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Abstract

Antibiotic resistance, and in particular, multidrug resistance are public health concerns. Yet, there has been
little theoretical work on the evolutionary dynamics of multidrug resistance (MDR). Here, we present a generic
model of MDR inspired by two pervasive trends in resistance dynamics. The first trend is the robust coexistence
of antibiotic sensitivity and resistance in multiple bacterial species and for numerous antibiotics. The second
is that resistance to different antibiotics tends to be concentrated on the same strains, giving rise to high
MDR frequencies. We argue that these two observations are linked: mechanisms that maintain coexistence
also promote high MDR frequencies. This argument is based on the recognition that, in many of the most
plausible models of coexistence, the coexistence-maintaining mechanism is fundamentally similar: either strain
or host population structure stratifies the pathogen population into sub-populations and introduces variation
in the fitness effect of resistance between these sub-populations. We show that this model structure also gives
rise to high MDR frequencies, because resistance against all antibiotics is concentrated in the sub-populations
where the fitness advantage gained from resistance is high. We test predictions from this model on two
pneumococcal datasets and find predicted trends are qualitatively consistent with those observed in data.
This model provides a parsimonious explanation for the pervasiveness of high MDR frequencies and allows us
to reconcile this trend with observed long-term stability in the prevalence of resistance.

1 Introduction

Antibiotic resistance and, in particular, multidrug resistance (MDR) are public health threats. Multidrug
resistant infections are associated with poorer clinical outcomes and higher cost of treatment than other
infections [18, 5] and there is concern that the emergence of pan-resistant strains (pathogens resistant to
all available antibiotics) will render some infections untreatable. For example, there are multiple reports of
resistance in Neisseria gonorrhoeae leading to treatment failure with cefixime, the last remaining monotherapy
option [32]. Emergence of pan-resistance has also been reported in other Gram-negative bacteria [15].

From the point of view of finding effective treatment options, multidrug resistance is particularly problem-
atic because resistance to different antibiotics tends to be concentrated in the same strains: the frequency of
MDR strains is higher than we would expect from the frequencies of individual resistance determinants if these
were distributed randomly in the population [5]. The evolutionary processes that drive this trend of ‘MDR
over-representation’ are not fully understood. Previously suggested explanations (discussed below) focus on
specific mechanisms that might lead to different resistance determinants being found in the same strains, but
do not consider the problem more broadly in terms of competition between strains with different resistance
profiles.

Indeed, there is little theoretical work on the ecology of MDR strains in general. Generic models of
competition between sensitivity and resistance generally focus on a single antibiotic [2, 8]. Models of multidrug
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resistance, on the other hand, have either only included competition between a subset of the possible resistance
profiles [7, 26] or sought to answer specific, rather than general, questions about the behaviour of MDR strains
(e.g. the impact of changes in antibiotic consumption rates) [34, 17].

In this paper, we develop a generic model of multidrug resistance to explain the over-representation of
MDR strains. Our approach builds on work exploring the mechanisms maintaining stable coexistence of an-
tibiotic sensitivity and resistance in Streptococcus pneumoniae [8, 29, 6]. We identify structural similarities in
many of the most plausible coexistence-maintaining mechanisms and show that these coexistence-maintaining
mechanisms also give rise to MDR over-representation. More specifically, we argue that mechanisms that in-
troduce variation in the fitness advantage gained from resistance within the pathogen population promote
coexistence by creating niches for resistance and sensitivity (see below). Such mechanisms also promote
MDR over-representation because all resistance determinants will tend to be found where the fitness ad-
vantage gained from resistance is the greatest. We therefore suggest that explaining stable coexistence and
persistent MDR over-representation are in fact facets of the same problem. This model predicts patterns of
resistance that are qualitatively consistent with those observed in S. pneumoniae datasets.

Before presenting the model, we will review i) evidence in support of, and ii) potential explanations for
both stable coexistence and MDR over-representation.

1.1 Coexistence of sensitivity and resistance

Stable coexistence of antibiotic sensitivity and resistance is common. Although there are specific examples of
resistance reaching fixation (e.g. penicillin resistance in Staphylococcus aureus [30]), resistance frequencies
have remained intermediate over long time periods in a number of species. For example, sustained interme-
diate resistance frequencies are observed in Europe for various antibiotics and numerous species, including
Escherichia coli, S. aureus and S. pneumoniae (European Centre for Disease Prevention and Control Surveil-
lance Atlas, available at https://atlas.ecdc.europa.eu). Thus, while coexistence of sensitive and resistant
strains is not universal, it is very common across species and antibiotic classes.

In theory, if the dynamics of resistance were slow enough, apparently stable coexistence could arise from
a slow increase of resistance towards fixation. This interpretation is implausible, however, because there is
evidence for rapid changes in the prevalence of resistance in response to changes in antibiotic consumption.
For example, the frequency of antibiotic resistance fluctuates with seasonal variation in antibiotic prescriptions
in E. coli and S. aureus [37] and S. pneumoniae [13, 3]. There is also evidence to suggest antibiotic resistance
in N. gonorrhoeae is higher in the winter months, potentially relating to higher antibiotic consumption [23].

Stable coexistence of sensitivity and resistance is unexpected: simple models of competition between sen-
sitive and resistant strains predict that the fitter strain would out-compete the other (‘competitive exclusion’)
[8]. In species for which carriage is generally symptomatic, coexistence might be maintained by rates of
drug prescription being dependent on the frequency of resistance (e.g. if prescriptions are discontinued once
resistance reaches a certain threshold) [2]. However, for many species, drug consumption is unlikely to depend
on the frequency of resistance: bacteria which are mostly carried asymptomatically (e.g. E. coli, S. aureus,
S. pneumoniae) are primarily exposed to antibiotics prescribed against other infections.

There are a number of possible mechanisms which may maintain coexistence of sensitivity and resistance.
We have previously suggested that bacterial duration of carriage affects the fitness advantage gained from
resistance [29]. As a consequence, balancing selection maintaining variation in a pathogen population’s
clearance rate (e.g. serotype-specific acquired immunity in the pneumococcus) can maintain coexistence of
sensitivity and resistance [29]: the strains differing in duration of carriage can be thought of as niches for
sensitivity and resistance. Assortatively mixing sub-groups within the host population promote coexistence if
the sub-groups differ in antibiotic consumption or clearance rates [6, 26]. The structure of these mechanisms
is very similar: heterogeneity in the host or pathogen population maintains variation in the fitness advantage
of resistance, allowing sensitivity and resistance to coexist by occupying different niches. It is unclear whether
coexistence can be fully explained by these mechanisms: a model incorporating all of the effects above did
not fully replicate the extent of coexistence in S. pneumoniae [6]. The unexplained coexistence could arise
from unmodelled sources of heterogeneity, or some as yet unidentified coexistence-promoting mechanisms.
Nevertheless, heterogeneity in the fitness advantage gained from resistance is likely to play a major role in
maintaining coexistence of sensitivity and resistance.

1.2 MDR over-representation

The frequency of multidrug resistance is higher than expected from the frequencies of resistance against
individual antibiotics: isolates resistant to one antibiotic are more likely to also be resistant to other antibiotics.
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Positive correlations between resistance to different drugs have been found in multiple species, including
S. pneumoniae, N. gonorrhoeae, S. aureus, Enterobacteriaceae and Mycobacterium tuberculosis [5]. This
pattern is pervasive: these correlations have been observed between resistance to antibiotics acting through
different mechanisms, and between chromosomal and mobile genetic element (MGE) associated resistance
determinants. Explanations for MDR over-representation must therefore be either sufficiently general or
sufficiently diverse to account for this pervasiveness.

The most straightforward explanation for MDR over-representation is that one resistance mechanism may
confer resistance against multiple drugs. This is particularly relevant for antibiotics of the same class (e.g.
β-lactamases and some penicillin-binding protein mutations conferring resistance against multiple β-lactams).
However, shared mechanisms also exist for drugs of different classes: there are examples of efflux pumps
acting on multiple drugs in numerous species [36] and evidence for clinical relevance of efflux pumps in
multidrug resistance [35]. However, efflux pumps by themselves are not a sufficient explanation for MDR
over-representation between drugs of different classes because excess MDR is also present where efflux pumps
are not thought to be a major mechanism of resistance (e.g. between β-lactams and other classes of antibiotics
in S. pneumoniae [5]).

If MDR over-representation is not simply due to multi-resistance mechanisms, it must also arise from
multiple resistance genes accumulating in a single cell. Genetic linkage between resistance determinants has
been suggested as a potential mechanism promoting this accumulation [5], particularly for resistance genes on
mobile genetic elements (MGEs) [33]. Here, it is helpful to distinguish between resistance mechanisms where a
particular allele of a gene confers resistance (e.g. target modification) and those where resistance is associated
with the presence of a resistance gene (e.g. enzymes that break down the drug). For the former category,
genetic linkage is not a plausible mechanism for generating MDR over-representation: a priori, linkage is no
more likely to promote association between resistance determinants than association between resistance to
one antibiotic and sensitivity to another.

Linkage seems like a more promising explanation for association between the second type of resistance
determinants, particularly if these determinants are found on mobile elements. When resistance is associated
with presence of a particular gene, absence of the gene from a particular MGE does not necessarily imply
sensitivity to the antibiotic (the gene may be present on another element). As a consequence, spread of
the MGE will spread resistance for resistance genes present on the element, but not spread sensitivity when
resistance genes are absent. Linkage would thus asymmetrically favour association between resistance deter-
minants. Even in this case, however, we would expect the effect of linkage to be transient: recombination and
mutation eventually eliminate resistance determinants which do not confer a fitness advantage, even from
mobile genetic elements. For example, in the PMEN1 pneumococcal lineage, there is evidence for loss of
aminoglycoside resistance from the Tn916 transposon which encodes macrolide and sometimes tetracycline
resistance [11].

In theory, accumulation of multiple resistance determinants in a cell could also arise from correlations in
drug exposure - either because of use of combination therapy or through sequential drug exposure if the first
choice of drug fails. In practice, however, it is unclear how significant a role these mechanisms play in MDR
over-representation. Guidelines recommend single-agent antibiotic therapy over combination therapy under
most circumstances [27], suggesting combination therapy is unlikely to represent a significant proportion of
prescriptions for the majority of antibiotics. In the United Kingdom for example, monotherapy accounts for
98% of primary care prescriptions [12]. It is unclear whether treatment failure rates (below 20% for the most
commonly prescribed antibiotics in UK primary care [12]) and patterns of subsequent drug prescription are
enough to drive selection for multidrug resistance.

Finally, accumulation of multiple resistance determinants could also arise from ‘cost epistasis’ between
resistance determinants (i.e. lower than expected fitness cost when both determinants are present). Indeed,
there is evidence of cost epistasis between resistance determinants occurring in laboratory competition ex-
periments in a number of species, including between streptomycin and rifampicin resistance in Pseudomonas
aeruginosa [41] and in E. coli [1], and streptomycin and quinolone resistance in E. coli [38]. There is also in
vitro evidence of cost epistasis between rifampicin and ofloxacin resistance in Mycobacterium smegmatis [4].
However, the extent to which epistasis plays a role in vivo remains unclear [43]. In particular, we would not,
a priori, expect to observe cost epistasis between resistance determinants operating through entirely different
mechanisms.

In summary, the mechanisms outlined above are likely to contribute to MDR over-representation for subsets
of resistance determinants, but are not a satisfactory explanation for the trend overall: even in combination
with each other, these mechanisms do not account for the pervasiveness of MDR over-representation.
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Figure 1: Competition between a sensitive and resistant sub-strain for a single strain circulating in a homoge-
neous host population (the ‘triangle model’). U , Is and Ir represent uninfected hosts, hosts infected with the
sensitive sub-strain and hosts infected with the resistant sub-strain, respectively. βr and βs are transmission
rates for resistant and sensitive sub-strains; µr and µs are clearance rates; τ is the population antibiotic
consumption rate (we assume immediate clearance following antibiotic exposure). Resistance is associated
with a fitness cost affecting the transmission (βr = βscβ , where cβ < 1) and/or the clearance (µr = µs

cµ
,

where cµ < 1).

2 ‘Fitness variation’ model of multidrug resistance

We present a generic model of competition between antibiotic sensitivity and resistance, which aims to account
for both the stable coexistence of antibiotic sensitivity and resistance and the over-representation of MDR.
The model captures the dynamics of a bacterial species which is mostly carried asymptomatically (e.g. E. coli,
S. aureus or S. pneumoniae), where the probability of a host being exposed to antibiotics does not depend
on whether the host is infected with the pathogen. Key results, however, are also applicable when this is not
the case (see Discussion). The model, as presented here, makes very strong assumptions - we will discuss
the effect of relaxing these assumptions in later sections of the paper. It is also worth noting that our aim is
to explain the distribution of resistance determinants in the pathogen population rather than predicting their
frequencies - the simplifications we make reflect this (see Supporting Information).

We start by considering a simple (‘triangle’) model of competition between resistant and sensitive variants
of an otherwise genetically homogeneous pathogen (one strain) in a homogeneous host population (Figure 1).
To avoid ambiguity later in the paper, we will refer to the sensitive and resistant variants as ‘sub-strains’.
Uninfected hosts (U) become infected with the resistant (Ir) or the sensitive (Is) sub-strain at rate βr and
βs; infections are cleared at rate µr and µs; the sensitive sub-strain experiences an additional clearance rate
τ corresponding to the population antibiotic consumption rate (we assume immediate clearance following
antibiotic exposure); and resistance is associated with a fitness cost affecting transmission (βr = βscβ , where
cβ < 1) and/or clearance (µr =

µs
cµ

, where cµ < 1). The dynamics of this model are described by:

dIs
dt

= βsIsU − (τ + µs)Is

dIr
dt

= βrIrU − µrIr
(1)

In this model, the fitness effect of resistance, defined as the ratio of the basic reproductive numbers (i.e.
R0, the average number of new infections an infected host gives rise to in a fully susceptible population) of
the resistant and sensitive sub-strains, depends only on population antibiotic consumption, the fitness cost
of resistance, and the clearance rate of the strain: R0r

R0s
= c[1 + τ

µ ] and with c = cµcβ and µ = µs. The
model predicts competitive exclusion: when the fitness effect of resistance is above 1, the resistant sub-strain
out-competes the sensitive sub-strain, and vice-versa when the fitness effect is below 1.

We generalise this model to heterogeneous host and strain populations by dividing the pathogen population
into sub-populations (strata) within which competition between sensitivity and resistance is independent of
other sub-populations. For competition within the strata to be considered independent, the frequency of
resistance within one stratum must not affect the frequency of resistance within other strata. When this is
the case, we can approximate the dynamics of resistance in the population as a whole by modelling each
stratum as a separate triangle model.

In the case of a single strain circulating in a structured host population, the strata correspond to assorta-
tively mixing sub-groups (e.g. age classes). We assume transmission between host sub-groups is either low
enough to be ignored or high enough for the sub-groups to be modelled as a single population. In the case
of multiple strains circulating in a homogeneous host population, the strata correspond to different strains
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(e.g. serotypes in the pneumococcus). We assume recombination between strains is low enough to be ig-
nored. When both strain and population structure is present, each stratum corresponds to a particular strain
circulating in a particular host sub-group.

While competition between sensitivity and resistance can be modelled the same way for host and strain
strata, these two types of structure are not entirely identical. In the case of host population structure, the
uninfected compartment is also structured: for example, if there are n age classes, there will be n uninfected
compartments. In the case of strain structure, there is a single uninfected compartment. As a consequence,
the strains are competing for the same hosts. If these strains differ in fitness, diversity must therefore be
maintained through balancing selection, for example serotype-specific immunity in the case of pneumococcal
serotypes. For the purposes of our MDR model, balancing selection maintaining strain structure effectively
allows us to treat the uninfected compartment as if it were structured (see Supporting Information for further
discussion of this point).

Because we aim to explain stable coexistence of sensitivity and resistance and the persistent over-
representation of MDR, we are primarily interested in the model’s steady state behaviour. We therefore
only model genetic variation that is maintained by some form of balancing selection and do not consider tran-
sient genetic diversity during a selective sweep. Genetic factors like compensatory mutations may introduce
between-strain variation in the fitness cost of resistance, but in the absence of evidence for balancing selection
maintaining this diversity, we assume this variation will be transient and do not include it in the model.

We also assume that while host sub-groups can differ in the antibiotic consumption rate, the relative rate
at which different antibiotics are prescribed remains the same in all sub-groups (antibiotic a accounts for
proportion γa of total antibiotic consumption, with

∑
a γa = 1).

Under these assumptions, resistance to antibiotic a out-competes sensitivity in host sub-group p and strain
s when:

ca[1 +
γaτp
µps

] > 1 (2)

As before, there is no coexistence within the strata: below this threshold, sensitivity out-competes resis-
tance.

We can separate Inequality 2 into stratum (i.e host sub-group and pathogen strain) and antibiotic related
effects (left-hand and right-hand sides of Inequality 3, respectively):

τp
µps

>
1

γa
(
1

ca
− 1) (3)

The ratio
τp
µps

reflects how advantageous resistance is within a stratum (‘resistance proneness’ of a stratum),

while the ratio 1
γa
( 1
ca
− 1) reflects how advantageous resistance against a particular antibiotic needs to be

for it to be selected for (‘resistance threshold’ of a drug). The strata can therefore be ranked in order of the
fitness advantage gained from resistance, based on resistance proneness.

Finally, we extend this model to a multidrug context. Assuming no cost epistasis between resistance
determinants (i.e. the fitness cost of resistance against antibiotics a and b is equal to cacb), the ranking of
the strata is the same for all antibiotics. As a consequence, if resistance to an antibiotic with a high resistance
threshold out-competes sensitivity in a stratum, resistance to antibiotics with lower thresholds will also be
selected for (Inequality 3). Thus, rare resistance determinants will only be found in pathogens carrying more
common resistance determinants, giving rise to MDR over-representation (Figure 2). In other words, the
resistance determinants will be nested within each other.

3 Results

3.1 Duration of carriage is predictor of resistance multiplicity

The model presented above suggests that duration of carriage and antibiotic consumption rate within strata are
predictive of resistance multiplicity. Fully testing this prediction is challenging, because we do not have a full
understanding of which host and pathogen characteristics are relevant in defining the strata. To partially test
the prediction of the model, we confirm that duration of carriage is indeed predictive of resistance multiplicity
(Kendall rank correlation (τ) 0.14 95% CI 0.11-0.16, see Figure 3), using a dataset of pneumococcal carriage
episodes and associated durations of carriage [28] (‘Maela dataset’, n = 2244, see Methods). The direction
of causality for this association is not entirely clear: the model we present suggests longer duration of carriage
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Stratified model

Drug 1 Drug 2 Drug 3
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Advantage from resistance

Resistance thresholds

Antibiograms

Figure 2: Illustration of the fitness variation mode. Each triangle model represent competition between
sensitivity and resistance within a strain circulating in a sub-population of a heterogeneous host and pathogen
population. The height of the bars represent resistance proneness within each stratum (

τp
µps

) and the arrows

represent the resistance thresholds ( 1
γa
( 1
ca
− 1)) for different drugs. If resistance to an antibiotic with a high

threshold out-competes sensitivity given stratum, resistance to antibiotics with a lower threshold will also be
selected for within this stratum. Resistance determinants will therefore be nested within each other.

leads to resistance, but resistance would also be expected to lead to longer duration of carriage through
decreased clearance from antibiotic exposure. The association between duration of carriage and resistance
multiplicity is also present at the serotype level (τ 0.27 95% CI 0.05-0.46, see Supporting Information), where
differences in duration of carriage are thought to arise from the properties of serotype capsules [42] (rather
than differences in antibiotic resistance). This suggests that resistance leading to longer duration of carriage
is unlikely to fully account for the observed association.

3.2 Observed patterns of association between resistance determinants

The fitness advantage model also makes predictions about the patterns of association between resistance
to different antibiotics. We test whether these predictions are consistent with pneumococcal data from two
carriage studies: the Maela dataset discussed above and a dataset collected in Massachusetts (n = 603, with
data on sensitivity to four antibiotics, see Methods for further details).

3.2.1 Pairwise association

The fitness advantage model predicts that rare resistance determinants will only be found in the presence
of more common resistance determinants. Based on the model, we would therefore expect complete linkage
disequilibrium (LD) between resistances: D′ = 1 for all pairs of resistances, where D′ is the normalised
coefficient of linkage disequilibrium (see Methods). We observe high D′ between all pairs of antibiotics with
the exception of chloramphenicol in the Maela dataset (Figure 4), for which estimates ranged from high positive
LD to high negative LD. The low frequency of chloramphenicol resistance (6%) is a potential explanation
for this variability: D′ is biased towards extreme values when allele frequencies are low. Furthermore, the
fitness advantage variation model ignores the possibility that disadvantageous allele combinations may be re-
introduced through recombination and mutation. If the rate at which alleles are re-introduced is independent
of the allele frequency, we would expect the impact on LD to be greater when allele frequencies are low.
The re-introduction of disadvantageous alleles may therefore contribute to the variability of observed LD for
chloramphenicol resistance.

Complete LD (D′ = 1) was only observed between penicillin and ceftriaxone resistance (Massachusetts
dataset). This likely reflects a shared mechanism, rather than the effect of variation in the fitness advantage
of resistance as penicillin and ceftriaxone both target penicillin binding proteins.

In summary, we observe consistently high, but not complete, linkage disequilibrium between resistance
determinants.
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Figure 3: Kendall rank correlation (τ) between duration of carriage of pneumococcal carriage episodes (n =
2244) and i) frequency of resistance against individual antibiotics and ii) multiplicity of resistance (number of
resisted antibiotics) in a pneumococcal dataset (‘Maela dataset’, with data on sensitivity to six antibiotics).
We chose a non-parametric test of association to avoid making assumptions about the shape of the relationship
between resistance and duration of carriage.
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Figure 4: Linkage disequilibrium (D′) between pairs of resistance determinants in the Maela and Massachusetts
datasets. The antibiotics are cotrimoxazole (cot), tetracycline (tet), penicillin (pen), erytrhomycin (ery),
clindamycin (cli), chloramphenicol (chl) (Maela), and penicillin (pen), erythromycin (ery), trimethoprim (tri),
cefotaxime (cef) (Massachusetts). Confidence intervals were computed by bootstrapping (see Methods).
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Figure 5: Antibiograms in the Maela and Massachusetts datasets. Rows represent antibiotics, ordered by fre-
quency of resistance. Each column represents an antibiogram (sorted by nestedness and resistance frequency).
Dark shading indicates resistance, light shading indicates sensitivity. Antibiograms with a nested structure
are coloured red.

3.2.2 Nestedness

Because rarer resistance determinants are expected to appear only in the presence of more common ones,
the fitness advantage model predicts that we will only observe a subset of the possible antibiogram profiles:
all antibiograms of multiplicity m (i.e. with resistance against m antibiotics) will have the m most common
resistance determinants. We call antibiograms which fulfil this criteria nested (see Figure 2). Nestedness is
related, but not identical, to D′: a set of resistance determinants in complete positive LD (D′ = 1 for all
pairs) would also be perfectly nested, but this equivalence does not hold when LD is not complete. In other
words, knowing D′ between all pairs of antibiotics does not fully inform the degree of nestedness of a set of
antibiograms (see below).

We quantify the degree of nestedness in the datasets as the proportion of observed antibiograms with a
nested structure (while more complex metrics of nestedness have been proposed, these are less interpretable -
see Methods). In the Maela dataset, 71% of isolates have a nested structure, 76% excluding chloramphenicol;
in the Massachusetts dataset, 82% of isolates have a nested structure (Figure 5). Similar results have also
been reported in S. aureus: 78% of antibiograms in a Massachusetts collection spanning 14 years were nested
(data for resistance to four antibiotics) [25].

We are interested in whether the fitness variation model is a better predictor of the overall structure of
the antibiograms than the alternative MDR over-representation mechanisms. Ideally, therefore, we would
compare the observed nestedness to that expected from these alternative mechanisms (shared resistance
mechanisms, linkage, correlated drug exposure and epistasis). This is not possible, however, because it is
unclear how much nestedness we would expect under these MDR mechanisms. We also considered comparing
the observed nestedness against a null model. However, establishing an appropriate null hypothesis was not
straightforward and although we considered a number of options, none of these were informative in our context
(see Supporting Information).

3.3 Sensitivity of predictions to model assumptions

The fitness variation model makes a number of strong assumptions. We test the extent to which relaxing
these assumptions affects the model’s prediction about MDR over-representation and association between
resistance determinants.

The model stratifies the pathogen and host populations into separate sub-populations within which com-
petition between resistance and sensitivity is represented by the simple triangle model. This requires us to
make two broad assumptions: first that it is possible to define non-mixing strata which can be considered
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Figure 6: The effect of introducing mixing between model strata for a model of resistance to three different
antibiotics. We model eight pathogen strains (i.e. three two-allele loci) circulating in five host sub-populations
of equal size, each with a different clearance rate µ. Resistance to all three antibiotics has the same fitness
cost, but they are consumed at different rates (making up 20, 30 and 50 of total antibiotic consumption).
In the absence of mixing, sub-populations do not transmit to each other. In the presence of mixing, 0.4%
of transmission occurs between sub-groups (i.e. 0.1% between any two sub-groups). A The equilibrium
frequencies of the eight possible strains at different antibiotic consumption rates in each sub-population.
In both modelled scenarios (with and without mixing between sub-populations), only strains with nested
antibiograms (SSS, RSS, RRS, RRR) are observed. B Overall strain prevalence in the entire population. C
The overall prevalence of resistance to each of the three antibiotics

fully homogeneous and second that the triangle model adequately captures competition within these strata
(i.e. that there are no other coexistence promoting mechanisms acting within the strata).

To test the effect of relaxing the first assumption, we construct a model with three different antibiotics
and five host sub-groups differing in clearance rate (see Methods). Allowing a small amount of transmis-
sion between these sub-groups gives rise to within-strata coexistence, but does not affect predictions about
nestedness: mixing between model strata does not introduce a mechanism that would favour non-nested an-
tibiograms (Figure 6). Increasing the amount of transmission between host groups causes them to behave as
a single population, thus abolishing the stratified population structure (see Supporting Information). Because
of the analogy between strain and host population structure, the same results are likely to hold when mixing
between strata arises from recombination at the duration of carriage locus.

These results have two implications. Firstly they suggest that modelling competition between sensitivity
and resistance as non-mixing homogeneous strata is a robust approximation because the population appears to
behave either as non-mixing sub-groups or fully mixing. Secondly, even when mixing introduces within-strata
coexistence, predictions about nestedness remain valid. Therefore, the fitness variation model remains an
explanation for MDR over-representation even when assumptions about mixing between, or structure within,
strata are relaxed.

The effect of relaxing the second assumption (that the triangle model adequately captures competition
within strata) depends on the way in which competition deviates from the triangle model. As discussed
above, deviation from the triangle model arising from a small amount of mixing between strata do not affect
predictions about nestedness. On the other hand, we would expect the re-introduction of disadvantageous
resistance alleles through mutation or recombination to allow low frequencies of non-nested antibiograms to
persist in the population. As discussed in the context of chloramphenicol resistance in the Maela dataset, the
impact on nestedness may be particularly pronounced when allele frequencies are low. It is also possible that
some other coexistence-maintaining mechanisms may introduce selection favouring non-nested antibiograms,
but without plausible candidate mechanisms, we cannot test this.

In addition to the simplifications made in constructing the stratified model, we make assumptions that
allow us to separate the variation in the fitness effect of resistance into strata-related (i.e. pathogen and host)
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Figure 7: Resistance nestedness depends on the extent to which the fitness advantage of resistance is correlated
for the different antibiotics. The figure shows the proportion of nested antibiograms for simulated data (2244
isolates, 6 antibiotics, equivalent to the Maela dataset) with varying concordance in the strata rankings (see
Methods, concordance in strata rankings measured as spearman correlation between resistance proneness for
different antibiotics). Each data point corresponds to one simulated dataset (1000 simulated datasets for
each level of discordance).

and antibiotic-related effects. This separability means that the ranking of the strata by fitness advantage
of resistance will be the same for all antibiotics. The separation relies on two assumptions: i) the fitness
cost of a particular resistance being the same in all strata (i.e. no variation in the fitness cost of resistance
between strains) and ii) different types of antibiotics being consumed in the same proportions in all strata
(i.e. variation in the rate at which host sub-groups consume antibiotics, but not in the types of antibiotics
consumed by these groups). Violating these assumption may give rise to non-identical strata rankings and
thus lead to deviations from nestedness.

It is possible both of these assumptions represent oversimplifications of resistance dynamics. In the case of
the first assumption, there is no direct evidence for stable variation in the fitness cost of resistance. However,
the processes determining fitness cost are not fully understood and the fitness cost of resistance mutations
is thought to depend on both genetic background and environment [31]. It is therefore difficult to rule out
that stable between-strain variation might exist. Similarly, the assumption about antibiotic prescription rates
is generally plausible, but might not hold in all contexts. For example, overall antibiotic prescription rates
differ between regions of the United States, but relative prescription rates of different antibiotic classes are
highly correlated (mean correlation in relative prescription rates 0.99, based on data reported by Drekonja
et al. [14]). However, correlations between relative prescription rates may not be so high between all host
sub-groups (e.g. children and adults).

To test the extent to which between-strata differences in the relative fitness advantage gained from resis-
tance to different antibiotics affects patterns of nestedness, we simulated strata with increasingly uncorrelated
resistance proneness for different antibiotics (see Methods). The proportion of nested antibiograms decreased
with decreasing correlation (Figure 7). However, the effect was gradual: imperfectly correlated strata rank-
ings gave rise to relatively high levels of nestedness (comparable to those seen in the data). Variation in the
fitness advantage of resistance is therefore a mechanism promoting MDR over-representation even when this
variation is not identical for all antibiotics.

4 Discussion

4.1 Predicted and observed patterns of association

We present a model of multidrug resistance in which competition between antibiotic sensitivity and resistance
is simplified to a series of independent sub-models. Mechanisms that introduce variation in the fitness effect
of resistance between these sub-models promote both coexistence of antibiotic sensitivity and resistance, and
higher than expected frequencies of multidrug resistance (MDR over-representation). Based on this model,
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Table 1: Table of discussed evolutionary processes that could explain MDR over-representation. The two last
rows represent fitness variation processes that also predict coexistence.

Process Could explain
coexistence?

Compatible with
unequal resistance
frequencies?

Plausibility

Shared resistance
mechanisms

No Requires additional
mechanisms

Only applicable to a subset of antibi-
otics

Linkage between re-
sistance genes

No Requires additional
mechanisms

In absence of selection maintaining
LD, associations between alleles would
eventually be lost. Time-scale at
which this would occur is uncertain.

Correlated drug expo-
sure of individual host

No Requires additional
mechanisms

Rates of combination therapy are gen-
erally low. Unclear how significant a
role correlated exposure due to treat-
ment failure might play and which an-
tibiotics it affects.

Cost epistasis No Requires additional
mechanisms

Little evidence of this outside labora-
tory context. Implausible when resis-
tance mechanisms are unrelated and
not plasmid-associated.

Epistasis between re-
sistance and carriage
duration

Yes Yes Correlation between duration of car-
riage and resistance.

Local adaptation to
host sub-group

Yes Yes Correlation between antibiotic con-
sumption and resistance for various
host sub-groups (e.g. countries, age
classes).

we would expect all observed antibiograms to be ‘nested’, with rare resistance determinants appearing only
in the presence of more common ones. Consistent with this fitness variation model, we find positive linkage
disequilibrium between resistance determinants and a high degree of nestedness in two pneumococcal datasets.
Similar levels of nestedness have also been reported in S. aureus antibiograms [25].

Contrary to the model’s prediction, however, the observed linkage disequilibrium is not complete (i.e.
D′ 6= 1) nor are all (i.e. 100%) antibiograms nested. The prediction of complete LD and perfect nestedness
arises because we formulate the model so that the variation in the fitness effect of resistance is identical
for all antibiotics. This requires us to make strong assumptions about relative prescription rates of different
antibiotics (same in all host sub-groups) and the relative fitness cost of different resistances (same for all
strains). Relaxing these assumptions gives rise to imperfectly correlated variation in the fitness effect of
resistance for different antibiotics, which in turn generates imperfect nestedness. The patterns we observe are
therefore consistent with variation in the fitness effect of resistance that is correlated, but not identical, for
different antibiotics.

4.2 Alternative explanations for MDR over-representation

We present the fitness variation model as an alternative to a model in which MDR over-representation arises
from a number of different mechanisms, each affecting a subset of antibiotics (summarised in Table 1). We do
not mean to suggest these mechanisms do not contribute to MDR over-representation. Indeed, mechanisms
alternative to fitness variation are a plausible explanation for some of the associations we observe in our data.
For example, it is likely a shared mechanism of resistance accounts for the strong association between penicillin
and ceftriaxone resistance in the Massachusetts dataset. Linkage may contribute to the association between
MGE-associated resistance determinants (chloramphenicol, tetracycline, erythromycin and clindamycin): as
discussed in the Introduction, we expect the effect of linkage to be transient, but the time-scale at which
these associations would be broken down in absence of selection is unclear.

Nevertheless, we also observe associations which do not seem attributable to any of the alternative ex-
planations (e.g. the association between penicillin and the other resistance determinants). Furthermore, the
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fitness variation model is an attractive explanation for the MDR over-representation trend as a whole.
Firstly, the fitness variation model is compatible with unequal resistance frequencies. Other possible MDR

over-representation mechanisms promote MDR strains, either because these have an advantage over singly
resistant strains (epistasis, correlated drug exposure) or because resistant determinants are genetically linked
(shared mechanisms, linkage). As a consequence, these mechanisms also predict similar resistance frequencies
against different antibiotics. Unlike the fitness variation model, these explanations therefore need additional
mechanisms to account for observed differences in resistance frequencies.

Secondly, the fitness variation model is a parsimonious explanation for the pervasiveness of MDR over-
representation. Each of the alternative explanations predict MDR over-representation only for subsets of
antibiotics, yet the trend is ubiquitous. This pervasiveness is compatible with the fitness variation model -
whereas it is unclear if the other possible mechanisms are enough to explain MDR over-representation for all
resistance determinants.

4.3 Coexistence and MDR over-representation are linked by theory

The model we present is generic. We identify diversity in host antibiotic consumption rates and pathogen
clearance rates as mechanisms which introduce variation in the fitness advantage of resistance, but do not
elaborate on how this diversity arises. Antibiotic consumption rate is age-dependent [21] which, in combination
with age assortative mixing, would give rise to the type of fitness variation described in the model. For the
pneumococcus, clearance rate is known to depend on both serotype and host age [22], which would introduce
further variation in the fitness effect of resistance. Furthermore, serotype does not fully account for heritable
variation in pneumococcal duration of carriage [28], suggesting there may be also be other genetic factors
giving rise to stable variation in duration of carriage. This is particularly plausible in light of recent results
suggesting wide-spread negative frequency-dependent selection in bacterial genomes [9, 20].

Potential sources of variation in the fitness advantage of resistance have not been extensively studied
in pathogens other than S. pneumoniae. However, the wide-spread coexistence of sensitivity and resistance
suggests that the presence of such variation in other bacterial species is plausible. This variation may arise
from sources other than those included in the model we present. For example, if a pathogen has strains
differing in invasiveness, this variation could lead to between-strain variation in antibiotic exposure and thus
in the fitness effect of resistance.

The observation that variation in the fitness advantage of resistance promotes both coexistence and
MDR over-representation highlights the importance of identifying coexistence-maintaining mechanisms. In S.
pneumoniae, a model incorporating various sources of fitness variation does not fully explain the extent of
observed coexistence [6]. Establishing whether the remaining coexistence arises from unidentified sources of
fitness variation (rather than entirely different coexistence-promoting mechanisms) would clarify how applicable
the fitness variation model is. Furthermore, identifying these sources of fitness variation would not only inform
our understanding of individual resistance dynamics, but also provide further insights into the mechanisms of
MDR over-representation.

Although the model builds on work exploring the stable coexistence of antibiotic sensitivity and resistance,
the prediction that variation in the fitness advantage of resistance leads to MDR over-representation does
not require coexistence to be stable. We would expect MDR over-representation in the presence of fitness
variation, even when this variation is not enough to maintain stable coexistence: for all antibiotics, the
increase of resistance frequencies towards fixation would occur most rapidly in the populations with the
greatest selection pressure for resistance. Under these circumstances, fitness variation would give rise to
transient MDR over-representation.

4.4 Public health implications

From a public health perspective, the fitness variation model makes two concerning predictions. Firstly, the
nestedness prediction implies frequencies of pan-resistance will be high: in a perfectly nested set of antibi-
ograms, the frequency of pan-resistance is equal to the frequency of the rarest resistance. As a consequence,
we would expect resistance to last-line antibiotics to be found on isolates which are already resistant to all
other available antibiotics - an observation which has been made for the emergence of ciprofloxacin resis-
tance in N. gonorrhoeae in the United States [19]. This effect may be mitigated by the impact of mutation
when allele frequencies are low. Indeed, we observe no pan-resistant isolates in the Maela dataset, where the
frequency of the rarest resistance (chloramphenicol) is low (6%).

Secondly, our analysis has implications for the effectiveness of potential interventions against MDR. The
variation in the fitness effect of resistance to different antibiotics need not be perfectly correlated for it to
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promote MDR over-representation. If the variation in fitness effect is maintained by multiple factors (e.g.
differential antibiotic consumption between populations and variation in clearance rates), removing one of
these factors (e.g. changing patterns of prescription) may have limited impact on MDR.

On the other hand, the fitness variation model provides an explanation for MDR over-representation that
is consistent with long term stability in resistance frequencies. As discussed above, alternative explanations for
MDR over-representation often require MDR strains to have an overall fitness advantage over strains with lower
resistance multiplicity. This would imply that the higher than expected frequency of MDR is evidence for MDR
strains out-competing other strains and thus suggest that MDR strains will eventually take over. Conversely,
in the model we present, MDR strains are not out-competing other strains: all resistance frequencies are
at equilibrium and MDR over-representation arises from the distribution of resistance determinants. The
equilibrium frequencies are determined by the number of strata within which resistance is advantageous and
thus depend on the antibiotic consumption rate, duration of carriage and fitness cost of resistance. It is worth
noting, however, that even in the context of the fitness varition model, on a very long time-scale, we might
expect the frequency of resistance to rise if bacteria are able to evolve resistance mechanisms that carry a
lower fitness cost.

4.5 Conclusion

We present a conceptual model of multidrug resistance where variation in the fitness effect of resistance in a
structured host and pathogen population i) maintains coexistence of resistance and sensitivity and ii) gives rise
to high frequencies of multidrug resistance. Coexistence and multidrug resistance can therefore be considered
different facets of the same phenomenon, highlighting the importance of identifying the mechanisms which
maintain stable coexistence. While the model we present predicts high frequencies of pan-resistance, it allows
us to reconciles MDR over-representation with long term stability in resistance frequencies.

5 Methods

5.1 Datasets

The Maela dataset [39], collected from a refugee camp on the border of Thailand and Myanmar from 2007
to 2010, consisted of 2244 episodes of carriage, with associated antibiograms and carriage durations. Data
were obtained from, and durations of carriage calculated by, Lees et al. [28]. Data on antibiotic sensitivity
was provided for ceftriaxone, chloramphenicol clindamycin, erythromycin, penicillin, co-trimoxazole (trimetho-
prim/sulfamethoxazole) and tetracycline. Ceftriaxone was excluded from the analysis because data was missing
for a large proportion of isolates (44%).

The Massachusetts dataset, collected as part of the SPARC (Streptococcus pneumoniae Antimicrobial
Resistance in Children) project [16], were obtained from Croucher et al. (2013) [10]. Croucher et al. reported
minimum inhibitory concentrations (MICs) for penicillin, ceftriaxone, trimethprim, erithromycin, tetracycline
and chloramphenicol. Tetracycline and chloramphenicol were excluded from the analysis because data was
missing for a large proportion of isolates (47% and 67% respectively). Non-sensitivity was defined in accordance
to Clinical and Laboratory Standards Institute breakpoints [24].

For both datasets, ‘resistance’ as used throughout the paper refers to non-sensitivity.

5.2 Linkage disequilibrium

If the frequency of resistance to antibiotic a is pa and the frequency of resistance to antibiotic b is pb,
the coefficient of linkage disequilibrium between resistance to antibiotics a and b is Dab = pab − papb,
where pab is the frequency of resistance to both a and b. The normalised coefficient D′ab is given by:
D′ab =

Dab
min(papb,(1−pa)(1−pb) if Dab < 0 and D′ab =

Dab
min(pa(1−pb),(1−pa)pb) if Dab > 0.

In general the sign of D′ is arbitrary because it depends on which alleles are chosen for the calculation.
We consistently calculate D′ using the frequency of resistance: positive D′ therefore means resistance to one
antibiotic is associated with resistance to the other, while negative D′ means association between sensitivity
and resistance.

Confidence intervals for D′ were generated by bootstrapping: the set of m antibiograms was randomly
sampled m times with replacement to generate a random set of the same size as the original set and D′

was computed on this set. We repeated this 10000 times to generate a distribution and computed the 95%
confidence interval from this distribution.

13

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 14, 2017. ; https://doi.org/10.1101/233957doi: bioRxiv preprint 

https://doi.org/10.1101/233957
http://creativecommons.org/licenses/by-nd/4.0/


We use D′ as a measure of linkage disequilibrium (as opposed to the other commonly used metric r2)
because the fitness effect model makes prediction specifically about D′. The coefficient of determination, r2,
measures the extent to which isolates that are resistant to one antibiotic are also resistant to another antibiotic
while D′ captures the extent to which resistance to two antibiotics will be found in the same isolates, given
the observed resistance frequencies. Therefore, r2 is affected by how similar resistance frequencies are and by
the distribution of the resistant determinants, while D′ is only affected by the later.

5.3 Measures of nestedness

We quantify nestedness in terms of the proportion of nested antibiograms. We chose this measure for two
reasons. Firstly, it is invariant to inverting absences and presences (the proportion of nested antibiograms is
the same if we quantify nestedness with respect to sensitivity, instead of resistance). Secondly, it is easily
interpretable. There are a number of other possible metrics (reviewed in reference [40]), some of which also
fulfil the first criteria. These metrics seek not only to quantify whether antibiograms are nested, but also how
nested they are. However, there is no intuitive scale for degree of nestedness, which makes these metrics more
difficult to interpret than simply reporting the proportion of nested antibiograms.

5.4 Effect of mixing between strata

To test the effect of relaxing the assumption that the pathogen dynamics can be divided into non-interacting
sub-models, we model the dynamics of resistance to three antibiotics (i.e. eight strains in total) spreading in
a host population consisting of five host classes. The antibiotics are all prescribed at the same rate τ , but
incur different fitness costs. Strain g experiences a different clearance rate within each host class p (µp) and
an additional clearance rate τg for each antibiotic it is not resistant to (i.e. τg = (3− ng)τ , where ng is the
number of antibiotics strain g is resistant to). Resistance to each antibiotic decreases transmission rate by a
factor of c. Uninfected hosts of class p (Up) are therefore infected at rate cngβ

[
(1− 4m)Ipg +m

∑
x∈P ′ Ixg

]
,

where m is a parameter that sets the extent of mixing between the classes and P ′ is the set of population
classes excluding p. The dynamics of strain g within population p are thus described by:

dIpg
dt

= cngβ

[
(1− 4m)Ipg +m

∑
x∈P ′

Ixg

]
Up − (τg + µp)Ipg (4)

For the results presented in the main text, m = 0.001.

5.5 Effect of imperfectly correlated strata rankings

To test the effect of relaxing the assumptions that lead to the ranking of the strata by fitness advantage of
resistance being the same for all antibiotics (i.e. antibiotics consumed in the same proportions within all strata
and the cost of resistance being the same within all strata), we created simulated resistance data similar to
the Maela dataset (2244 isolates, 6 antibiotics). We randomly assigned a resistance proneness (i.e.

τp
µps

) to

each isolate. We then set resistance thresholds for each antibiotic. Isolates with a resistance proneness above
this threshold were resistant. (The resistance thresholds were chosen to give the same resistance frequencies
as observed in the Maela data). We then calculated the proportion of resistant antibiograms for this simulated
dataset.

To generated imperfectly correlated rankings, we replicated the resistance proneness vector for each an-
tibiotic to generate a resistance proneness matrix and then randomly reassigned the resistance proneness of
a proportion of the entries in this matrix (proportion labelled as ‘noise in rankings’ in Figure 7). Resistance
was then assigned and nestedness calculated as above. By increasing the proportion of reassigned entries, we
generate increasingly uncorrelated fitness advantage rankings.
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