is negative or
close to zero, at least one of the resistances in the pair this D′ value corresponds to is present at very low
frequency in the dataset (0.08% for the E. coli dataset, 1.7% in the S. auerus dataset, 6.1% for the Maela
pneumococcal dataset).

we suggest long duration of carriage selects for resistance but resistance would also be expected to lead to285

longer duration of carriage through decreased clearance from antibiotic exposure. However, at the serotype286

level, differences in duration of carriage are thought to arise from the properties of serotype capsules [24]287

(rather than differences in antibiotic resistance). This suggests that longer duration of carriage favouring288

resistance does indeed contribute to the association between duration of carriage and resistance multiplicity.289

3 Discussion290

3.1 Generalised model of coexistence predicts high frequencies of multidrug resis-291

tance292

In this paper, we approach the question of explaining observed patterns of association between resistance to293

different antibiotics (‘MDR over-representation’) in terms of understanding the competition between strains294

with different resistance profiles. We consider recent models of coexistence [16, 15, 14, 17] in which coexistence295

is maintained by heterogeneity in the fitness effect of resistance, arising either from heterogeneity in the rate296

of antibiotic consumption and/or difference in duration of carriage. We present a generalised version of297

these types of models, in which competition between antibiotic sensitivity and resistance is simplified to298

a series of independent sub-models (strata). We show that this model structure also gives rise to MDR299

over-representation because resistance to all antibiotics will be selected for in the strata where the fitness300

benefit of resistance (‘resistance proneness’) is the highest. Therefore, our results suggest that two pervasive301

trends in resistance dynamics, the robust coexistence of antibiotic sensitive and resistant strains and the302

over-representation of multidrug resistance, can both be explained by heterogeneity in the fitness effect of303

resistance in the pathogen population.304

We first present a simplified model for conceptual insights and then explore how additional complexity305

affects predicted trends. Under the strong assumption of identical antibiotic prescription patterns in all strata306
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and no recombination, this model predicts complete linkage disequilibrium (D′ = 1) between resistance to all307

antibiotics. Relaxing these assumption decreases the magnitude of linkage disequilibrium, giving rise to values308

of D′ similar to those observed in multiple bacterial datasets. High D′ is maintained even at unrealistically309

high recombination rates. The association between resistance determinants is only abolished when resistance310

proneness between strata is completely uncorrelated. Thus, even in context where patterns of prescription311

differ considerably between host groups, we would still expect a degree of association between resistance312

determinants when variation in duration of carriage contributes to variation in the fitness effect of resistance.313

Our results therefore show that when variation in the fitness effect of resistance is present and when this314

variation is at least partially correlated for different antibiotics, it will give rise to MDR over-representation.315

The extent to which this mechanism accounts for observed patterns of MDR over-representation therefore316

depends on the extent to which this type of fitness variation is present in pathogen populations.317

It is not entirely straightforward to evaluate how common variation in the fitness effect of resistance is.318

Wide-spread coexistence of sensitivity and resistance is not direct evidence for the pervasiveness of fitness319

variation because coexistence may not always arise through this mechanism. Although the majority of mech-320

anisms proposed to date [16, 15, 14, 17] work through fitness variation, other mechanisms are also possible321

[13]. In particular, recent modelling suggests that co-infection with sensitive and resistant strains gives rise322

to frequency-dependent selection for resistance and thus promotes coexistence [18]. However the magnitude323

of this effect depends on the nature of within-host competition [18], which there is limited data about. Thus324

while theoretically plausible, the extent to which this mechanism contributes in practice is still unclear. It is325

worth noting that different coexistence mechanisms are not mutually exclusive. If coexistence arises through326

a combination of fitness variation and other mechanisms, we would a priori still expect the fitness variation327

to give rise to MDR over-representation.328

In the work presented here, we consider fitness variation arising from heterogeneity in antibiotic consump-329

tion between host groups (hospitals vs communities, geographic regions, age classes) and from heterogeneity330

in duration of carriage between host groups (age classes) and between strains (pneumococcal serotypes). This331

is not an exhaustive list of possible sources of heterogeneity. For example, serotype does not fully account for332

heritable variation in pneumococcal duration of carriage [23], suggesting other genetic traits also play a role in333

determining carriage duration. In light of recent results suggesting wide-spread negative frequency-dependent334

selection in bacterial genomes [25, 26], it is not implausible to suggest these duration of carriage loci may335

also be under frequency-dependent selection. If so, diversity at these loci would create another source of vari-336

ation in the fitness effect of resistance and hence promote coexistence and MDR over-representation. More337

broadly, variation in the fitness effect of resistance may arise through different mechanisms for pathogens with338

a different ecology than modelled in this work. For example, we have modelled a pathogen that is mostly339

carried asymptomatically and therefore exposed primarily to antibiotics prescribed against other infections.340

For pathogens where antibiotics prescribed due to infection with the pathogen itself contribute to a signif-341
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icant proportion of antibiotic exposure, the presence of strains differing in invasiveness would give rise to342

between-strain variation in antibiotic exposure and heterogeneity in the fitness effect of resistance.343

In summary, fitness variation is likely contributes to the pervasive coexistence of antibiotic sensitivity and344

resistance and therefore plays a role in wide-spread MDR over-representation, although this does not preclude345

a potential role for other mechanisms in contributing to the trend (Table 1).346

Finally, although the model builds on work exploring the stable coexistence of antibiotic sensitivity and347

resistance and coexistence is robustly observed in multiple datasets, the prediction that variation in the fitness348

effect of resistance leads to MDR over-representation does not require coexistence to be stable. We would349

expect MDR over-representation in the presence of fitness variation, even when this variation is not enough350

to maintain stable coexistence: for all antibiotics, the increase of resistance frequencies towards fixation351

would occur most rapidly in the populations with the greatest selection pressure for resistance. Under these352

circumstances, fitness variation would give rise to transient MDR over-representation.353

3.2 Public health implications354

From a public health perspective, the fitness variation model makes two concerning predictions. Firstly, we355

predict frequencies of pan-resistance will be high: in a perfectly nested set of resistance profiles, the frequency356

of pan-resistance is equal to the frequency of the rarest resistance. As a consequence, we would expect357

resistance arising in response to adoption of new antibiotics or increased usage of existing antibiotics to358

appear on already multidrug resistant lineages - an observation which has been made for the emergence of359

ciprofloxacin resistance in N. gonorrhoeae in the United States [27].360

Secondly, our analysis has implications for the effectiveness of potential interventions against MDR. The361

variation in the fitness effect of resistance to different antibiotics need not be perfectly correlated for it to362

promote MDR over-representation. If the variation in fitness effect is maintained by multiple factors (e.g.363

differential antibiotic consumption between populations and variation in clearance rates), removing one of364

these factors (e.g. changing patterns of prescription) may have limited impact on MDR.365

The fitness variation model provides an explanation for MDR over-representation that is consistent with366

long term stability in resistance frequencies. This is relevant when considering temporal trends in resistance367

frequencies and predicting the future burden of resistance: other explanations for MDR over-representation368

(e.g. cost epistasis, correlated antibiotic exposure at the individual level - see Table 1) often require MDR369

strains to have an overall fitness advantage over strains with lower resistance multiplicity. This would imply370

that the higher than expected frequency of MDR is evidence for MDR strains out-competing other strains and371

thus suggest that MDR strains will eventually take over. Conversely, in the model we present, MDR strains are372

not out-competing other strains: all resistance frequencies are at equilibrium and MDR over-representation373

arises from the distribution of resistance determinants. It is worth noting, however, that even in the context374

of the fitness variation model, on a very long time-scale, we might expect the frequency of resistance to rise375
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if bacteria are able to evolve resistance mechanisms that carry a lower fitness cost.376

3.3 Conclusion377

We show that previously proposed models in which coexistence of antibiotic sensitivity and resistance is378

maintained by heterogeneity in the fitness effect of resistance also predict high frequencies of multidrug379

resistance. The pervasive trends of coexistence and MDR over-representation can therefore be considered, at380

least partially, facets of the same phenomenon. We do not propose that the model we present fully explains381

observed patterns of association between resistance determinants. However, this effect should be considered382

when evaluating the role of antibiotic-specific MDR promoting mechanisms. From a public health point of383

view, the model we present is concerning because it predicts high frequencies of pan-resistance. On the other384

hand, heterogeneity in the fitness effect of resistance as an explanation for MDR over-representation allows385

reconciling this trend with long term stability in resistance frequencies.386

4 Methods387

4.1 Datasets388

The Maela pneumococcal dataset [28], collected from a refugee camp on the border of Thailand and Myanmar389

from 2007 to 2010, consisted of 2244 episodes of carriage, with associated antibiograms and carriage durations.390

Data were obtained from, and durations of carriage calculated by, Lees et al. [23] (Supporting Data 1). Data391

on antibiotic sensitivity was provided for ceftriaxone, chloramphenicol clindamycin, erythromycin, penicillin,392

co-trimoxazole (trimethoprim/sulfamethoxazole) and tetracycline. Ceftriaxone was excluded from the analysis393

because data was missing for a large proportion of isolates (44%). The Massachusetts pneumococcal dataset,394

collected as part of the SPARC (Streptococcus pneumoniae Antimicrobial Resistance in Children) project395

[29], was obtained from Croucher et al. (2013) [30] (data available from Croucher et al [30]). Croucher et396

al. reported minimum inhibitory concentrations (MICs) for penicillin, ceftriaxone, trimethprim, erithromycin,397

tetracycline and chloramphenicol. Tetracycline and chloramphenicol were excluded from the analysis because398

data was missing for a large proportion of isolates (47% and 67% respectively). Non-sensitivity was defined399

in accordance to pre-2008 Clinical and Laboratory Standards Institute breakpoints [31]. For both datasets,400

‘resistance’ as used throughout the paper refers to non-sensitivity. The four hospital datasets were obtained401

from Chang et al. [2] (Supporting Data 2).402

4.2 Linkage disequilibrium403

If the frequency of resistance to antibiotic a is pa and the frequency of resistance to antibiotic b is pb,404

the coefficient of linkage disequilibrium between resistance to antibiotics a and b is Dab = pab − papb,405
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where pab is the frequency of resistance to both a and b. The normalised coefficient D′ab is given by:406

D′ab =
Dab

min(papb,(1−pa)(1−pb)) if Dab < 0 and D′ab =
Dab

min(pa(1−pb),(1−pa)pb) if Dab > 0.407

In general the sign of D′ is arbitrary because it depends on which alleles are chosen for the calculation.408

We consistently calculate D′ using the frequency of resistance: positive D′ therefore means resistance to one409

antibiotic is associated with resistance to the other, while negative D′ means association between sensitivity410

and resistance.411

We use D′ as a measure of linkage disequilibrium (as opposed to the other commonly used metric r2)412

because the fitness effect model makes prediction specifically about D′. The coefficient of determination, r2,413

measures the extent to which isolates that are resistant to one antibiotic are also resistant to another antibiotic414

while D′ captures the extent to which resistance to two antibiotics will be found in the same isolates, given415

the observed resistance frequencies. Therefore, r2 is affected by how similar resistance frequencies are and by416

the distribution of the resistant determinants, while D′ is only affected by the latter.417

4.3 Effect of intergroup transmission and recombination418

To test the effect of relaxing the assumption that the pathogen dynamics can be divided into non-interacting419

sub-models, we include three additional models.420

First, we model the dynamics of resistance to three antibiotics (i.e. eight possible resistance profiles)421

spreading in a host population consisting of five host groups. The antibiotics make up different proportions422

of total antibiotic consumption (20, 35 and 45% of total antibiotic consumption rate τ). The pathogen423

experiences a different clearance rate within each host class p (µp). In addition, sub-strain with resistance424

profile g experiences clearance from antibiotic exposure at rate τg which depends on its resistance status:425

τg = τ(ia0.20 + ib0.35 + ic0.45), where ia = 1 if g is sensitive to antibiotic a and 0 otherwise. Resistance426

to each antibiotic decreases transmission rate by a factor of c. Uninfected hosts of class p (Up) are therefore427

infected at rate cngβ
[
(1−m)Ig,p+

m
4

∑
x∈P ′ Ig,x

]
, where ng is the number of antibiotics strain g is resistant428

to, m is a parameter that sets the extent of mixing between the classes and P ′ is the set of population classes429

excluding p. The dynamics of strain g within population p are thus described by:430

dIg,p
dt

= cngβ

[
(1−m)Ig,p +

m

4

∑
x∈P ′

Ig,x

]
Up − (τg + µp)Ig,p (10)

Second, we model the dynamics of resistance to three antibiotics in a single host population in pathogen431

with five strains differing in clearance rate (i.e. eight resistance profiles and five strains, giving a total of432

40 possible sub-strains) with recombination at the duration of carriage locus. Strain i is cleared at rate µi433

and, as above, sub-strains with resistance profile g experience clearance from antibiotic exposure at rate τg434

which depends on its resistance status: τg = τ(ia0.20 + ib0.35 + ic0.45). Resistance to each antibiotic435
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decreases transmission rate by a factor of c. Balancing selection is modelled similarly to Lehtinen et al.436

[14], by scaling transmission rate of strain i by a factor ψi which depends on the strain’s prevalence: ψi =437

(1− [
∑
x Ix,i
1−U − 1

5 ])
k, where k is a parameter setting the strength of balancing selection and U is the uninfected438

host class. Recombination at the duration of carriage locus is modelled by allowing hosts infected with strain439

i with resistance profile g to transmit strain j with resistance profile g at a rate r
∑
x Ix,j . Recombination440

therefore decreases the transmission of strain i with resistance profile g by ρg,i = rIg,i
∑
x

∑
y Ix,y and441

increases it by κg,i = r
∑
y

∑
x Ig,yIx,i. Note that the recombination rate parameter r captures the probability442

of co-infection, the probability of recombination occurring and the probability of transmitting the recombinant443

sub-strain. The dynamics of strain i with resistance profile g are described by:444

dIg,i
dt

= cngψiβ

[
Ig,i − ρg,i + κg,i

]
U − (τg + µi)Ig,i (11)

The third model is the same as the one above, with the exception that recombination occurs at the445

resistance loci instead of the duration of carriage locus. It is therefore described by Equation 11, but the446

expressions for ρ and κ are different. We define resistance profile g′a as a resistance profile otherwise identical447

to g, but with the other allele at locus a (i.e. if g is sensitive to antibiotic a, g′a is resistant), Ng,a as the set448

of resistance profiles with the same allele at locus a as profile g and N ′g,a as the set of resistance profiles with449

the different allele at locus a than profile g. Hosts infected with strain i with resistance profile g transmit450

a strain i with a resistance profile g′a at rate r
∑
j

∑
x∈N ′

g,a
Ix,j . Recombination can occur at any of the451

three resistance loci (we assume recombination rates are low enough to ignore the possibility of recombination452

occurring at multiple loci at the same time). Recombination therefore decreases the transmission of strain i453

with resistance profile g by ρg,i = 3rIg,i
∑
x

∑
y Ix,y and increases it by κg,i = r(Ig′a,i

∑
y

∑
x∈Ng,a Ix,y +454

Ig′b,i
∑
y

∑
x∈Ng,b Ix,y + Ig′c,i

∑
y

∑
x∈Ng,c Ix,y).455

The parameter values for the results presented in Figure 3 are: c = 0.95, β = 2, {µ1, .., µ5} =456

{1.2, 1., 0.8, 0.6, 0.4}, τ = 0.12 and k = 5.457

4.4 Effect of imperfectly correlated strata resistance proneness458

To test the effect of relaxing the assumptions that lead to strata resistance proneness being identical for all459

antibiotics (i.e. antibiotics consumed in the same proportions within all strata and the cost of resistance460

being the same within all strata), we created simulated resistance data similar to the Maela dataset (2244461

isolates, 6 antibiotics). We randomly assigned a resistance proneness (i.e.
τp
µpi

) to each isolate. We then462

set resistance thresholds for each antibiotic. Isolates with a resistance proneness above this threshold were463

resistant. (The resistance thresholds were chosen to give the same resistance frequencies as observed in the464

Maela data). We then calculated the proportion of nested resistance profiles for this simulated dataset. To465
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generate imperfectly correlated proneness, we replicated the resistance proneness vector for each antibiotic to466

generate a resistance proneness matrix. In this initial matrix, each isolate had identical resistance proneness for467

all antibiotics. We then redrew resistance proneness values for a proportion of randomly chosen entries in this468

matrix (proportion labelled as ‘noise in rankings’ in Figure 4), thus generating differing resistance proneness469

to different antibiotics. Resistance was then assigned and nestedness calculated as above. By increasing the470

proportion of redrawn entries, we generated increasingly uncorrelated fitness advantage rankings.471
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