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Abstract

Genetic exchange in microbes and other facultative sexuals can be rare enough that evolution is almost entirely asexual
and populations almost clonal. But the benefits of genetic exchange depend crucially on the diversity of genotypes in
a population. How very rare recombination together with the accumulation of new mutations shapes the diversity of
large populations and gives rise to faster adaptation is still poorly understood. This paper analyzes a particularly simple
model: organisms with two asexual chromosomes that can reassort during rare matings that occur at a rate r. The speed
of adaptation for large population sizes, N , is found to depend on the ratio ∼ log(Nr)/ log(N). For larger populations,
the r needed to yield the same speed deceases as a power of N . Remarkably, the population undergoes spontaneous
oscillations alternating between phases when the fittest individuals are created by mutation and when they are created
by reassortment, which—in contrast to conventional regimes—decreases the diversity. Between the two phases, the
mean fitness jumps rapidly. The oscillatory dynamics and the strong fluctuations this induces have implications for
the diversity and coalescent statistics. The results are potentially applicable to large microbial populations, especially
viruses that have a small number of chromosomes. Some of the key features may be more broadly applicable for large
populations with other types of rare genetic exchange.
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1. Introduction

The reasons for the ubiquity of sex, or more broadly
genetic exchange, across all domains of life has been the
subject of a long and ongoing debate (reviewed recently
by 1 and 2). Evolutionary explanations for sex must ex-
plain its advantages over its disadvantages in a spectrum
of evolutionary scenarios and justify the benefits of its con-
tinued maintenance. Producing and maintaining diversity
for selection to act on is a traditional explanation for sex.
But when genetic exchange is a rare process—as it is now
for many groups of organisms—even analyzing such advan-
tages quantitatively can be challenging. Between instances
of genetic exchange, asexual evolution produces genetic
correlations in the population that limit the utility of sex.
Close relatives gain little by mating with each other, so the
evolution of a population dominated by clones will depend
sensitively on the how its diversity is created and main-
tained by the combined effect of asexual accumulation of
mutations and genetic exchange.

In large populations—as microbial populations usually
are—many beneficial mutations can occur each generation.
In asexual populations these mutations compete with each
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other and only one can ultimately takeover the popula-
tion: such competition is known as clonal interference [3].
A classic hypothesis for the advantage of sex is the Fisher-
Muller effect: sex reduces the competition between differ-
ent beneficial mutations by enabling them to recombine
onto the same genome, thus decreasing the “wastage” of
beneficial mutations [4, 5, 6, 7, 8, 9]. But to understand the
Fisher-Muller effects quantitatively in populations with
low rates of recombination, a detailed understanding of
asexual evolution in large populations is needed. A major
complication beyond the simple clonal interference picture
is that multiple beneficial mutations can arise on the same
lineage before any of them fix. In this case, the success of a
new mutation strongly depends on the genetic background
on which it arises: only on an already very fit background
does it have a substantial chance of fixing [10, 11, 12, 13].
Evidence of clonal interference and complex accumulation
of beneficial mutations has been found in many labora-
tory experiments with bacteria, viruses, and S. cerevisiae
(14; 15; 16; 17), as well as in natural viral populations
[18, 19, 20].

To understand the interplay between clonal interfer-
ence, acquisition of multiple beneficial mutations, and re-
combination, analysis of simple scenarios and models is
needed. If the environment has recently changed, many
beneficial mutations can become available and, at least
for some time, the population can evolve under sustained
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directional selection with the supply of beneficial muta-
tions only slowly depleting. (This appears to be the case
in the long-term experiments of Lenski and collaborators,
see 21.) The simplest model is to assume that only ben-
eficial mutations occur, that their supply is not depleted,
that they all have the same fitness effect, s, and that these
effects are additive. There is now a large body of work an-
alyzing asexual evolution in this model (22, 23, 11, 24, 25;
reviewed in 26). For small populations the evolution is
mutation limited with a beneficial mutation arising occa-
sionally and sweeping to takeover the population before
another occurs: the rate of fitness increase—the speed,
v, of the evolution—is then simply proportional to the
population size, N , times the beneficial mutation rate, U
(= Ub). But in large populations, multiple mutations arise,
compete—via clonal interference—and accumulate muta-
tions in the same lineage before any fix. This results in a
broad fitness distribution that forms a traveling-wave mov-
ing steadily towards higher fitness with a speed that grows
only logarithmically with N . The statistics of the genetic
diversity in such rapidly evolving asexual populations have
also been analyzed: the phylogenies are characterized by
multiple mergers and skewed branching, and the site fre-
quency spectrum is strikingly different than neutral theory
[27, 28].

Simple models of rapid adaptation have been extended
to include the effects of sex. With enormous recombina-
tion rates, all mutations are independent and clonal in-
terference is negligible. But in large populations, with
any reasonable recombination rate mutations still com-
pete. Nevertheless, the behavior simplifies for relatively
high recombination rates, in particular for facultative sex-
uals with recombination frequent enough that mutations
have a substantial chance of recombining onto a good ge-
netic background before they are out-competed to extinc-
tion. For this to occur, the recombination rate, r, needs
to be comparable or larger than the selective strength, s,
up to logarithmic factors [29]. In this regime, the dynam-
ics of new mutations are determined by the distribution
of fitness backgrounds on which they arise and with which
they can recombine. When many beneficial mutations are
segregating at the same time, linkage is very transient and
the correlations between mutational frequencies are weak:
the behavior can then be analyzed by following the statis-
tics of single mutations. To fix, some of the descendants
of mutations that arise need to recombine onto a high fit-
ness background, grow in number, recombine again, and
so on until the mutant population becomes large enough
to avoid extinction by linkage to “only” average genetic
backgrounds. Neher et al. [29] find that the speed of evo-
lution grows linearly or quadratically (depending on the
model) with the recombination rate, r, because more and
more mutations can segregate in parallel.

For obligate sexuals with linear chromosomes, the be-
havior also simplifies somewhat. The chromosomes act
roughly as if broken up into effectively asexual segments
whose evolution can be approximated by rapid asexual

adaptation within each of the weakly correlated segments
with the effective recombination rate between these being
comparable to the selection coefficients. The speed of evo-
lution is then proportional to the genomic recombination
rate (map length), R, times log(N) [30, 31, 29, 32].

We are interested in the behavior with much lower re-
combination rates—not only r � s, when the previous
analyses already breakdown, but down to when r is of or-
der an inverse power of the population size. This regime
is increasingly important for very large and nearly asex-
ual populations since the dynamics become increasingly
sensitive to small recombination rates for larger popula-
tions. Recombination is infrequent enough that clonal
growth, asexual accumulation of multiple mutations, and
close relationships between recombining genomes are es-
sential. As well shall see, the behavior is rather more com-
plex. Rouzine and Coffin [33, 34, 35] have studied the
purging of deleterious alleles starting from standing vari-
ation when mating is very rare but still results in a lot of
recombination when it does occur. They found that the
interplay between exponential growth of subpopulations
from selection and recombination to produce higher fitness
genomes results in a rate of fitness increase that depends
only logarithmically on the frequency of sex. They also
considered the effects of correlations due to common de-
scent, which are an important effect for rare sex [36], and
approximated the effects of these [35]. But these studies
do not consider a crucial feature: how diversity in the fit-
ness distribution is created and maintained by an influx
of new mutations. It is the interplay between mutation,
selection, and recombination that needs to be understood.

Simulations of simple models of asexual evolution can
be carried out efficiently. For many aspects only fitnesses
are relevant, and aspects of the diversity, such as the site
frequency spectrum of individual mutations, can be in-
ferred from methods based on fitness classes [27, 28]. But
simulations of sexual populations with low rates of recom-
bination need to keep track of the full genomic diversity.
This can be computationally prohibitive for large popula-
tion sizes, such as those found in microbial experiments,
because they require keeping track of a huge number of
genomes (roughly of order NU). Thus studying simpler
models that include the key effects of both asexual muta-
tion accumulation and occasional recombination is called
for.

In this paper, we study a particular—and in some ways
the simplest—compromise model: a facultative sexual pop-
ulation with two asexual chromosomes that can undergo
reassortment but not recombination within the chromo-
somes. Under an assumption of additivity of the fitnesses
of the two chromosomes, only the fitnesses of each chromo-
some are needed. This model was introduced and studied
by Park and Krug [37], who focused on the limit when
mating is frequent enough that the speed saturates at its
value for obligate sexuals. Here we focus on the rare reas-
sortment regime and analyze the crossover from asexual to
obligate sexual. Because mating is rare, we can leverage
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much of the intuition and results from the asexual case.
Reassortment can provide many of the benefits of recom-
bination, so genome segmentation and reassortment could
have been important in the origin of sex [38].

Although not the primary motivation, we note that
models with reassortment of chromosomes but no recom-
bination within them are natural for some RNA viruses
such as influenza that have segmented genomes [39]. When
two viruses co-infect a cell, segments from both can be
repackaged into new viral particles, which results in re-
assortment. The rate of reassortment thus depends on
the probability of co-infections and hence on the ratio of
viruses to host cells so that reassortment is rare when viral
densities are low.

2. Model and Parameters

We consider a population of N haploid individuals with
genomes consisting of two chromosomes. They are facul-
tatively sexual and two individuals mate at a rate r, re-
sulting in the reassortment of their two chromosomes but
no recombination. Beneficial mutations occur at a rate U
(= Ub) per chromosome. We are interested in continual
evolution of large populations for which beneficial muta-
tions are the driving force of the dynamics and deleterious
mutations have minor effects [11]. Thus we consider an
infinite-sites model in which all mutations are beneficial
and each chromosome can accumulate any number of such
mutations with no back mutations.

For simplicity, we take all mutations to have the same
small (log-)fitness effect s � 1 and assume additive fit-
nesses. The fitnesses of the two chromosomes, X and Y ,
are then simply s times the number of mutations on each,
and the total fitness is Z = (X +Y ). Despite the assump-
tion of fixed effect size, the basic results of our analysis
should hold more generally: asexual evolution with a dis-
tribution of mutation sizes has been shown to be domi-
nated by a small range around a single effective s and an
effective U if the distribution of mutation sizes falls off
quickly enough [40, 41].

When mating, parental chromosomes are reassorted.
Parents with fitnesses (X1, Y1) and (X2, Y2) will produce
offspring with (X1, Y2) and (X2, Y1). Individuals are cho-
sen randomly to undergo reassortment. Therefore the prob-
ability of reassortment producing the genome (X,Y ) is
proportional to the number of individuals with X and the
number with Y . With discrete values of fitness, the sub-
populations of the “fitness classes” we denote n(X,Y ) and
the total number with X by n(X) =

∑
Y n(X,Y ). Long-

term increases in fitness rely on the nucleation of new high
fitness classes by either mutation or reassortment. The
parameters introduced in this section and main variables
used throughout the text are summarized in table 1.

The schematic stochastic differential equation for the
dynamics of a subpopulation (approximated as being con-

Model Parameters

N Population size

s Mutation effect size

U Beneficial mutation rate per
chromosome

r Mating rate

L ≡ log(Ns) Logarithmic parameters

` ≡ log(s/U)

λ ≡ log(Nr)

q ≡ 2L/` Asexual nose fitness is qs, see
section 3

Variables

v, va, vs Speed of evolution: steady
state, asexual, and sexual
speeds

X, Y Absolute fitness of the two
chomosomes

Z ≡ X + Y , W ≡ X − Y Total fitness, “transverse” fit-
ness

〈Z〉 Mean fitness of population

x, y, z, w Relative fitnesses, e.g. x =
X − 〈X〉

f(w) Relative fitness of the “front”:
high fitness edge of population
distribution

x̃ ≡ xs/v`, t̃ = ts/` Rescaled fitness and time

n(X,Y ) Size of subpopulation with fit-
nesses (X,Y )

n(X) ≡
∑

Y n(X,Y ) Size of all subpopulations with
X chromosome of fitness X

α ≡ log (ns) /L Scaled logarithmic subpopula-
tion size

ν(X,Y ) “Feeding” rate of new individ-
uals due to mutation or reas-
sortment

Properties of steady state

Q Nose fitness

R ≡ v`2/2Ls2 Rescaled speed

(fs, ws) or (xs, ys) Wing start fitnesses

fM , zG, τM , τG Fitnesses (fM , zG) after time
that lineage mutates (τM ) or
grows (τG)

Table 1: Parameters and variables.

tinuous) is

dn(X,Y ) = (X + Y − 〈X + Y 〉) dt n(X,Y )

+ Udt [n(X − s, Y ) + n(X,Y − s)− 2n(X,Y )]

+ rdt

[
n(X)n(Y )

N
− n(X,Y )

]
+
√
n(X,Y )dt η(X,Y, t) (1)

The first term represents growth and selection determined
by the relative fitness above the population-mean fitness,
〈Z〉: henceforth we will denote absolute fitness (in units
of s) with capital letters, e.g. X, and relative fitness with
lowercase, e.g. x = X − 〈X〉. The second term is the
net influx of mutations into the (X,Y ) fitness class. The
third term describes reassortment: the number of new
offspring is proportional to the total number of matings
in the population, Nr, times the frequencies of the two
chromosomes with the needed fitnesses, i.e.. n(X)/N and
n(Y )/N . The final term represents the stochasticity of
births and deaths. The distribution of the random vari-
ables {η} are essentially independent gaussians for each
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fitness class with small—but essential—corrections to en-
force the fixed population size constraint [40]. The

√
n

factor mimics the effects of discrete individuals (the “dif-
fusion approximation”), and allows subpopulations to go
extinct. We will approximate this stochasticity in other
ways that do not affect any substantial properties.

Primary quantities of interest are the mean speed of
evolution defined as

v ≡ d〈Z〉/dt, (2)

the shape of the two-dimensional distribution of non-zero
sub-populations—in particular its fitter-than-mean bound-
ary we call the front—and the fluctuations of these quan-
tities.

We will consider the range of parameters for which the
asexual dynamics simplify: strong selection (Ns� 1) and
weak mutation (s� U). This regime is applicable for large
microbial populations. We are interested in the effects of
multiple mutations that are simultaneously segregating in
the population, and thus focus on the regime NU � 1 in
which many beneficial mutations occur each generation.
(See, for example, [42] for the effects of sex when clonal
interference is weak and NU is order one.) The roles of
these assumptions will be discussed in section 3. Park and
Krug [37] studied the limit r � s of the two chromosome
model. They found that in this regime the speed of evo-
lution rapidly approaches the obligate sexual (r → ∞)
limit. When r is substantially greater than s, the reas-
sortment rate is high enough that any linkage between
chromosomes is broken up before growth becomes impor-
tant, so each chromosome evolves independently. Thus for
r � s, v(U) ≈ 2va(U) where va(U) is the asexual speed
for a single chromosome. Our focus is the regime when
mating is rare (r � s). In this regime almost all subpopu-
lations grow clonally with negligible loss or gain due to re-
assortment. But reassortment is crucial when it produces
individuals in new fitness classes earlier than mutations
can. As the mating rate is increased from zero to much
larger than s, v should increase from va(2U) to 2va(U).
It is this crossover regime, in which the interplay between
mutation accumulation and reassortment is most subtle,
that we particularly wish to understand.

Because the subpopulations with fitnesses higher than
the mean are growing exponentially, the times at which
key events occur depend only logarithmically on the pa-
rameters. Thus it is useful to define logarithmic variables
for the large parameters of the model:

L ≡ log(Ns), ` ≡ log(s/U) (3)

As in the asexual case reviewed below, the behavior and
analysis of the model simplifies in an asymptotic regime
where the logarithmic parameters are themselves large,
and more so if in addition L � ` � 1. Although these
are never strong inequalities in practice, the approxima-
tions they lead to capture the qualitative behavior and are

quite good quantitatively for reasonable parameter ranges
[11].

With reassortment, new high fitness subpopulations
are produced by subpopulations that are growing exponen-
tially. Thus again characteristic times might be expected
to depend only logarithmically on parameters. It is conve-
nient to define a logarithmic measure for the reassortment
rate in terms of the population-total rate of mating:

λ ≡ log(Nr). (4)

As the reassortment rate increases from O(1/N) to O(s),
λ increases from 0 to L. (When λ < 0 there are typically
no reassortments in the whole population and their effect
is negligible.)

For very large populations an important simplification
is that many sums over subpopulations are dominated by
a small subset of them. Subpopulations near the boundary
of the fitness distribution have sizes, n, of order unity while
those near its maximum have sizes a substantial fraction of
N . Thus log(ns) ranges from O(1) to L. The exponential
growth (or decay) with time implies that it is natural to ex-
press these using a normalized logarithmic variable α such
that ns ≡ exp(Lα). A sum over subpopulations can then
be approximated as

∫
exp(Lα) ≈ exp(Lαmax) for L � 1,

where we have dropped factors that are not exponential in
L. For example, the sum n(X) =

∑
Y n(X,Y ) determines

how many X chromosomes are available for reassortment.
For large L, nearly all such X chromosomes come from one
subpopulation or from a narrow range of subpopulations
relative to the full width of the fitness distribution.

3. Review of Asexual Dynamics

In the limit of no mating, the dynamics are asexual.
Qualitative concepts and scalings from the asexual dynam-
ics are crucial for understanding the regimes of rare mat-
ing, thus we first review the asexual limit following the
heuristic analysis of Desai and Fisher [11]. The picture
of asexual evolution can be greatly simplified by a sepa-
ration of scales. The growth of a clonal subpopulation is
affected by both stochastic fluctuations and the nonlinear
population size constraint. However, for strong selection
(Ns� 1) stochastic fluctuations only matter when a sub-
population is relatively small, long before it grows enough
that the nonlinear constraint becomes important. Con-
versely, for the large subpopulations that dominate, the
total population size constraint is crucial but the fluctua-
tions are small. This separation of scales allows the influ-
ence of fluctuations and the population size constraint to
be analyzed separately. But an essential property of the
dynamics is the coupling between the fluctuations of small
subpopulations and the effects of these fluctuations when
those subpopulations become large and nonlinearities be-
come important: this is what makes the full stochastic
dynamics so difficult to analyze theoretically [40].
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The crucial subpopulation is the one with highest fit-
ness, which on average grows exponentially faster than
the others. Conditional on a new subpopulation surviv-
ing drift and becoming established, its fluctuations can be
neatly packaged into an establishment time, roughly the
time at which the lineage appears to have started grow-
ing deterministically. A lineage with fitness z above the
mean has probability z of establishing. At long times, an
established lineage grows as

n(t) ≈ 1

z
ez(t−τest) (5)

where the random variable τest is the establishment time
whose distribution captures the randomness of the early-
time fluctuations of a new sub-population [11].

In the multiple mutations regime (NU � 1), there are
many subpopulations that are fitter than the mean. Mu-
tations from the fittest subpopulation—referred to as the
nose of the distribution—will start nucleating a new fit-
ter subpopulation. This new nose has some fitness, Q,
above the mean. This subpopulation, nQ, receives muta-
tions from the subpopulation nQ−s. In the weak muta-
tion limit (s/U � 1), nQ−s will already be growing de-
terministically before the nose is likely to establish. Af-
ter establishing with size 1/Q, the subpopulation grows as
nQ−s = exp [(Q− s)t] /Q with t measured from its own es-
tablishment time. It can be shown that the establishment
time of nQ has a mean of

τ est ≈
`

Q
(6)

for large ` [11].
For rapid asexual adaptation, the balance of selection

and mutation results in a steady state population distri-
bution whose mean fitness increases at some average speed
va. For consistency, the nose must advance, one mutation
at a time, at the same speed va. Hence va = s/τ est.

Behind the nose, the dynamics are essentially deter-
ministic with negligible contributions from new mutations
(for ` � 1). The speed and shape of the distribution
are determined by the balance between selection and the
constraint on the total population size. After establish-
ment, the subpopulation formerly at the nose will grow
deterministically but with ever decreasing relative fitness,
Q − vat. This subpopulation grows until its fitness is the
same as the mean and reaches a maximum size in a time
τnm = Q/va, called the nose-to-mean time. At this time,
it has become the largest subpopulation with a size of or-
der N . Thus (to logarithmic accuracy) this subpopulation
size is

n(t) ∼ 1

Q
e[
∫ t
0

(Q−vat) dt] ∼ 1

Q
eQt−

vat2

2

−→ nmax ∼
1

Q
eQ

2/2va ∼ N. (7)

Thus for consistency we need va = Q2/2 log(Ns) where we
have dropped a factor of Q/s inside the logarithm since

log(Ns) � log(Q/s). Equating this speed to the advance
of the nose, va = s/τ est ≈ Qs/`, yields

Q

s
≈ 2L

`
and va ≈

2L

`2
s2. (8)

Note that the speed does not depend directly on the total
mutation rate NU because of clonal interference between
the mutations that arise. Only the small fraction of muta-
tions that arise near the anomalously fit backgrounds near
the nose have a chance of fixing. The shape of the fitness
distribution also follows simply by tracking the subpopu-
lations: it is very close to gaussian except right at the nose
where it is “cutoff” [22] and strongly fluctuating [40].

3.1. Approximations and their validity

The accuracy of the approximations that lead to eq. (8)
depend on combinations of parameters. The basic regime
of validity of the primary approximations is L → ∞, but
how large L must be depends also on ` and differs some-
what depending on the quantity of interest. If the number
of mutations of the nose above the mean, q = Q/s ≈ 2L

` ,
is only a few, then there are several sources of corrections
to the simple asymptotic expressions. The nose fitness
changes from Q to Q−s while establishing, so a somewhat
more accurate analysis using the average fitness Q − 1

2s
yields va/s

2 ≈ (2L − `)/`2. This also matches correctly
to the speed at the crossover, at L = `, from the succes-
sive mutations regime with va ≈ NUs2 for NU � 1/`
to the multiple mutations regime for larger NU . However
this assumes smooth motion of the mean, which is not the
case for small q. The motion is jerky even in the deter-
ministic approximation and the fitness distribution is not
so well approximated by a smooth gaussian. Smooth mo-
tion of the mean requires high enough speeds that the root
mean square width, σ ≈ √va, of the fitness distribution is
greater than a single mutation, s: this requires L & `2, or
q & `. Note, however, that because sums over the discrete
populations approximate very well a smooth gaussian, in
practice already for q ∼ `/3 the effects of the jerkiness are
small [40]. Moreover, for many properties of interest, the
effects of the jerky motion of the mean are minor as long
as q is relatively large.

We will generally analyze the asymptotically large L
limit in which most aspects of the asexual dynamics be-
come essentially deterministic and the fitness distributions
smooth enough that the fitness can be considered as a con-
tinuous variable. There are major simplifications that we
make use of when ` is also large. We largely restrict the
analysis to this limit and discuss corrections when needed
to compare with simulations and study crossover regimes.
A discussion of the effects of fluctuations and their scal-
ing with the reassortment rate can be found in section 8.
As we shall see, much of the behavior is captured, even
quantitatively, for realistic values of parameters that are
far from the asymptotic limits of validity of the analyses.
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3.2. Scaled variables

The asexual analysis suggests some basic rescalings
that will be useful for studying the two chromosome model.
The important fitness and time scales are the nose fitness
Q = va`/s and the nose-to-mean time, τnm = Q/va = `/s.
Thus a natural set of rescalings for fitness and time, which
we will use more generally, are

z̃ =
z

(v`/s)
and t̃ =

t

(`/s)
(9)

where v is the actual average speed—as yet unknown with
reassortment but in general greater than the asexual speed
va. In these rescaled variables the speed is unity and a
subpopulation’s fitness relative to the advancing mean has
a simple expression:

z̃
(
t̃
)

= z̃0 − t̃ (10)

For the two chromosome model, we will define

q ≡ 2L/` (11)

for convenience. In the asexual limit q is the number of
mutations that the nose is above the mean, eq. (8). While
this is not true for nonzero mating rates, q is a convenient
parameter combination that turns out to be always within
a factor of two of the number of mutations between the
mean and the nose. The asymptotic regime in which most
of our analyses become accurate corresponds to q � 1, so
that many fitness classes are populated and the fitness is
effectively continuous.

4. Simulation Results

The separation of scales when evolution is rapid al-
lows efficient simulations for large population sizes. In
particular, one can ignore stochasticity except in small
subpopulations for which fluctuations are important. Al-
though these fluctuations will eventually effect the large
subpopulations, we directly incorporate the resulting non-
linearities by keeping the total population size fixed. The
establishment size (above which it is unlikely to go ex-
tinct) for a subpopulation with fitness z is nest ∼ 1/z,
so we conservatively set a threshold for stochasticity of
n < 10/s. Eq. 1 is used to generate the expected number,
nexp, of individuals for each subpopulation (X,Y ) for the
next time step. For nexp ≥ 10/s we simply set n = nexp,
corresponding to deterministic growth. For small subpop-
ulations nexp < 10/s, we sample n from a Poisson distri-
bution with mean nexp. This scheme slightly alters the
birth-death process but the differences are small even on
linear scales and are negligible when the logarithmic pa-
rameters that control the very large N behavior become
substantial. (In an exponentially growing population the
fluctuations are dominated by early times: from a size
n0, the late time fluctuations in the subpopulation size

are δn(t)/n(t) ∼ 1/
√
n0. With n0 = 10/s these fluc-

tuations are at most a few percent, much smaller than
those from the time when the subpopulation is establish-
ing, when n(t) ∼ 1/qs or smaller, that are accounted for
by our simulation scheme.)

To understand the behavior, it is useful to study a
fully deterministic approximation to the dynamics, For the
asexual case, a deterministic approximation of the nose dy-
namics approximates very well the mean shape and speed
of the fitness distribution. This approach of using a deter-
ministic model with a cutoff at high fitness goes back to the
study of the asexual model by Tsimring et al. [22]. What
is needed is a way to decide when a new deterministic
subpopulation establishes. One simple approach is based
on the expected number of established lineages. Consider
an influx ν(t) of new mutants into an initially empty sub-
population with fitness z. Then the expected number of
established lineages at time t is

m ≡ E[number of established lineages]

=

∫ t

−∞
z ν(t′) dt′ (12)

For our specific deterministic approximation, wheneverm(t)
reaches an integer, we add a new lineage of size 1/z to
the subpopulation. This procedure removes stochasticity
without allowing fractions of an individual to have an ef-
fect. For the asexual case, it corresponds almost exactly
to the approximation used above in section 3 of treating
the stepward advance of the nose at constant intervals of
τ est.

An implementation of the stochastic and determinis-
tic simulations used in this paper are provided via an on-
line data repository, see [43]. Figure 1 shows results for
the mean speed from the stochastic simulations and com-
pares these to steady state approximations analyzed in
the following sections. The quantity plotted is the ratio
of the increase in speed above the two chromosome asex-
ual speed, v − va(2U), to the increase of a fully sexual
population, vs−va(2U) (with reassortment but no recom-
bination). This ratio thus goes from 0 to 1 as r is increased
from O(1/N) to O(s). A primary result from the steady
state approximation analyzed below is that, asymptoti-
cally, the speed should depend on the recombination rate
only through the combination, λ/L ≡ log(Nr)/ log(Ns).
The simulation results show that the λ/L dependence in-
deed captures the overall scaling of the speed. In the
asymptotic limit of large ` and large q = 2L/`, the normal-
ized speed predicted for the steady state does not depend
on q or `. The stochastic simulations in fig. D.13 show
that, indeed, the speed does not depend much on q, but
at low reassortment rates there is substantial dependence
on `. We will elucidate and expand on various aspects
of fig. 1 in the following sections, including the deriva-
tion of the steady state approximations and a discussion
of the more complicated—and interesting—features of the
dynamics beyond the mean speed.
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Figure 1: Stochastic simulation results for the speed of evolution for different values of N , r, and U compared to the steady state analysis and
deterministic simulations. Simulations were run for a time 200`/s for the q = 20 and q = 60 curves (green) and a time 600`/s for the N = 108

and N = 1012 curves (red), with `/s being roughly the time for the nose population to become the largest subpopulation. The quantity
plotted is the normalized increase in speed due to reassortment: the ratio of the speed increase from asexual, v − va, to the maximum speed
increase in the sexual limit, vs − va. The q = 20 and q = 60 curves are for asymptotically large populations, both with L ≡ log(Ns) = 600,
so that the fitness distribution is essentially continuous. The red curves illustrate two realistic sets of parameter values for large microbial
populations feasible in evolution experiments (These correspond to q ∼= 2.7, ` ∼= 11 for N = 108 and q ∼= 9, ` ∼= 5.3 for N = 1012) The N = 108

curve is shifted due to corrections of order one in the effective λ caused by fluctuations as discussed in section 5.1. The purple curves show the
results of the steady state analysis which exhibits two regimes: low mating (λ/L < 0.8) and intermediate mating (λ/L > 0.8). The observed
speed from the stochastic simulations also changes non-smoothly near the boundary between these two regimes. The blue curve shows the
results of deterministic simulations illustrating excellent agreement with the stochastic simulations for a particular set of parameter values in
the large q regime. A more extensive comparison of deterministic and stochastic simulations is in fig. D.13.

5. Two Chromosome Asexual Limit

Without reassortment, the two chromosome model is
equivalent to asexual evolution but with each mutation
having a label: X or Y. With twice the overall mutation
rate, the speed is va(2U) ≈ 2L/ log(s/2U)2 = 2L/(` −
log(2))2. (Note that the small log(2) correction to ` yields
corrections to v of the same order as other 1/` terms ne-
glected in the approximations used in deriving the asexual
speed, but in ratios its effects are noticeable for any reason-
able `.) In principle, the population distribution n(X,Y )
could be inferred from the asexual diversity statistics de-
rived in Desai et al. [28] by accounting for the random X or
Y labels. We shall see that the subpopulations important
for small reassortment have a very asymmetric division of
mutations—anomalously high fitness on one chromosome
and low or average fitness on the other— corresponding to
tails of the distribution of labels. Thus to understand the
behavior with reassortment we must track the dynamics of
anomalous lineages that mutate mostly on a single chro-
mosome. These are not so readily amenable to the asexual
approaches of Desai et al. [28], thus we instead use a fitness
class approach similar to section 3.

With two chromosomes there is a one-dimensional front
in fitness space that marks the leading edge of the fitness
distribution. A useful variable to parametrize the fitness
distribution is the difference in fitness between the two
chromosomes, w ≡ X − Y − 〈X − Y 〉 = x − y, which on

average does not change as the mean fitness advances. The
front is the set of subpopulations with the highest fitness
for a given w value and their fitnesses relative to the mean
we denote f(w). These subpopulations at the front are the
ones that have most recently established. The steady state
asexual fronts are plotted in fig. 2 for different mutation
rates. If the transverse coordinate, w, is integrated over,
the nose of the resulting fitness distribution is dominated
by only part of the front, and likewise the mean by only
a small part of the range of w. Nevertheless, we shall see
that with reassortment, a wider range of both the front
and the bulk of the distribution will be important.

The establishment time calculations in section 3 can
be used to derive a self-consistency condition for a steady
state front. In the limit of large q and f � s, one can
approximate the front as continuous, so that the condition
will become a differential equation for f(w). A new mutant
with (X,Y ) can come from two parental fitness classes:
(X − s, Y ) and (X,Y − s). The combined size of the two
feeding subpopulations is

n(t) ≈ 1

f
ef(t−τ1) +

1

f
ef(t−τ2), (13)

where τ1 and τ2 are their two establishment times (here ig-
noring the difference between f and f−s as in the asexual
case). The combined subpopulation grows exponentially

7

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233320doi: bioRxiv preprint 

https://doi.org/10.1101/233320
http://creativecommons.org/licenses/by-nc/4.0/


~x
-2 0 2

~y

-2

-1

0

1

2

0

log(N)

Figure 2: Shape of asexual fitness front f(w)—the boundary of the
populated region of fitnesses, (x, y) of the two chromosomes—for
several values of ` ≡ log(s/U): from inside to outside, ` = 4, 8, 16,
and 32. The diagonal directions are the total fitness, f = x + y
and the difference between the fitnesses of the two chromosomes,
w ≡ x−y. The width of the distribution (in w) grows as ∼ log(`) for
large `. The colored region is the population distribution for ` = 4 in
the deterministic approximation with colors indicating contours of
log-population size. The population evolves by moving at constant
speed in the upper right direction. Fitnesses are measured relative
to the mean in normalized units.

as exp[f(t− τ0)]/f with an effective establishment time

τ0 = − 1

f
log
[
e−fτ1 + e−fτ2

]
(14)

Therefore, we can directly use the result of eq. (6) to find
the mean establishment time of the (X,Y ) population:

τ est ≈ τ0 +
`

f
= − 1

f
log

[
U

s

(
e−fτ1 + e−fτ2

)]
(15)

If one population never established (τ2 → ∞) we recover
the one chromosome result, τest = τ1 + `/f .

If we know the establishment times of all subpopula-
tions along the front, then we can use eq. (15) to deter-
mine how the front advances with time. In the pseudo-
deterministic approximation, as used in section 3, we ex-
pect a steady state shape for the front with the mean and
front advancing at the same speed v = va(2U). There
is, of course, a trivial solution with a completely straight
front, but this is inconsistent with the fixed population size
constraint. Thus the steady state fitness distribution, and
hence the front, must be localized in some range of w. The
natural Ansatz is that the front has a single point (or two
neighboring points) with maximum fitness: we will again
call this point the nose. In two steps, each taking time
s/v, the nose will advance from (X,Y ) to (X + s, Y + s).

The detailed analysis of the steady state front is in ap-
pendix Appendix A: we summarize here its key features.
When q, which characterizes the range of occupied fitness
classes, is very large, we expect that the width of the dis-
tribution will be also. In this limit, the front can be ap-
proximated as a smooth curve. The front is comprised

of two regions characterized by how establishment occurs.
In the middle region around the nose, establishment oc-
curs because of mutations from both parent populations.
This means that τ1 and τ2 are close. In the outer “wings”,
establishment is dominated by mutations from only one
parent population because the other parental subpopula-
tion established too late to contribute many mutants. This
occurs when the difference in establishment times, |τ1−τ2|,
is much larger than the time, 1/f , for the populations to
grow significantly.

The behavior in the wings is easier to understand and
will be needed for the analysis with reassortment. Subpop-
ulations at the front that are further from the nose have
smaller fitness. So for the X wing, an X mutation from
the X parent will establish earlier and with greater fitness
than a Y mutation from the Y parent, thus establishment
is mainly due to mutations from the X parent. Lineages
in the X wing therefore stay at the front by accumulating
mutations predominantly on the X chromosome, moving
their descendant lineage even further from the nose. Such
a lineage accumulates mutations more slowly than the nose
advances so it loses relative fitness over time. Its total fit-
ness is f = X +Y − vt with Y constant. Since a mutation
of size s is added to the X chromosome in a time `/f , X
increases at speed fs

` . Therefore

df

dt
≈ fs

`
− v. (16)

At the same time, w = X − Y is increasing at rate fs
`

. For the shape of the front to remain the same requires
df
dt = dw

dt
df
dw , which yields a differential equation for f(w)

valid in the X-wing. The shape in this region does not

depend on any parameters, since eq. (16) becomes df̃
dt̃

=

f̃ − 1 in our normalized variables.
In the middle region near the nose, the behavior is

more subtle: here the difference between ` and ` − log 2
(i.e. U and 2U) is important (the nose fitness satisfies
a similar differential equation to 16 with ` replaced by
` − log 2). The shape, f(w), of the steadily moving front
near the nose thus satisfies a more complicated differential
equation. Matching together this nose region with the X
and Y wings, as described in appendix Appendix A, yields
a shape of the fitness distribution controlled entirely by `
with the other parameter q ≡ 2L/` only setting its overall
size in fitness space. The shape of the front for different `
values is shown in fig. 2. The ratio of the width wmax to
the max fitness fmax, or “aspect ratio”, depends weakly
on `, going as

wmax

fmax
∼ log(`) (17)

for large `. Since ` ≡ log(s/U) is itself a logarithmic pa-
rameter, the dependence on the underlying parameters is
very weak—although it will turn out to account for the `
dependence of the speed seen in fig. 1 at low λ/L.

Similarly to the aspect ratio, the time to relax to the
asexual steady state depends weakly on `. For our later
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discussion of oscillations, the relevant initial condition is
a distribution with a nose fitness roughly Q but with the
shape and width of the distribution far from the steady
state, being substantially more curved near the nose. Track-
ing how the wings mutate away from the nose and lose fit-
ness, one finds that the distribution relaxes to the steady
state in a time ≈ `

s log(`) which can be several times the
nose-to-mean time, `/s.

Note that the analysis above and in appendix Appendix
A is formally valid in the limit in which q → ∞ before
` → ∞. This limit ensures that the thickness in f of the
nose region is large compared to s (which requires q � `)
so that the continuum approximation is justified. But the
simulations show that the behavior is essentially the same
in the opposite limit. In that regime, the mean as well as
the front moves jerkily. The fitness does not vary smoothly
across the front, but the timings of the establishments are
still a smooth function of w so the continuum approxima-
tion can still be valid.

5.1. Initial deviations from asexual

In the very rare sex regime, as r is increased from zero
the reassortment alters the asexual dynamics when it can
result in the establishment of a new subpopulation in a
fitness class beyond the front. The reassortment feeding

has the form ν = Nrn(x)
N

n(y)
N and establishment occurs

when ν ∼ 1, as detailed in section 6.1. For the asex-
ual steady state analyzed above, there is a gently curving
ridge of large subpopulations with fitness z = 0. In the ap-
proximation that those that can first reassort to the nose
have n(x) ∼ n(y) ∼ N — the maximum possible — the
condition for reassortment to increase the speed is simply
λ/L = 0. As derived in appendix Appendix C, the curva-
ture of the ridge, which arises from the curvature of the
asexual front, reduces the size of the mating subpopula-
tions and changes the borderline condition to λ/L ≈ 2/`
for large ` consistent with the deterministic simulations in
fig. D.13. However the stochastic simulations in fig. 1 show
that the speed starts to increase already for λ/L ∼= 0. This
is a consequence of fluctuations. Anomalously early estab-
lishments in the nose region of the front can result later
in a temporarily broader population distribution that has
large subpopulations sufficiently far apart to advance the
nose via reassortment for smaller λ/L. In the asymptotic
limit, these establishments due to fluctuations still require
λ/L ≥ 0. But for modest size populations, deviations from
asexual behavior before λ < L can occur, as seen in fig. 1
for N = 108. For that population size, with L ≈ 15, the
sub-exponential prefactors in n(x) and the feeding rate, ν,
required for establishing a subpopulation are not negligi-
ble. The leading corrections can be incorporated into an
effective reassortment parameter, λeff = λ + O(1). This
will shift the speed curve by O(1/L), consistent with the
simulations in fig. 1.

6. Reassortment Steady State

We now turn to an analysis of the behavior for small re-
assortment under the assumption of a steady state fitness
distribution. This is a good starting point for understand-
ing the key aspects of the dynamics and dependence on
the basic parameters as well as analyzing fluctuations (as
for the asexual model, see 40). As we shall see, for the
two chromosome model, the steady state turns out to be
unstable to oscillations as discussed in a later section. But
it is still instructive to study the steady state because the
important features of the oscillations—a cycle of accumu-
lating mutations, clonal growth, and then reassortment—
already occur in the steady state.

We make a basic Ansatz for the nature of the fitness
front: that it has two types of regions that depend on how
new subpopulations are nucleated at the front. In one
region, the reassortment front, individuals in a new sub-
population are produced by reassortment of parents in the
interior of the fitness distribution. In the other regions,
called the mutation wings, individuals are the product of
mutation and have a single parent that is (or more accu-
rately, recently was) at the front. The wings are similar to
those of the asexual limit already analyzed above.

The reassortment front is located in the middle of the
front where x ≈ y, with the nose at x = y = Q/2 with the
largest relative fitness, Q. For this region, parents typically
have one quite high fitness chromosome and one quite av-
erage fitness chromosome, resulting in offspring that have
two quite high fitness chromosomes. There is a mutation
wing on either side of the reassortment front. Establish-
ment in the wings is due to mutation because reassort-
ment produces too few individuals. For large populations
we expect the transitions between the reassortment front
and the wings to be sharply delineated, i.e. the influx of
individuals will either be dominated by reassortment or
mutation.

The total population is dominated by the subpopula-
tions that arise near the nose that later found near the
peak of the distribution at (0, 0). These subpopulations
reach a maximum size after growing from a time t =
Q/v. Ignoring sub-exponential prefactors, the maximum
size should be ∼ N so

exp

[
Qt− v t

2

2

]
= exp

[
Q2

2v

]
∼ Ns ≡ eL (18)

as for the asexual case. In terms of the scaled variable,

Q̃ ≡ Qs

v`
: (19)

this implies that the the scaled speed is related to the
scaled nose fitness by

R ≡ v`2

2Ls2
≈ v

va(U)
≈ 1

Q̃2
. (20)

Using its relationship to Q̃, the speed drops out of the anal-
ysis of the fitness distribution’s shape, which then amounts
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to finding Q̃ as a function of λ/L. There is a dual meaning
of Q̃: since the speed at which the nose can advance by
mutations is Qs/`, Q̃ is the ratio between this would-be
mutational-driven speed and the actual speed with reas-
sortment. Alternatively, Q̃ can be viewed as the nose-to-
mean time in rescaled variables.

The mutation wing and the asexual front in section 5
share the same mutational dynamics and therefore obey
the same differential equation for their shape, which de-
pends on `. In the large ` limit, however, the dynamics
simplify because the wing will start with low enough fit-
ness that only mutation from a single parent population
matters. The shape of the mutation wing would then be
independent of `. We will discuss when this approximation
is valid.

6.1. Low Mating Rate Steady State

At low mating rates, the reassortment front is narrow
and is solely the product of mating between subpopula-
tions that descend from the two mutation wings. These
subpopulations typically have one anomalously fit chro-
mosome and one close-to-average chromosome. The sub-
populations along the reassortment front will grow to large
sizes, but they are not important for further reassortment.
Their fitness is split equally between the two chromosomes
so they do not contribute especially fit chromosomes dur-
ing mating.

The low mating steady state is relatively simple be-
cause the mutation wings are determined entirely by the
boundary point between the two regions, called the wing
start. We will solve for the steady state moving at a speed
v in a series of steps: (1) Assume the location of the wing
start; (2) find the shape of the mutation wing; (3) de-
termine the total number of individuals, n(x), with an X
chromosome of fitness x that the wing gives rise to; (4)
from n(x) and n(y), determine the shape of the reassort-
ment front by finding the establishment times for the front;
(5) match the mutation wing to the reassortment front to
fix the location of the wing start; (6) connect the mating
rate λ/L to the nose fitness Q via the condition that the
establishment times of new subpopulations at the front
match the assumed mean speed.

The mutation wings for the reassortment steady state
have the same dynamics as the wings for the asexual case
of section 5. Let the X (w > 0) wing start have fitnesses
(x̃, ỹ) = (x̃s, ỹs) with x̃s > ỹs and define f̃s = x̃s+ ỹs. The
front in the mutation wing is composed of lineages that
began at the wing start and accumulated mutations on the
X chromosome, as illustrated in fig. 3(a). Mutations are
added at a rate of 1/τest = f/` so the X fitness increases
at a speed fs/`. Therefore the relative front fitness, f =
X + Y − vt, obeys eq. (17) or equivalently

df̃

dt̃
= f̃ − 1 (21)

in rescaled units. After mutations accumulate for a rescaled
time τM starting from f̃s the relative fitness of this lineage

is
f̃M = 1− (1− f̃s)eτM (22)

Because the mean advances, the relative Y fitness simply
decreases to ỹM = ỹs − 1

2τM and the relative X fitness is

found from x̃M = f̃M − ỹM . This determines the shape
of the mutation wing (x̃M ,ỹM ) as a parametric function of
τM .

Various lineages in the mutation wings contribute to
the total number, n(x̃), of chromosomes with fitness x̃ that
are available for reassortment. As shown in fig. 3, these
lineages mutated out from the wing start for different times
before growing clonally. Consider a specific lineage that
has mutated for a time τM from the wing start and then
grows for a time τG without further mutations. During the
growth, its relative X fitness decreases until it becomes x̃.
Thus τG is determined by

x̃ = x̃M −
1

2
τG = f̃M −

(
ỹs −

1

2
τM

)
− 1

2
τG. (23)

which gives τG as a function of τM and x̃. After this period
of growth the size of this lineage is

log(ns) ≈ v`2

s2

∫ (
f̃M − t̃

)
dt̃ (24)

=
v`2

s2

(
f̃MτG −

1

2
τ2
G

)
≡ 2RL αx(τM ) (25)

where α is a convenient rescaled quantity for log-populations
and we have used eq. (20) to scale out v in exchange for
R.

The reassortment rate depends on the total number of
individuals with an X chromosome with fitness x̃ as shown
in fig. 3. This total number is approximated by the integral

n(x̃)s ≈
∫

exp [2RL αx̃(τM )] dτM . (26)

In the large L regime of interest this integral will be domi-
nated by the largest subpopulation, so n(x̃)s ≈ exp(2RLαmax)
up to sub-exponential prefactors. The number of subpop-
ulations contributing to the integral is roughly ∆y/s ∼√
L/`. Even though this is large in the high speed regime

(L � `2), the peak of αx̃(τM ) is narrow in the rescaled
units, ∆ỹ ∼ 1/

√
L.

The integral in eq. (26) is maximized when

τM = 2(ỹs + x̃)− 1 (27)

for which the fitness is z̃G = f̃M −τG = (1− f̃s) exp[2(ỹs+
x̃)− 1] and the normalized log-population

α(x̃) ≡ log [n(x̃)s]

2RL
≈ 1

2
− z̃G. (28)

This determines how many chromosomes with fitness x̃ are
available for reassortment.

We now find the shape of the reassortment front by us-
ing the condition for establishment by reassortment. From
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Figure 3: Schematic of the dynamics of the low mating rate steady state. The front is divided into the reassortment front (blue) and the
mutation wings (red), which begin at the wing starts (black dot). (a) Lineages in the mutation wing started at a wing start some time in
the past and accumulated mutations on only one of the chromosomes. (b) Subpopulations formerly at the front grow for a period of time
and fall behind the advancing front. The conditional distribution of X-chromosome fitness, X1, is shown in green. The maximum of this
distribution contributes the most copies of the X chromosome for reassortment (blue arrow). Reassortment results in establishment along
the reassortment front and advances it. (c) The same dynamics shown in the moving frame. Mutating along one chromosome (red arrow)
moves a lineage out along the wing. A subpopulation loses relative fitness while growing clonally (green arrow). After a period of growth,
reassortment (blue arrow) can yield establishments at the front. The important X-wing-supporting cycle is shown. Note that the upper path
shown that produces the Y chromosome for the X-wing-start, is not the Y-wing-supporting cycle, which is distinct (obtained by reflection of
the X-wing cycle along the diagonal).

eq. (1), the rate at which mating produces individuals with
(x̃, ỹ) is

ν =
r

N
n(x̃)n(ỹ)

∼ exp [λ− 2L+ 2RL (α(x̃) + α(ỹ))] (29)

using the logarithmic measure for the mating rate, λ ≡
log(Nr). This rate ν grows exponentially with time at rate
φ̃ = z̃G(x̃) + z̃G(ỹ), which is the sum of the fitnesses of the
dominant subpops for n(x̃) and n(ỹ). Because the growth
rate of ν is not close to the fitness of the new individuals,
i.e. φ̃ < f̃ = x̃+ ỹ, establishment is dominated by the first
established individual, roughly when

∫ t
f ν eφtdt = 1 with

solution t = − log (νf/φ) /φ ≈ − log(ν)/φ. This gives
the establishment time for the front to advance by s from
position (x̃, ỹ):

t̃est(x̃, ỹ) ≈ − log(ν)

2RLφ̃
=

1−R− λ
2L

R(1− f̃M )e2ỹs−1 (e2x̃ + e2ỹ)
+ 1

(30)
For a steady state, the whole front must advance at the
same speed so the establishment time must be the same
across the front. Since the x̃ and ỹ dependent part in
eq. (30) must therefore be constant, the reassortment front
has the simple form

e2x̃ + e2ỹ = ef̃+w̃ + ef̃−w̃ = 2eQ̃, (31)

where Q̃ is the scaled nose fitness which occurs at x̃ = ỹ =
Q̃/2. The position of the X-wing start, (f̃s − ỹs, ỹs), can
now be determined in terms of Q̃ by matching the reas-
sortment region (found from eq. (31)) and the mutation
wing (inferred from eq. (22)) smoothly at the wing start.
Matching derivatives at the wing start ensures that the

mutation wing is “maximal,” i.e. mutants from nowhere
else on the reassortment front could form a wing more ad-
vanced than the maximal one.

The nose fitness can now be obtained by requiring the
establishment time to be test = s/v to match the steady
state speed v. In rescaled units, this is t̃est = `

2RL = 1
Rq �

1 and is thus much smaller than the terms on the right
hand side of eq. (30) and can therefore be neglected: this
is simply the continuous time approximation for the front
dynamics valid for q � 1. We can now substitute eq. (18)
into eq. (30) to obtain

1− λ

2L
=

1

Q̃2

(
1− 2(1− f̃s)e2ỹs+Q̃−1

)
(32)

which, since we have already implicitly determined ỹs and
f̃s in terms of Q̃, is an autonomous equation for Q̃ that
can be solved numerically to give the shape of the fitness
distribution. Note that the dependence on the mating rate
enters only through the combination λ/L. The speed in
un-rescaled units is then v ≈ Rva(U) ≈ 1

Q̃2

(
2L
`2 s

2
)
, which

is plotted in fig. 1.
The dependences on λ/L of several important quan-

tities for the steady state solution are shown in fig. D.14.
While the nose fitness Q̃ and the wing start fitness f̃s both
decrease with λ/L because of the increasing speed, the fit-
ness drop along the reassortment front, Q̃ − f̃s, remains
small throughout the low mating regime. But the width
of the reassortment regime, measured by w̃s, increases with
the mating rate. The other important quantities charac-
terize the X wing lineage that supports the X wing start
by reassortment, as discussed more below. For increas-
ing λ/L, the wing starts with a higher asymmetry in the
fitnesses (higher w̃s) and smaller subpopulation sizes are
needed for reassortment, so less time is needed for muta-
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tion (τM ) and growth (τG).
The predicted speed increases linearly for small λ/L.

But the inferred v does not reach the expected sexual limit
of v/va(U) = 2 for high mating rates. Instead the solution
approaches a cusp-like maximum value of v/va(U) ∼= 1.56
at λ/L ∼= 0.84, which suggests that the Ansatz breaks
down at or before this point. The breakdown occurs when
the mutation wings in our Ansatz become unable to sup-
port each other via reassortment. The start of the Y-wing
has fitnesses (x̃, ỹ) = (ỹs, x̃s) so it requires an X chromo-
some from the other wing with fitness ỹs. From eq. (27)
we see that such a chromosome begins at the X-wing start
and mutates out for a time τM = 4ỹs − 1. As the mating
rate increases, the reassortment front becomes broader and
ỹs decreases, so less time is spent mutating. The Ansatz
break down is when the τM = 0 (ỹs = 1/4), i.e. when no
mutations are accumulated and the subpopulation that is
crucial for mating grows up directly from the wing start.
This corresponds to a mating rate of λ/L ∼= 0.81 (a mat-
ing rate lower than the non-sensical cusp-like maximum).
For higher reassortment rates, a new steady state Ansatz
is necessary: this must include additional reassortment
events to support the mutation wings as discussed in the
next section.

6.2. Fixation of mutations and genetic diversity

An important lesson from the steady state analysis
is that cycles of mutation, growth, and reassortment are
needed to support the advancing front. A particular cycle—
the wing-supporting cycle—is most important because it
is the path towards fixation for new mutations. Fig 3(c)
shows this cycle: a lineage begins at the wing start, mu-
tates, grows, and later feeds a new wing start for the same
chromosome by reassortment. This new wing start then
supports both the reassortment front and the next wing
start. The λ/L dependence of the important quantities for
this cycle— including the times for the important lineages
to mutate and grow and the associated fitnesses — are
plotted in fig. D.14. As the mating rate increases, the to-
tal (scaled) period of the wing-supporting cycle decreases
roughly linearly from t̃period

∼= 2 to t̃period just below 1
when the low mating solution breaks down.

To understand the fixation process, it is useful to take
a single mutation view of the evolution. We first review
the behavior for asexual populations. The only mutations
that have a chance of fixing arise in the low frequency,
but very fit, subpopulations at the nose [28]. During the
time that the nose advances by one mutational step, many
mutations will establish and each mutant subpopulation
subsequently grows. In order to continue to be competi-
tive, a mutant lineage must be lucky enough to produce
further mutations before its competitors. This process
continues through a number—typically of order log(logN)
[28]—cycles of single-mutation, establishment, and growth
until the luckiest single lineage fixes in the nose. Soon af-
ter, the mutant lineage fixes in the whole population once
the nose subpopulation has risen to dominate. It is this

process that leads to fixations and generates the genetic
diversity [28, 27].

The mutation fixing process in the two chromosome
model is a generalization—albeit a subtle and complicated
one—of that in asexual populations. Consider a chromo-
some with a mutation of interest that goes through the
wing-supporting cycle. The chromosome will accumulate—
up to order q—beneficial mutations and increase in copy
number during growth. A few copies will establish at a
later wing start due to reassortment. From there, these
can accumulate additional beneficial mutations and con-
tinue through the wing-supporting cycle. New mutations
that arise along the reassortment front or too far out in
the wings are unable to fix because they occur on chro-
mosomes that will not contribute to later reassortment. A
mutation must first fix within the wing-supporting cycle
in order to ultimately fix in the whole population. A mu-
tant lineage must be luckier than competing lineages in
establishing sooner at each of the many steps of the wing-
supporting cycle. After a number of lucky rounds, a lucky
mutation will have risen to be all but a tiny fraction of the
population in the wing-supporting cycle and will soon fix.

In large populations, the important dynamics that main-
tain the mutation wings involve only low frequency sub-
populations. Thus in experiments, the crucial dynamics
underlying the evolution would not be seen unless the pop-
ulation were sequenced very deeply. We note, however,
that in contrast to the asexual case, for very low reassort-
ment rates some of the important dynamics takes place in
large subpopulations: in this regime the sizes of the sub-
populations that dominate reassortment to the wing-starts
can be moderately large (albeit formally still exponentially
small in λ).

6.3. Fitness distribution

The shape of the front determines the fitness distribu-
tion of the whole population. In the sexual limit (r → s)
the fitness distribution is gaussian in both variables (in-
deed, it can be seen that the product of two steadily mov-
ing gaussians is formally a solution to the evolution equa-
tion, eq. (1) when mutations and fluctuations are ignored).
But at low mating rates the distribution is far from gaus-
sian especially in the low frequency regions important for
the dynamics, e.g. the wing-supporting cycle in fig. 3. The
shape of the full distribution depends on the front as

log[n(w̃, z̃)s] ≈ L

Q̃2

[
f̃(w̃)2 − z̃2

]
(33)

The distribution near its peak is controlled by the shape
of the reassortment front near the nose, found in eq. (31):

f̃(w̃)2 = Q̃2 − Q̃w̃2 +O(w̃4) (34)

So the large frequency subpopulations near the mean are

close to gaussian with an aspect ratio σw/σz = 1/

√
Q̃ > 1.

Non-gaussian corrections arise from the O(w̃4) term and
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are noticeable when w̃∗ ∼ L−1/4, or w∗/σw ∼ L1/4. So
for large L, the distribution appears gaussian for many
standard deviations, but the important dynamics happen
in the mutation wings where the distribution is far from
gaussian.

The above asymptotic analysis yields an approxima-
tion to the steady state distribution, which becomes es-
sentially symmetric near its peak as the mating rate de-
creases. But the asexual analysis of section 5 yields an
anisotropic shape. This discrepancy is associated with
subtle exchanges of limits of large ` and small λ. These
are discussed briefly in Appendix Appendix C which ad-
dresses how the reassortment steady state approaches the
correct asexual speed for finite `.

6.4. Intermediate Mating Steady State

For λ/L & 0.81—which we call “intermediate” mating
although mating is still rare (r � s)—a new Ansatz for
the form of the steady state solution is needed because
secondary reassortment events become important. In the
low mating regime, larger λ means smaller subpopulations
are needed for establishment by reassortment so smaller
mutation wings—starting with smaller fitness, f̃s, and fur-
ther from the nose (larger w̃s)—can support the nose’s ad-
vance at faster speeds. For λ/L & 0.81, however, the small
X wing fails to produce subpopulations large enough to
supply the X chromosomes needed for the Y-wing start.
Instead, the Y wing is supported by reassortment from
subpopulations that grew up from the reassortment front.
The front for intermediate mating then becomes divided
into three regions: the nose and wing regions described
by equations in section 6.1, and new “re-mating” regions
between the nose and wings that establish due to reas-
sortment and also contribute to reassortment. Unlike for
low mating, a chromosome can undergo two reassortment
events (without accumulating new mutations in between)
before losing too much fitness to reassort and establish at
the front.

The secondary reassortment events make the dynam-
ics more complicated but do not change the basic picture
developed in the low mating case: a detailed discussion of
intermediate mating is relegated to appendix Appendix B.
One difficulty in the analysis is that the shape of the re-
mating regions must be solved self-consistently since the
Y re-mating region is a product of reassortment from the
Y mutation wing and the X re-mating region (and like-
wise the X re-mating region depends on the Y re-mating
region). In the appendix, we find the speed of the inter-
mediate mating Ansatz without explicitly solving for the
shape of the whole front. The results are plotted in fig. 1.

The intermediate mating Ansatz breaks down at λ/L ∼=
0.99 when the two mutation wings cannot reassort to form
the nose region. An additional multi-step process is needed
for higher mating rates, and more and more complicated
processes are likely needed as the sexual limit is approached,
i.e. λ→ L or r → s.

7. Oscillations

Simulations of the two chromosome model reveal that
oscillations are an important feature of the dynamics, es-
pecially for large populations. Park and Krug [37] noted
the presence of oscillations but did not study them be-
yond describing the dynamics of the fitness distribution
as a “breathing traveling wave.” As shown in fig. 4, the
oscillations involve a cycle of diversity buildup through
mutation followed by purging of much of the diversity
by reassortment and subsequent selection. We will show
that the dynamics of the oscillations are related to the dy-
namics within the steady state solutions discussed above.
The oscillation dynamics differ for low and intermediate
mating rates, but here we focus solely on the low mat-
ing oscillations, which capture the important features of
the dynamics, and discuss the intermediate case in ap-
pendix Appendix B. The oscillations are clearly observ-
able for the stochastic dynamics and become more regular
for q ≡ 2L/` � 1 large, see fig. 4. Thus the determinis-
tic simulations (described in section 4) are very useful for
characterizing and understanding the oscillations.

The oscillation dynamics for the deterministic and stochas-
tic simulations can be seen in the patterns of establishment
shown in fig. 4. Each fitness class of the current population
distribution is colored according to whether its establish-
ment was dominated by reassortment or by mutation. At
any point in the cycle and at each position along the front,
either reassortment or mutation strongly dominates as oc-
curred for the different sections of the front in the steady
state Ansatz. The oscillation cycle can thus be cleanly
divided into two phases: a reassortment driven phase of
establishments at the nose that will eventually advance
the whole population, and a mutation driven phase that
both advances the nose and creates the diversity for reas-
sortment to later act on.

The oscillation dynamics over one period resembles the
cycles of mutation, growth, and reassortment described in
the steady state analysis. During the reassortment phase,
reassortment advances the central part of the front. The
front advances faster than the mean, so the nose (the fittest
part of the front) becomes more and more fit (relative to
the mean) during this phase. These fitter subpopulations
from the nose grow especially fast until eventually one
takes over the bulk of the population, causing the mean fit-
ness to jump sharply. Almost immediately after the mean
jumps, the population has too few chromosomes with high
relative fitness that could possibly reassort to the front,
thereby quickly ending the reassortment phase. But the
front can still advance by mutation.

During the subsequent mutation phase, the central re-
gion of the front advances more slowly, as shown in the
righthand column of fig. 4. But more important for the
future are lineages in the wings that accumulate muta-
tions asymmetrically—some predominantly on one chro-
mosome, some predominantly on the other—extending both
the wings. The growth of these wing subpopulations even-
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Figure 4: Oscillation cycles illustrating the fitness distribution during the mutation phase (left column) and the reassortment phase (middle
column) that occur in each cycle. Top row: deterministic approximation to the dynamics; lower rows: stochastic dynamics. All the non-zero
subpopulations are shown with their color indicating the fraction that was established by reassortment (bluer) or mutation (redder). The
oscillation dynamics are shown at low mating rates: λ/L ≈ 0.5. The righthand column shows the speed of the nose and mean, dashed lines
corresponding to the times of the snapshots shown. The nose speed increases during the reassortment phase and, through exponential growth
of the prior nose populations, the effects of this are sharpened into a jump in the mean fitness roughly a time `/s later. The stochastic
simulations have N = 1012, s = 10−2, 2U = 10−4, r = 10−7 (q ≈ 9, ` ∼= 5.3) and N = 108, s = 0.03, 2U = 10−6, r = 1.8 × 10−5 (q ≈ 2.7,
` ≈ 11). These agree qualitatively and semi-quantitively with the deterministic simulations, which are valid in the continuous limit that
obtains when q ≡ 2L/`—which determines the width of the fitness distribution—is large.

tually creates enough high fitness chromosomes that reas-
sortment can establish new subpopulations at the front:
this starts the reassortment phase again and the speed of
the nose increases. In summary, over each period, reassort-
ment rapidly advances the nose which causes the mean to
jump forward and stops reassortment to the front. Then
mutation and growth in the wings produce the higher fit-
ness chromosomes that are again able to reassort to the
front and advance the nose.

Looking in more detail at the nature of the oscilla-
tions, it is apparent from the figures that the variations in
the speed of the mean are much larger than those in the
nose speed: indeed, a sudden increase in the speed of the
nose becomes sharpened into a jump in the mean fitness
because of the exponential growth of competing subpopu-
lations. We illustrate these dynamics through a simple toy
example. Assume that the nose and the mean have been
traveling at speed v1 for some time and at t = 0 the nose
speed increases to v2. (This scenario is a surprisingly good
approximation for the low mating oscillations, as seen in
fig. 4). During the mutation phase, the nose and mean
settle into traveling at roughly the asexual speed until the
reassortment alters the nose speed. The mean is unaffected
by the change in nose speed until the new subpopulations
reach a size comparable to N . New subpopulations estab-
lishing at time te > 0 start with a larger relative fitness,
f(te) = Q+(v2−v1)te. Here Q is the original nose fitness,

which should satisfy Q2 = 2v1L from eq. (18) if the nose
and mean have travelled at v1 for longer than τnm = Q/v1

which we will assume. A subpopulation will reach a size
∼ N at a time tN (te) when

log(ns) = f (te) (tN − te)−
v1

2
(tN − te)2 ≈ log(Ns) = L

(35)
When the first subpopulation reaches a size N , the mean
will jump to the (absolute) fitness of that subpopulation.
This subpopulation established at the time t∗e that yields
the earliest time t∗N , and hence satisfies dtN/dte = 0. The
jump in mean fitness is simply the relative fitness of this
subpopulation immediately before the jump:

∆〈Z〉 = f(t∗e)− v1(t∗N − t∗e) = (Q+ v2t
∗
e)− v1t

∗
N (36)

The extremal condition equates the jump size to ∆〈Z〉 =
(v2−v1) (t∗N − t∗e). The detailed solution can be expressed
in terms of the speed ratio β = v2/v1:

∆〈Z〉 = Q
β − 1√
2β − 1

(37)

Thus with β−1 not small, the jump size is some substantial
fraction of Q as seen in fig. 5. It is interesting to note
that the largest jump sizes—roughly 0.5Q—correspond to
v2 ≈ 2v1 which would be expected if the wings mutated out
at the same speed v1 as the nose advances by mutations.
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Figure 5: Quantitative properties of the oscillations: period (top)
and jump size of the mean fitness (bottom) in the deterministic and
stochastic (black dots) simulations. For the stochastic simulations
the period was extracted from the power spectral density for five
simulation runs of 300`/s time-steps. For comparison, the period of
the wing supporting cycle of the steady-state is shown (purple line).
The deterministic simulations show that the period diverges at low
λ/L as the dynamics approach the asexual limit. The period can
become several times greater than the asexual nose-to-mean time,
`/s, because the distribution must relax nearly to the asexual steady
state before the next reassortment phase begins. At λ/L ∼= 0.8 there
is a period-halving bifurcation corresponding to the transition to the
intermediate mating regime of the steady state.

The dependence on λ/L of the important oscillation
characteristics—the period and the magnitude of the jump
of the mean fitness— are plotted in fig. 5. The oscillation
period from the deterministic simulations is seen to be
similar to the period of the asynchronous wing-supporting
cycles of the steady state for large ` Furthermore, there is a
period-halving bifurcation near λ/L ≈ 0.8 due to a change
in the oscillation dynamics. This bifurcation occurs close
to the transition from low to intermediate mating for the
steady state solutions. Together these suggest a strong
connection between the oscillatory and steady state dy-
namics. This can be understood in terms of the lineages
that are most important for reassortment. In the oscilla-
tory dynamics, the mutations wings trace back to a small
segment of the front—not necessarily near the nose—at the
end of the previous reassortment phase, shown schemati-
cally in fig. 6. This segment of the front is analogous to

Low Mating

Figure 6: Diagram of the oscillations at low mating. The blue convex
regions represent subpopulations that established by reassortment.
The oscillation dynamics resemble the steady state cycles in fig. 3
that support the wing start: a lineage mutates (red arrow) predomi-
nantly on a single chromosome before reassorting (blue arrow). The
oscillations appear as a single dominant cycle, as opposed to the
many overlapping cycles in the steady state.

the steady state wing start that produces the full mutation
wing and the dynamics that support the key parts of the
front are the same as the wing-supporting cycle. The main
difference is that speed of the mean, v(t), which influences
growth and establishment rates, is not constant and in-
stead depends on the past nose fitness. In the steady state
solution, many wing-supporting cycles take place in par-
allel but out of phase with each other, each depending on
when their wing start establishes. For the oscillations, the
uniform distribution of phases of the cycles breaks down
and the cycles lock together, most likely due to instability
from the delayed feedback between the speedup of the nose
and jump in the mean. Although we have not attempted
a full linear stability analysis of the steady state, deter-
ministic simulations of a simplified caricature shows that
its steady state is indeed unstable to oscillations. This
caricature has establishment by reassortment only right
at the nose but that is enough to incorporate the delayed
feedback structure.

At small λ/L, the period depends on ` but appears to
converge to a limit for large ` that is close to the period of
the wing-supporting cycle in the steady state. However the
jump size depends strongly on `. This suggests that the `
dependence of the speed for low mating in fig. 1 (discussed
more in appendix appendix Appendix C) is largely due to
the different jump sizes.

7.1. Oscillations for `→∞
A quantitive description of the deterministic oscilla-

tions for general ` and λ is difficult because of the com-
plicated feedback structure of the dynamics. The mean
fitness depends on the nose fitness at previous times and
the nose fitness depends on the time for the wing lin-
eages to mutate, grow clonally, and reassort which all
depend on the history of the mean fitness. The muta-
tion rate for the wings also depends on the local shape
of the front because of the difference between two-parent
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Figure 7: The oscillation dynamics for `→∞ and λ→ 0 have a simple geometry. During the mutation phase, left, a flat front mutates out
from the last reassortment point—indicated by the blue dot—forming an expanding triangular region bounded by the dashed green lines.
The front is flat because the difference in establishment times between one parent subpopulation mutating and two parent subpopulations
is negligible in the ` → ∞ limit. A set of subpopulations each reach a size log(ns) = L needed to reassort, center, when their fitness equals
the mean fitness: these form a high population ridge indicated by the black line. The X-most and Y -most edges—indicated by small black
dots—then advance the nose via reassortment. Despite the simple geometry, the feedback between the nose and the mean leads to a nontrivial
trajectory for the nose and mean fitnesses (right hand figure). The plots are from deterministic simulations of the `→∞ and λ→ 0 dynamics
described in the text.

and one-parent mutation (described in section 5) which
is controlled by `. However, the essential features of the
oscillations can be captured by a much easier to under-
stand limit: ` → ∞ and λ/L → 0 in the continuum limit
of large q. For large `, the difference between two-parent
and one-parent mutation rates is negligible and the two-
chromosome and one-chromosome speeds are the same:
va(2U) = va(U) = (2L/`2)s2. For λ/L = 0 a subpopu-
lation contributes to reassortment simply when its fitness
equals the mean fitness and its size is roughly N . As we
will show, the oscillations result in a sizable speedup even
though λ/L→ 0—a surprising result.

Let us consider what happens for r ∼ 1/N—i.e. only
O(1) matings per generation in the whole population. An
initially compact fitness distribution evolves under asexual
dynamics with a speed that approaches the asexual speed.
The middle part of the asexual front (which for large fi-

nite ` has the form f̃ ≈ Q̃− w̃2

2` as derived in appendix Ap-
pendix A), becomes, for ` =∞, flat with well-defined ends.
This front later gives rise to a ridge at the mean fitness of
width WR, along which the subpopuations have the same
size: each of order N . At some point the ridge becomes
wide enough that reassortment can lead to establishment
at the nose—the center of the flat front. For r ∼ 1/N , only
subpopulations located on the ridge (i.e. with z̃ = 0) can
feed the nose, thus with a nose at x̃ = ỹ = Q̃/2, the sub-
populations feeding it must be at (z̃, w̃) = (0,±Q̃): these
will feed the nose at a rate of order one. The reassortment
will then advance the front faster than the asexual speed
until the mean jumps, which quickly ends the reassortment
phase.

Because of the flat front and ridge, the geometry of the
dynamics is much simplified. The full oscillation dynamics
reduce to a one-dimensional description: knowledge of the
nose fitness F (t) for all previous times t′ < t is enough to
determine the future dynamics. It is convenient to start

from the time, T0, at which the mean jumps: call the nose
fitness at that time, F0. The first plot in fig. 7 shows how
mutation from this last point of reassortment—denoted
by a blue dot—results in an expanding triangular region
with a flat front. Subpopulations growing from the flat
front established at the same time and therefore have the
same population size. They form a ridge when they reach
maximum size—each O(N )—and their fitness equals the
mean fitness 〈Z(t)〉.

The highest fitness point to which reassortment can
occur is when the reassorters are at the opposite ends of
the ridge. The X-most and Y-most edges have ∆XR(t) =
∆YR(t) = 1

2WR(t) = 〈Z(t)〉 − F0 where the last equal-
ity follows from the geometry of the triangular front that
gave rise to the ridge populations. Reassortment results
in establishment of a subpopulation with fitness FR(t) =
F0 + ∆XR + ∆YR = 2 〈Z(t)〉 − F0 that will advance the
front if this is greater than the current front fitness. Let
the time at which this reassortment starts be TR. Dur-
ing the subsequent reassortment phase, the nose fitness
is FR(t) which advances at twice the speed of the mean,
dFR

dt = 2d〈Z〉dt . Although the nose advances due to reassort-
ment, other new subpopulations—even those immediately
away from the nose—establish due to mutation. This is
because lineages descending from previous nose subpop-
ulations are especially fit and can advance the front by
mutation quicker than reassortment except right at the
new nose. Thus the reassortment region in fig. 7 is limited
to the thin blue line shown.

The delayed advance of the mean can generally be de-
termined from the nose fitness F (t) by considering the time
for nose subpopulations to reach size N (as in our illus-
trative analysis of jump sizes in eq. (36)) A subpopulation
that established at time τ has a size at time t of

log[n(t, τ)]

2L
= F̃ (τ̃)(t̃− τ̃)−

∫ t̃

τ̃

〈
Z̃(t̃′)

〉
dt̃′ (38)
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The rescaled mean fitness is then

Z(t) = F (τt) where τt = argmax
τ

[log n(t, τ)] (39)

or simply the fitness of the subpopulation with largest size.
During the mutation phase starting at F (T0) = F0, the

speed of the nose is dF̃ /dt̃ = F̃ −
〈
Z̃
〉

. When combined

with the previous results for FR(T ) = 2〈Z(T )〉 − F0, the
nose fitness is

F̃ (t̃) = max

{
F̃0 +

∫ t̃
T̃0
F̃ (t̃′)−

〈
Z̃(t̃′)

〉
dt̃′

F̃R
(
t̃
) }

(40)

The reassortment phase begins when the max switches
to FR at time TR. The faster nose speed during reassort-
ment will later result in a jump in the mean fitness at time
TJ . This happens when the τt jumps discontinuously from
a value τt < TR to a time τt > TR which means that a sub-
population established during the reassortment phase has
taken over as the largest subpopulation. At time TJ reas-
sortment stops and a new mutation phase begins: between
T0 and TJ the front has thus completed a full cycle. If this
cycle reaches a periodic steady state with jumps at regular
intervals, the system has stable oscillations: this is indeed
what we find in direct simulations of this one-dimensional
non-linear delay-dynamical system.

The trajectories of the nose and mean fitness in the
infinite ` limit analyzed above are shown in fig. 7. Surpris-
ingly, the oscillations result in a speed of v ∼= 1.3 va(2U)
implying that the infinite ` speed jumps discontinuously
at λ/L = 0! This is a consequence of the reassortment
phase lasting for a substantial fraction of the period of the
oscillations. Thus the interplay between mutation and re-
assortment even for mating rates as low as r = 1/N can
yield ≈ 30% of the total possible benefit of mating. Note
that, formally, as long as NU is very large, even in the
large ` limit, r ∼ 1/N corresponds to r/U ∼ 1/(NU)� 1
and thus reassortment rate much less than beneficial mu-
tation rate.

Since we found that dFR

dt = 2d〈Z〉dt in the reassortment
phase, we can use our previous calculations in eq. (37) for
the dependence of the size of the mean jump on β, the ra-
tio of the nose speed before and after reassortment starts,
to estimate the jump size. With β ≈ (2va)/va, this gives
∆ 〈Z〉 /Q = 1/

√
3 ≈ 0.58, roughly what is observed. Al-

though the infinite ` limit might seem pathological, the
jump sizes in fig. 5 saturate to a similar value for large
` because of the same underlying dynamics. The X-most
point that can produce reassorters into the nose advances
in the X direction at roughly the mean speed, and simi-
larly for the Y-most point. So the nose advances due to
reassortment at roughly twice the mean speed. A discus-
sion of the general dependence of the speed and jump size
on ` can be found in Appendix Appendix C. The behav-
ior depends on how close the population at the end of the
mutation phase is to the asexual steady state versus the in-

finite ` limit: the latter having large oscillations and being
far from the steady state.

8. Fluctuations

The deterministic approximation gives a good quali-
tative and semi-quantitative picture of the dynamics, but
leaves out the fluctuations that are visible in the stochastic
plots of fig. 4. While we have not analyzed these in detail,
we outline here some general qualitative and quantitative
features of the fluctuations.

In the asexual case, fluctuations in the speed of the
nose give rise to jumps in mean fitness. Small asexual
nose fluctuations are of order δQ ∼ s

` and are only corre-
lated for a short time, roughly a single establishment [40].
The fluctuations get amplified by exponential growth and
produce jumps in the mean with an exponential distribu-
tion of sizes with mean of order

√
va, which scales with

Q as
√
Q. The nose-driven stochastic jumps of the mean

stabilize the system against large oscillations. The nose
is unstable on short times because an early establishment
induces an even earlier establishment next. This leads to
an accelerating nose speed that can only be corrected by
feedback a time τnm later. However, the larger resulting
jump in the mean (due to the earlier nose fluctuation) will
dominate the future nose dynamics and prevent the nose
from running away [40]. In contrast to the asexual case,
for sexual dynamics the oscillations involve large changes
in nose speed that are sustained for a long time, resulting
in large jumps in the mean of order Q. Thus the asexual
jumps and oscillation jumps can be distinguished by their
scaling with Q.

Asexual mutational fluctuations modify the behavior of
the two chromosome asexual steady state of section 5. The
shape of the two-dimensional front we derived does not
strictly correspond to a steady state because the stochas-
tic dynamics allows the average w coordinate to diffuse
over time. A part of the front will fluctuate ahead and
descendants of this part grow faster and mutate out to
form a new front, shifted relative to the previous one. Our
steady state then roughly represents the “typical” shape
of the distribution when this lateral diffusion is suppressed
or when large fluctuations have not occurred in the re-
cent past. (Note that even in the one chromosome asexual
model, the amplified effects of the nose fluctuations make
interpretation of the steady state distribution as an ”aver-
age” already subtle: it loosely represents a “median” shape
in the frame of the mean fitness.)

Reassortment adds another source of stochasticity and
a different feedback structure. Nose fluctuations now de-
pend on the stochasticity of two separate lineages under-
going a cycle of mutation, growth, and reassortment. For
the oscillations, the start time of the reassortment phase
is stochastic and this will later have a large effect on the
time and magnitude of the mean fitness jump. Establish-
ments due to reassortment are more stochastic than those
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Figure 8: (a) Fluctuations in the nose fitness δF with reassortment
(red) with λ/L = 0.5 and without reassortment (blue). A determinis-
tic simulation (yellow) shows the period of oscillation, which can also
be seen in the stochastic simulations. (b) Diffusion constants for the
nose fitness and the mean transverse fitness 〈W 〉 = 〈X − Y 〉 plotted
on a log scale. The results are normalized by the theoretical predic-
tion for the asexual case, Dasex = 2π2(s/`2)3/3 with `2 ≡ log(s/2U).
The other limits indicated, Dw = vas and Dsex = 2Dasex(`2/`)3,
are explained in the text. For the nose, diffusion is greatest for reas-
sortment in-between the asexual and sexual limits when the jumps
in mean fitness due to oscillations are greatest. Parameter values for
both plots: N = 1012, s = 10−2, 2U = 10−4 (q ≈ 9, ` ∼= 5.3). Dif-
fusion constants were calculated from 10 simulation runs of length
500`/s.

due to mutation. For reassortment the first established lin-
eage is likely to dominate, but for mutation many indepen-
dent secondary lineages will also contribute substantially
and their combined effect is to decrease the stochasticity.
[28, 40] Thus it is not surprising that the added stochas-
ticity from reassortment results in greater diffusion of the
mean and nose than in the asexual case, as found in fig. 8.

Figure 8 shows that diffusion is greatest for mating
rates when the dynamics are neither asexual or fully sex-
ual. In the asexual limit, the diffusion constant is predicted
to be Dasex = 2π2(s/`2)3/3 with `2 ≡ log(s/2U) [40]. The
fully sexual limit is simply related to the asexual limit
as the two chromosomes become completely unlinked and
each evolve asexually (with ` instead of `2) so the diffusion
of the nose is twice the diffusion of a single chromosome,
Dsex = 2Dasex(`2/`)

3, where the (`2/`) factors convert
Dasex to the single chromosome result. The sexual limit
of the transverse diffusion of w in this limit is also Dsex

since the sum and difference of two unlinked fitnesses have

the same diffusion. Park and Krug [37] derived the asex-
ual limit of the transverse diffusion to be simply Dw = vas
using the fact that mutations fix at a rate s/va and occur
randomly on one chromosome or the other. They showed
that this initially high diffusion decays rapidly with reas-
sortment. Figure 8 shows that this decay is surprisingly
exponential over the full range of λ values: we have not
investigated the source of this behavior.

Near the transition between low and intermediate mat-
ing rates (at λ/L ≈ 0.8), in the deterministic approxima-
tion there is a small window of bi-stability between the low
mating oscillation style and the intermediate one. Fluctu-
ations can lead to transitions between the two different
oscillation modes. The transitioning fluctuations become
rarer for larger q so a longer simulation time is needed to
average over the two oscillation modes. In the determinis-
tic simulations (roughly the q →∞ limit), the bi-stability
manifests as hysteresis when the mating rate is slowly var-
ied: the current oscillation mode depends on the past mat-
ing rate and whether the mating rate has increased or
decreased to the current value. In fig. 8 the bi-stability
does not result in greater diffusion around λ/L ≈ 0.8 be-
cause the parameter values used are stochastic enough to
smooth over effects due to the transitions between modes.
This suggests that bi-stability is unlikely to be important
for realistic population sizes.

9. Discussion

When sex is very rare, mating has negligible effects on
already established subpopulations which simply increase
in size due to clonal growth. But even with additive ef-
fects of mutations, mating is crucial for the creation of
novel, very fit genetic combinations that will drive the
future evolution. Offspring fitness after mating depends
on the genetic relatedness of the parents, so in the rare
sex regime it is crucial to track the details of the genetic
diversity in the population. In large populations of size
N , the important aspects of this diversity involve subpop-
ulations with very anomalous past mutational and mat-
ing histories. The crucial properties of the diversity and
how it is determined in an evolving population cannot be
captured by a few statistical properties. The simplifying
feature of the two chromosome model with reassortment
is that the important relatedness and dynamics are fully
captured by tracking only a two dimensional fitness distri-
bution. For this model, we have shown explicitly how the
properties of rare subpopulations with anomalous history
control the dynamics. And these dynamics are complex,
involving long cycles of mutation, clonal growth, and mat-
ing to produce the unusually high fitness individuals whose
descendants will dominate the future evolution. We find
that the speed of evolution depends logarithmically on the
mating rate, r, so that sizable speedups can occur for very
small r, and that the ratio of log(rN) to logN is the im-
portant combination of parameters. While the detailed
dynamics of evolution of large populations with very low
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rates of mating or lateral gene transfer will surely be differ-
ent than the two chromosome model, we expect that such
logarithmic dependence on the recombination rate as well
as the dominance of the dynamics by subpopulations with
very anomalous histories will be rather general. These fea-
tures, as well as how general the cyclical dynamics might
be, we discuss below.

9.1. Summary of qualitative picture of two-chromosome
model

For rare mating in the two chromosome model, produc-
ing fitter offspring than mutation can produce requires a
large population of anomalously high fitness chromosomes.
Large subpopulations are produced by clonal growth from
populations that established at the front — the high fit-
ness edge of the two-dimensional fitness distribution. Our
steady state analysis shows that the high fitness chromo-
somes that can advance the front via reassortment arise in
the “wings” of the front which are produced by anomalous
lineages that mutate predominantly on a single chromo-
some. These anomalous subpopulations then grow clonally
to sizes sufficiently large for significant mating. The pre-
dominant matings involve parents with one very fit chro-
mosome and one average fitness chromosome. By ana-
lyzing how the wings are produced by a cycle of muta-
tions, growth, and mating, we find the steady state speed
of evolution. The “wing cycle” dynamics driving the evo-
lution involves only low frequency subpopulations. This is
a generalization of the mutational dynamics at the nose
of asexual populations which controls the future evolu-
tion (as well as dominating the fluctuations and diversity
statistics) [44, 28]. A key difference, in addition to the
two-dimensionality of the fitness distribution, is that the
wing cycle is much longer than the times between muta-
tional steps: it takes of order the time for subpopulations
to reach a size ∼ N .

An unexpected feature of the two chromosome dynam-
ics is sustained oscillations (first observed in the simula-
tions of Park and Krug [37]), which resemble the wing
cycle of mutation on a single chromosome, clonal growth,
and reassortment. We find that the oscillations cause the
evolution of the whole population to be separated into
distinct mutation-driven and reassortment-driven phases.
Although the scalings of both periods with log(Nr) are
quantitatively similar, the oscillations speed up the evolu-
tion because they result in large jumps in the mean fitness
by a substantial fraction of the difference, Q, between the
mean and maximum fitness of the population. Counter-
intuitively, rare reassortment results in periods of reduced
diversity: after reassortment creates a set of fitter sub-
populations, selection purges less fit subpopulations more
rapidly. And this stronger selection later results in a jump
in the mean fitness. Since a small subset of lineages con-
tribute to reassortment each cycle, the oscillations act as a
bottleneck and are thus important for understanding the
diversity which we have not analyzed. The stochasticity

of the reassortments gives rise to stochasticity in the ad-
vance of the mean fitness which is much larger than that
for asexual populations, as seen in fig. 8.

In the rare sex regime, the speed of evolution increases
over a broad range of mating rates from the inverse popu-
lation size, 1/N , up to the selective strength of mutations,
s. Dependence on the mating rate comes through the pa-
rameter combination log(Nr)/ log(Ns), which varies from
zero to one over this range. Since the dynamics of course
depend on the total population mating rate, Nr, this ra-
tio of logs is only significant because it also accounts for
the overall N dependence of the asexual to sexual transi-
tion. For very large populations, log(Ns) sets the overall
fitness scale such that the mutation and growth dynam-
ics can be rescaled to have no N dependence. This was
shown explicitly for the steady state solution but holds
in general, including for the oscillations. The exponential
growth of subpopulations implies that the natural rescal-
ing of subpopulation size is α ≡ log(ns)/ log(Ns) which
is typically of order one in the interior of the popula-
tion distribution and ranges from zero for a single in-
dividual to one for the largest subpopulation with size
∼ N . Reassortment from individuals in different parts
of the fitness distribution will establish a new subpopu-
lation n(x, y) roughly when the influx rate due to reas-
sortment, r n(x)n(y)/N , is of order one—with n(x) as the
total population with X-chromosome fitness, x. The con-
dition for establishment by reassortment is then simply

log(Ns)(αx + αy) = log(Ns)
(

2− log(Nr)
log(Ns)

)
showing that

log(rN)/ log(Ns) is the natural combination that deter-
mines the quantitative effects of reassortment.

9.2. Fixations and diversity

Even though mating is continually happening, the os-
cillation dynamics make it appear as though the popu-
lation were undergoing periodic mating—except that the
period is determined by the other evolutionary processes
instead of being fixed externally. The period of oscillation
sets a natural fixation timescale because the population
in the next cycle descends from only a small number of
subpopulations that successfully mated to the front. This
has important implications for beneficial and neutral di-
versity statistics and the structure of the genealogies as
many small mutations accumulated in the mutation phase
can fix at once. But in order for a mutation to fix, it must
arise in the right part of the front and then its lineage
must be anomalously lucky in accumulating further mu-
tations, then lucky in reassorting to the front, and then
lucky in continuing through several such cycles, in order
to outcompete other lineages that arose around the same
time.

Our analysis of the deterministic steady state approx-
imation to the dynamics gives qualitative and some quan-
titative hints at how mutant lineages arise, fluctuate, and
some lucky ones eventually fix. However the interplay be-
tween the oscillations and fluctuations make it difficult to
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analyze the coalescent and diversity statistics that this
process gives rise to. Analyzing these for the two chro-
mosome model should be a fruitful direction for future
work. We expect that the coalescent process will not be
in the same universal class as either the conventional neu-
tral Kingman coalescent or the Bolthausen-Sznitman co-
alescent predicted for large continually evolving asexual
populations [27, 28], although, we do expect that, like the
latter, the phylogenies will be characterized by multiple
mergers.

9.3. Quantitative results: beyond asymptopia

Our primary results are valid in asymptotic regime in
which the logarithmic parameter L = log(Ns) is large.
Further simplifications occur when ` = log(s/U) is also
relatively large, although still much smaller than L. In
practice, logarithmic parameters are never really large and
corrections are important. Qualitatively similar behavior
will arise as long as the population is in the multiple muta-
tions regime with a large diversity of fitnesses in the pop-
ulation and the strong-selection weak-mutation regime so
that growing subpopulations are only affected by fluctua-
tions or mutations for a short time after they establish. To
be quantitatively good, requires larger, but not unrealisti-
cally large, populations. Simulations in fig. 1 show that the
predicted dependence of the speed on λ/L is quantitatively
good with realistic parameter values: e.g. N = 1012, s =
10−2, 2U = 10−4 corresponding to L ∼= 23, ` ∼= 5.3 and
thus q ≈ 9.

The logarithmic scaling of λ means that much of the
benefit of sex can be obtained from very low mating rates.
With these parameters, r ∼ 10−7 would already yield a
quarter of the maximum possible gain in speed (due to
rapid reassortment but no recombination), while r ∼ 2U =
10−4 would yield more than half. More importantly the
oscillatory dynamics, as shown in fig. 4, are already very
similar for these parameters to the deterministic asymp-
totic limit. And the period of oscillation in fig. 5 agrees
quantitatively.

Note that although 1012 is a large population by stan-
dards of most laboratory evolution experiments, it is cer-
tainly not for all, e.g. the tabletop size MEGA plate has
10L of media and is capable of reaching a total of 1012

bacteria for typical cell densities of 108/mL. [45]. And on
scales of even a single human, it is less than the population
sizes of the abundant gut bacterial species and the num-
ber of virions produced during the course of some viral
infections [46].

9.4. Natural populations

Our model is not directly applicable to any real micro-
bial populations, but it is most natural for the evolution
of segmented RNA viruses with genomes divided into a
number of segments that can reassort. To date, there are
eleven families of segmented RNA viruses with the num-
ber of segments ranging from two to twelve [47]. For ex-
ample, the bacteriophage φ6 has three segments and has

been developed into an experimental system for both asex-
ual and sexual evolution [48, 49]. Influenza viruses have
six to eight segments. Nevertheless, we anticipate that
many of the same features will apply. In a single host, or
in a bacterial population, a viral population can be rela-
tively well mixed without prominent spatial structure and
co-infection rates, which are needed for reassortment, can
vary widely. Thus the basic assumptions of the class of
models we consider are reasonable.

The assumption that reassortment occurs but recom-
bination within chromosomes does not—or at much lower
rates—makes such models potentially applicable to chro-
mids, or secondary chromosomes, found in an increasing
number of species of bacteria. Chromids are hypothesized
to derive from plasmids that have acquired essential genes
from the primary chromosome [50]. They may retain the
plasmid’s ability to transfer via conjugation. For exam-
ple, Pseudomonas syringae pv. lachrymans has a recently
acquired chromid that is self-transmissible via conjuga-
tion despite its large size of 1 Mb [51]. The possibili-
ties of such large transfers of genetic material could alter
the evolutionary dynamics of the species even if it occurs
at very low rates and involves only better, rather than
new, functions. For example, during the recent ecological
differentiation of two populations of Vibrio cyclitrophicus,
one of its two chromosomes swept within one population
independently of the other chromosome, suggesting that
reassortment played an important role [52].

9.5. Generalizations and extensions

How many of the features of our simple model obtain
more generally? The scaling of the speed with λ/L? The
sustained oscillations between mutation dominated and re-
combination dominated phases? Generalizations of the
model can start to answer these questions and should be
analyzable by a combination of methods used here and
those developed by other. We outline a few of these and
then discuss briefly the complications associated with richer—
and more realistic—generalizations.

We have studied only a simplified model in which all
mutations are considered to have the same selective ad-
vantage and there are no deleterious mutations. For large
asexual populations, distributions of fitness effects have
been studied and the primary results are that as long as
the mutation rate spectrum, µ(s)ds to mutations with fit-
ness effects s, falls off faster than exponentially, there is
a predominant s (and a narrow range around this) that
controls the evolution, with the rest being either too rare
to matter, or effectively neutral [41, 40]. Inclusion of these
effects into the two-chomosome model should be straight-
forward and result in a similar replacement of s and U by
effective values that are determined primarily by µ(s).

Although usually phrased as an approximation of ad-
ditive fitness effects of the mutations, the asexual model
is far more general: it applies for a general fitness “land-
scape” (with arbitrary epistasis) as long as the statistical
distribution of available mutations does not depend on the
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current genome. With recombination, however, combina-
tions of interacting mutations are broken up and brought
together in complex ways thus additivity is needed for the
approximations used in almost all analyses of rapid evolu-
tion with multiple mutations to be valid. (A counter exam-
ple, albeit without new mutations, is Neher and Shraiman
[53].) In our model, however, all that is needed is ad-
ditivity of the fitnesses of the two chromosomes and the
requirement that the distribution of mutation effect sizes
for both chromosomes remains unchanged during the evo-
lution.

A natural generalization of the two-chromosome model
is to multiple chromosomes that can reassort in some way,
for example by exchange of a single one, or by group-
ing random combinations from two (or more) “parents”.
With K chromosomes, the evolution speed will increase
from va(KU) to Kva(U) (with U the beneficial muta-
tion rate per chromosome) as r is increased from of order
1/N to of order s. Again, we expect the scaling parame-
ter λ/L to primarily control the crossover. An important
question—both here and more generally—is whether this
K-chromosome model spontaneously oscillates. If it does,
there should also be some ` dependence even in the asymp-
totic large-logs limit. To begin to address this, we can
consider the simpler limit of ` → ∞ and λ/L → 0 — i.e.
just barely enough reassortment to matter — discussed in
section 7.1. For two chromosomes, the fittest offspring are
from parental lineages that, since their last reassortment,
mutated only on the X or only on the Y chromosome. For
reassortment of K chromosomes between two parents, the
fittest offspring are similarly from parental lineages that
accumulated mutations on complementary sets of chromo-
somes. This implies that the maximum offspring fitness
would increase at twice the speed of the mean for any K.
Surprisingly, the dynamics of the resulting infinite ` oscil-
lations are independent of K for λ/L = 0 and have speed
v ≈ 1.3va. Understanding how the K > 2 oscillation dy-
namics change with ` and λ is left to future work. As an
illustration of the behavior, simulation results for K = 3
are shown in fig. D.15: these show that the dynamics are
similar to the K = 2 case for both low and intermediate
mating.

An interesting question for the K chromosome model
is how the dynamics change when approaching the sex-
ual limit for which the speed approaches Kva(U). Al-
ready in the two chromosome case, we found a qualitative
change in the dynamics when chromosomes can undergo
multiple reassortments before accumulating more muta-
tions. A regime in which such multi-reassortment pro-
cesses dominate the dynamics was considered by Neher
et al. [29]. They studied the sexual dynamics of models
essentially equivalent to K →∞ reassortment models but
with the total mutation rate µ = KU fixed as the large
K limit is taken so that new mutations always occur on
different “chromosomes”. They were only able to ana-
lyze the dynamics for r > s

√
logN finding that the speed

goes as v ∼ r2 log(Nµ) up to other logarithmic factors

that depend on the particular reassortment processes. In
contrast to the two-chromosome model for r � s, muta-
tions that arise in the bulk of the fitness distribution con-
tribute substantially: multiple reassortments enable them
to combine onto better genomic backgrounds and eventu-
ally to the nose. This enables many mutations to segre-
gate simultaneously (although almost all are still wasted,
as v ∼ log(Nµ)� Nµ). The dynamics of each new muta-
tion proceeds in the distribution of fitness backgrounds of
the other segregating mutations and the new mutant lin-
eages only feedback to affect the earlier mutations when
their frequency has risen enough in the population that
the distribution of the new mutation over the fitness back-
grounds has become essentially deterministic. But as r
decreases, the fluctuations of the nose of the fitness dis-
tribution become large enough that this approximate in-
dependence of each mutation breaks down. Accumulation
of multiple mutations on the same genome before reas-
sortment then becomes important. Once this occurs, the
details of the distribution of relatedness becomes essential.
It is not known how the large K models behave for r ∼ s
or r � s, but we expect that the crossover of the speed
to asexual should again be only logarithmically dependent
on r. Understanding the underlying complex dynamics,
which will involve subpopulations that accumulate muta-
tions and mate in anomalously rare ways, is a real chal-
lenge for future research.

The dynamics of facultative sexual populations with
very low rates of mating but a large number of crossovers
when they do mate—completely destroying linkage—was
studied by Rouzine and Coffin [33, 34, 35]. Although they
consider only purifying selection on preexisting deleterious
variation with no new mutations, there is still a range of
times in which the dynamics is well approximated by a
steadily moving fitness wave. Their analysis exhibits some
general features similar to ours: a dependence on logarith-
mic parameters equivalent to our log(Nr)/ log(Ns) in the
crossover regime, and a cycle of recombination and growth
that advances the nose, simpler but loosely analogous to
the wing-supporting cycle in our steady state solution. But
they treat the complex correlations induced by common
ancestry in a relatively simple manner [35] which is only a
crude approximation.

The most interesting direction is moving away from the
non-recombining chromosome models towards more realis-
tic recombination processes. One example is facultatively
sexual organisms that occasionally mate and when they do
so, the chromosomes recombine with a few crossovers, in
addition to reassorting. As each of the long segments that
remain linked will have evolved asexually for some time be-
fore recombining, this has some features that are crudely
similar to the K-chromosome purely-reassorting model.
But the crossovers occur at different positions in different
matings. Thus the many possible segments of the chromo-
somes in the many possible individuals in the population
that could be recombined together need to be kept track
of. Whether this can be done in some approximate way in
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terms of many effective non-recombining chromosomes—
loosely analogous to the treatment of asexual segments of
chromosome at moderate recombination rates by Weiss-
man and Hallatschek [31], Neher et al. [30], Weissman and
Barton [32]—is unclear. In any case, this certainly rep-
resents an important and challenging direction for future
research.

Another challenging direction is applicable to bacteria,
most of which primarily exchange small segments of chro-
mosomal DNA. Of course, new functions can be acquired
as single genes or whole operons. But even homologous
recombination of “uninteresting” segments can contribute
much more to the fitness than those they replace because
of accumulation of beneficial mutations: this is the nat-
ural generalization of the evolutionary processes we have
analyzed. Again, it is plausible that the dynamics could
be analyzed in terms of segments that are effectively like
short reassorting chromosomes—loosely analogous to the
K-chromosome model for some effective K but with ex-
change of only one chromosome at a time.

For all of these extensions, the most interesting observ-
able features may well be the statistics of diversity induced
by the dynamics. As for rapidly evolving asexual popula-
tions [27, 28], these will reflect the crucial but invisible
dynamics of the very low frequency subpopulations that
drive the dynamics, i.e. the “nose that wags the dog” [44].

Appendix A. Two Chromosome Asexual

Under the assumptions discussed in section 5, there will
be a steady state front that moves with a constant speed
v. In the continuous fitness approximation, the absolute
fitness of the front will take the form F (w, t) = vt+ f(w)
with w ≡ X − Y . A new subpopulation at the front will
be fed by two subpopulations that were previously at the
front. These two subpopulations will have the same abso-
lute fitness F = vτ1 + f(w1) = vτ2 + f(w2), where the τ ’s
are their respective establishment times. The difference in
w values is w2−w1 = 2s because w2 = (X1 +s)− (Y1−s).
Therefore

τ2 − τ1 =
f(w1)− f(w2)

v
≈ −f ′(w1)

2s

v
(A.1)

with f ′(w) ≡ df
dw . The newly established subpopulation

has fitness F+s = vτest+f(wi), where wi = w1+s = w2−s
is the intermediate w value. Thus its establishment time
must be

τest = τ1 + (1− f ′(w1))
s

v
(A.2)

Using eqs. (A.1, A.2) and the establishment time from
the feeding process found in eq. (15) gives a differential
equation for the steady state asexual front

exp
[
ff ′

s

v

]
+ exp

[
−ff ′ s

v

]
= exp

[
`− f s

v

]
. (A.3)
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Figure A.9: Comparison of the stochastic simulation results for
the aspect ratio averaged over time for two different values of
L ≡ log(Ns) and a range of ` ≡ log(s/U) values. For large ` the
simulations are in good agreement with the asexual steady state cal-
culation.

Rescaling fitness variables f and w according to eq. (9)
shows that ` controls the overall shape:

exp
[
f̃ f̃ ′`

]
+ exp

[
−f̃ f̃ ′`

]
= exp

[
`(1− f̃)

]
(A.4)

Numerical solutions to this equation are shown fig. 2.
There are two regions of the front. The region near

the nose (which we choose to be at w = 0) experiences
roughly equal mutational feeding by the two parent sub-
populations, i.e. τ1 and τ2 are nearly equal. The outer
regions called the wings have feeding dominated by a sin-
gle subpopulation, so either τ1 or τ2 is much earlier. The
transition between the two regions sets the overall width
of the fitness distribution which varies with the mutation
parameter ` = log(s/U).

The nose region with two-sided feeding has roughly the
same width for different values of `, but the fitness drop
from the nose goes as O(1/`). To see this, expand eq. (A.4)
to lowest order in δf̃ ≡ f̃ − f̃(0):

`2
(
f̃(0)δf̃ ′

)2

≈ −2` δf̃ (A.5)

⇒ δf̃ ≈ − w̃
2

2`
(A.6)

This solution breaks down when w̃ = O(1) and |δf̃ | =
O(1/`).

The width of the wing depends on its starting fitness.
The X wing (w̃ > 0) starts approximately at the end of
the nose region, with f̃0 = 1 − a/` and w̃0 = b for some
order one constants a, b with which we can roughly match

the nose and wing regions. When `(1− f̃)� 1 either ef̃ f̃
′`

or e−f̃ f̃
′` in eq. (A.4) must be much larger than the other.

Therefore

±f̃ ′ ≈ 1

f̃
− 1 (A.7)
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where the sign depends on which mutation wing we are
considering. The solution for the X (w > 0) wing starting
with (f̃0, w̃0) is

w̃ = w̃0 + f̃ − f̃0 + log

[
1− f̃
1− f̃0

]
(A.8)

The rightmost edge of the distribution is at (f̃ , w̃) = (0, w̃max),
so plugging in for (f̃0, w̃0) we find

w̃max = log

[
`

a

]
+ b+

a

`
− 1 (A.9)

so w̃max, the half-width of the distribution, approaches
log(`) + c for large `. In terms of the original parameters
this is w̃max ∼ log(log(s/U)) which grows very slowly with
the mutation timescale 1/U . Fig. A.9 confirms this scaling
in the stochastic simulations by considering the “aspect
ratio”, wmax/fmax, where fmax = qs[1 − O(1/`)]. This
ratio is the same as that for the rescaled quantities: i.e.
equal to w̃max.

It would appear that this analysis depends crucially on
the continuum approximation for fitnesses which for fixed
large q will break down for rescaled fitness differences of
order 1/q. Yet the fitness thickness of the nose regime
was inferred to be only of order 1/` suggesting breakdown
when ` > q. But the results shown in Fig. A.9 appear to
indicate that the results are valid even far into this regime.
Although we have not analyzed this in detail, it appears
that the crucial property is that the establishment times
for a given fitness vary slowly with w, even if the fitness
steps from Z to Z + s are themselves very jerky as they
are when `� q.

Appendix B. Intermediate Mating

Appendix B.1. Steady State

For mating rates λ/L & 0.81, we are forced into an
Ansatz for the steady state with the front divided into
three regions: the nose region, the mutation wings, and
“re-mating” regions between the nose and wings, as illus-
trated in fig. B.10. As in the low mating steady state, the
nose region is the product of reassortment from both wings

and therefore has the same shape (e2x̃ + e2ỹ = 2eQ̃). Due
to the higher mating rates and corresponding faster speed,
the nose region is supported by mutation wings that start
further from the nose (larger w̃s) with lower initial fit-
ness f̃s than the low mating case. The lower fitness wings
can support a nose region of limited width. The gaps be-
tween the nose region and the wings must then contain
subpopulations that establish due to reassortment (since
they are not in the wings) and later contribute to reas-
sortment after clonal growth, hence the name re-mating.
The X re-mating region is the product of reassortment be-
tween the X wing and the Y re-mating region. In fig. B.10
we can follow the course of a particular X chromosome
that begins at the X mutation wing start: it accumulates

Y2

Y1

X1 X2

(X2, Y2)

Mutation

1st Reassortment

2nd Reassortment

Intermediate Mating

Figure B.10: Schematic of the steady state dynamics for intermedi-
ate mating rates. There are three regions of the front: the mutation
wings (red), the nose region (blue), and the re-mating regions (or-
ange). The subpopulations in the nose region establish due to reas-
sortment from the two mutation wings. Subpopulations in, e.g, the
X-side re-mating region are established by reassortment of a chro-
mosome from the Y re-mating region and a chromosome from the
X mutation wing. The remating subpopulations both establish by
reassortment and contribute to reassortment. The diagram shows
the series of reassortments that ultimately support the wing start.
Consider an X chromosome at the wing start. It will accumulate
mutations (horizontal red arrow) and reach a fitness of X2 (bottom
right). It grows clonally for a time and then successfully reassorts
(vertical blue arrow) to the X re-mating region. It grows again and
then reassorts (vertical orange arrow) to the Y wing start at (X2, Y2).

mutations and then grows in copy number. Some copies
reassort and establish in the Xside re-mating region. They
again grow in copy number and some reassort and estab-
lish in the other Y re-mating region. These chromosomes
have thus undergone two reassortment events. They will
not reassort again because their X fitness is now too low
to establish at the front.

As in the low mating regime, the long term dynamics
are controlled by an essential wing-supporting cycle that
allow a chromosome to persist indefinitely by accumulating
mutations and reassorting back to the wing start again and
again (see fig. 3). For the Y-wing, this cycle supplies the
Y chromosome. A new complication is that the X chro-
mosome for the Y wing start does not simply come from
the other mutation wing. Fig. B.10 traces back some of
the reassortment events needed to eventually support the
wing start. The X chromosome for the Y-wing start comes
from a point in the opposite (X) re-mating region. This
point is itself also supported by a point in its opposite (Y)
re-mating region, and so on. There is an infinite sequence
of points supporting each other. Backwards in time, the
sequence moves inward from the wing start at the edge
of the re-mating region and converges to a fixed point in
its interior. So the dynamics further and further back in
time depend on a smaller and smaller region around the
fixed point. This steady state could only be approached
from initial conditions by dynamical transients continually
building up the region around the fixed point.
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It is possible to determine the speed of the intermedi-
ate mating Ansatz without explicitly solving for the whole
front f(w). Given the fitness and slope, (f(w), df/dw), for
a point in the re-mating region we can solve for the points
that support it by reassortment. So from the wing start at
(f̃s, w̃s), we can find the sequence of points backwards in
time. For the correct set of parameters (the speed v and
the wing start at fixed mating rate λ/L) the sequence will
converge smoothly to a fixed point. For an incorrect set
of parameters, the sequence will diverge or not matchup
smoothly. By adjusting the parameters we can thereby
determine how v depends on λ/L.

First we describe how reassortment, in general, con-
strains the shape of the front f̃(w̃) by relating distant
points. Reassortment is controlled by the total number
of individuals with a given fitness of each chromosome,
n(x) =

∑
y n(x, y) (and visa versa). Because of expo-

nential growth, different subpopulations n(x, y) differ by
orders of magnitude, so (to the needed logarithmic accu-
racy) the sum is dominated by its largest term: n(x) ∼
maxy n(x, y). As a subpopulation initially at the front

grows, its fitness decreases from f̃(w̃) to z̃ in a time t̃ =
f̃ − z̃ so its size is

n(z̃, w̃)s ∼ exp

[
v`2

s2

(
f̃(w̃)t̃− t̃2/2

)]
∼ exp

[
RL

(
f̃(w̃)2 − z̃2

)]
(B.1)

with R ≡ v`2

2Ls2 . Let m be the fitness of the maximum over

y for a given x: ∂n
∂y = 0 gives m̃ = −f̃(w̃)f̃ ′(w̃) so that

n(x)s ∼ n(m̃, w̃)s ∼ exp
[
RLf̃2(1− f̃ ′2)

]
(B.2)

The subpopulation at (m̃(w̃), w̃) is the dominant supplier
for X chromosomes with relative fitness x̃ = (w̃ − f̃ f̃ ′)/2.

Reassortment connects the subpopulation (x̃, ỹ) estab-
lishing at the front and the two parent subpopulations,
(m̃x, w̃x) and (m̃y, w̃y), which supply the X and Y chro-
mosomes to (x̃, ỹ). Of course the parent subpopulations
had previously established at the front–at (f̃x, w̃x) and
(f̃y, w̃y)—before growing. The reassortment constraint,
explained in section 5.1, is that the influx of reassorters
ν = r

N n(x)n(y) satisfies log ν = 0, which becomes

0 =
λ

L
− 2 +R

[
f̃2
x

(
1− f̃ ′2x

)
+ f̃2

y

(
1− f̃ ′2y

)]
. (B.3)

after using eq. (B.2). We also need x̃ = (w̃x− f̃xf̃ ′x)/2 and
ỹ = (f̃y f̃

′
y − w̃y)/2 to properly connect the corresponding

points.
Next, we apply the general reassortment equation, eq. (B.3),

to the intermediate mating Ansatz. The boundary condi-
tions for the re-mating region can found in terms of the
wing start parameters. One edge of the X re-mating re-
gion is at the X wing start, (f̃s, w̃s), and has a slope of
f̃ ′ = (f̃s − 1)/f̃s, from eq. (A.7). The other edge is the

⇐⇒

Self-feeding to support wing

equivalent

1

2

3 1

2′

3

Figure B.11: A lineage starting in the X re-mating region (at point
1) grows for a time (green arrow) and reassorts (orange arrow) to
the Y re-mating region (at point 2) and then grows and reassorts
again to point 3, shown to be the wing start. Since the re-mating
regions have the same shape up to a reflection across x = y, we can
reinterpret this reassortment process as a map from one re-mating
region to itself, as shown in the right diagram with the corresponding
points labeled. Point 2′ is the reflection of point 2. The map expands
outward so there is an unstable fixed point (black dot) somewhere in
the interior of the re-mating region. The dashed black curve on the
left denotes the line of subpopulations with maximum size among
subpopulations with the same X or Y chromosome fitness.

endpoint of the nose region, which is the furthest point
that the Y wing can support via reassortment. Therefore
the nose region endpoint at (x̃n, ỹn) is supplied Y chromo-
somes from a subpopulation growing directly from the Y
wing start at (f̃s,−w̃s). So 2ỹn = m̃−(−w̃s) = 1−f̃s+w̃s,
and x̃n and the slope can be inferred from the nose region

shape, e2x̃ + e2ỹ = 2eQ̃

The contribution to eq. (B.3) from the mutation wing
can be found simply. From eq. (27), the X wing has fitness
f̃x = 1− β exp(2x̃) with β ≡ 2(1− f̃s) exp(f̃s − w̃s − 1) as
a useful combination of parameters. Since f̃ ′ = 1 − 1/f̃ ′,
the wing contribution is

f̃2
x(1− f̃ ′2x ) = 2f̃x − 1 = 1− βe2x̃. (B.4)

By plugging the wing contribution into eq. (B.3), we ef-
fectively account for one of the three points and obtain a
general relation between two points, both in the re-mating
region.

The parent subpopulation in the Y re-mating region
with (f̃1, w̃1) supports the establishment of the point (f̃2, w̃2)
in the X re-mating region. The child subpopulation re-
ceives an X chromosome with fitness 2x̃ = f̃2 + w̃2 from
the mutation wing. Equation (B.3) becomes

R
[
f̃2

1

(
1− f̃ ′21

)
+ 1− βef̃2+w̃2

]
= 2− λ

L
(B.5)

with the additional constraint that the Y chromosomes
from (f̃1, w̃1) have the correct fitness:

2ỹ = f̃2 − w̃2 = f̃1f̃
′
1 − w̃1. (B.6)

The slope of the front at the child subpopulation can be
found by differentiating eqs. (B.5) and (B.6) to obtain

f̃ ′2 =
f̃1f̃
′
1 + βef̃2+w̃2

f̃1f̃ ′1 − βef̃2+w̃2

. (B.7)
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Together these three equations determine the front at (f̃2, f̃
′
2, w̃2)

in the X re-mating region as a function of (f̃1, f̃
′
1, w̃1) in

the Y region.
Since we assume that the Ansatz is symmetric, we can

modify eqs. (B.5) to (B.7) to involve two points in the X re-
mating region using the substitution: f̃1 → f̃1, f̃ ′1 → −f̃ ′1,
and w̃1 → −w̃1. The modified equations are a map from
one point in the re-mating region to the another. It can
be shown that this reassortment map has a fixed point
in the interior of the region and application of the map
expands points outward from the fixed point. Figure B.11
illustrates how reassortment in the re-mating region can
be reinterpreted as an expanding map.

To solve for the steady state, we must use the inverse
of the reassortment map to move inwards from the edges
to the fixed point. For the correct set of (f̃s, w̃s, λ/L)
values, the inverse map trajectory reaches the fixed point
smoothly, but for incorrect values the trajectories diverge
or intersect at a kink. So the correct values can be found
via the shooting method used to solve boundary value
problems: simply vary the parameter values until a so-
lution is found. As for low mating rates, the nose fitness
can be solved for in terms of λ/L using eq. (32), which
determines the speed via v/va(U) = R = 1/Q̃2. For the
steady state solution, the re-mating region expands and
the nose region shrinks as the mating rate increases. For
the Ansatz to be valid we must check that the nose region
exists. This amounts to checking whether w̃N = x̃n − ỹn
is greater than zero. This condition fails for λ/L ≥ 0.99
suggesting that new Ansatzes are needed for mating rates
approaching r . s that involve additional reassortment
events.

Appendix B.2. Oscillations

Comparison of the intermediate oscillations in fig. B.12
and the low mating oscillations in fig. 4 show notable dif-
ferences in the establishment history of the current pop-
ulation: At low mating rates subpopulations established
during a single reassortment phase are present, but at in-
termediate rates the current population contains subpop-
ulations from two different reassortment phases coexist-
ing. This difference is due to a change in the dynamics
of the oscillations. Fig. 5 shows how the period in the
deterministic simulations depends on the mating rate. As
the mating rate increases, there is a discontinuous period-
halving bifurcation at λ/L ≈ 0.8, which essentially coin-
cides with the transition point between the low and in-
termediate mating-rate steady states. When the period
halves, two reassortment segments can “fit” within the cur-
rent population instead of just one. (The simplest scenario
is that decreasing λ from the intermediate mating rate
regime leads to a sub-critical—and hence discontinuous—
period doubling bifurcation, while increasing it from the
low mating rate regime leads to the disappearance of the
cycle at a saddle-node bifurcation. This makes the tran-
sition between the two regimes hysteretic as is, indeed,
observed in the deterministic simulations.)

As for the low mating oscillations, small regions of the
front at the end of the reassortment phase produce the
mutation wings important for reassortment and are anal-
ogous to the wing starts for the intermediate steady state.
The set of reassortment events that support these small
regions resemble the intermediate wing-supporting cycle
in fig. B.10. Again the intermediate mating oscillation
appears as if one cycle from the steady state has strength-
ened to dominate the others. The correspondence between
cycles from the steady state and the oscillations is qualita-
tive but not necessarily quantitative since the oscillation
cycles must satisfy all the delayed feedbacks. The dif-
ference between low and intermediate mating oscillations
is an additional feedback due to the secondary reassort-
ments. Consider the marginal case with λ/L at the period
halving transition point. Initial transients appear as low
mating oscillations with a long reassortment phase. The
crucial difference is that subpopulations established at the
beginning of the reassortment phase also contribute to re-
assortment by the end of the phase. This is the start
of an extra reassortment phase and creates an additional
feedback: the shape at the end of the (long) reassortment
phase depends on the beginning of the reassortment phase.
(For low mating oscillations the shape at the end depends
only on the previous reassortment phase). The additional
feedback eventually breaks the long reassortment phase
into two separate phases. The jumping of the mean is now
“interlaced” between cycles: one reassortment phase ends
due to the mean jumping caused by the previous reassort-
ment phase, as can be seen fig. B.12. The period halving
point roughly coincides with the low-to-intermediate mat-
ing transition because both happen when the mating rate
is large enough that a subpopulation established by reas-
sortment can later contribute to reassortment.

At the upper end of the intermediate mating regime
where r → s (i.e. λ/L → 1) the size of the mean jumps
decays to zero and the reassortment regions become larger
and begin to overlap. This behavior smoothly approaches
the obligate sexual steady state, which always has estab-
lishment by reassortment and does not exhibit oscillations
in the deterministic limit. For intermediate mating rates,
the nose always has some influx of individuals due to reassort-
ment—as seen in fig. B.12—although there are still clear
reassortment and mutation phases. In the obligate sexual
limit the two chromosomes become completely unlinked,
so the distribution is a product of the asexual fitness dis-
tributions of each chromosome. The oscillation period,
shown in fig. 5, becomes close to the nose-to-mean time,
τnm, of the sexual limit. Since the speed is twice as fast
as the asexual limit, the time for the mean to advance
one nose-length is half as long, i.e. τnm ≈ 0.5`/s. Thus
for λ → L, the oscillation period approaches the time for
variations in the speed of the nose to cause change in the
speed of the mean. Note that this is not the nose-to-mean
time for the distribution of one of the almost-independent
chromosomes, which would be twice as long. Not surpris-
ingly, the coupling between the chromosome distributions
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Figure B.12: Oscillation cycles illustrating the fitness distribution during the mutation phase (left column) and the reassortment phase
(middle column) which occur during each cycle; the top row is for deterministic dynamics. All the non-zero subpopulations are shown with
their color indicating the fraction of new individuals due to reassortment (bluer) or mutation (redder) when establishing. The oscillation
dynamics are shown for intermediate mating rates with λ/L ≈ 0.8. In this regime, the current population includes subpopulations established
in two reassortment phases, instead of only one phase for the low mating oscillation shown in fig. B.12. (This is clearly seen even though
the intermediate rate used is on the border of the two regimes.) The righthand column shows the speed of the nose and mean, dashed lines
corresponding to the times of the snapshots shown. The nose speed increases during the reassortment phase and, through exponential growth
of the prior nose populations, the effects of this are sharpened into a jump in the mean fitness roughly a time `/s later. At intermediate
mating rates, another reassortment phase occurs within the timespan required for this exponential growth. The stochastic simulations have
N = 1012, s = 10−2, 2U = 10−4, r = 10−4 (q ≈ 9, ` ∼= 5.3) and N = 108, s = 0.03, 2U = 10−6, r ≈ 2× 10−3 (q ≈ 2.7, ` ≈ 11). These agree
qualitatively and semi-quantitively with the deterministic simulations which are valid in the continuous (large q ≡ 2L/`) limit.

is still important for the oscillations.

Appendix C. Crossovers and deterministic
-stochastic comparisons

Appendix C.1. Crossover to asexual limit

The analysis of the reassortment steady state in eq. (34)
shows that the growth of populations from the center of
the front yields a fitness distribution near the mean that
is approximately gaussian with an aspect ratio, σw/σz =

1/

√
Q̃asex, that approaches unity in the asexual limit for

large `. But the asexual steady state is far from symmet-
ric. Using the results from appendix Appendix A, a similar
calculation finds an aspect ratio σw/σz ≈

√
`. This implies

that reassortment is a singular perturbation in the asymp-
totic limit, meaning that the shape of the front changes
rapidly for a small increase in λ/L. The curvature of the
front at the nose changes quickly over a narrow range of
mating rates such that reassortment is unable to establish
populations at the front for small λ/L.

The crossover from asexual is complicated by the ` de-
pendence of the asexual steady state which has a speed of
va(2U) = 2L/(` − log 2)2. The steady state dynamics are
asexual until reassortment first results in establishment at
the nose. We can derive how this critical reassortment rate

depends on `. A subpopulation with fitnesses (z̃, w̃) has a
size

log(ns) ≈ L

Q̃2

(
f̃(w̃)2 − z̃2

)
(C.1)

with f̃(w̃) = Q̃− w̃2/2` for the asexual front, as derived in
eq. (A.6). The subpopulations feeding the nose are located
at (z̃, w̃) = (0,±Q̃) up to O(1/`) corrections. From the re-
quirement for establishment (rnxny/N ∼ 1) we find that
reassortment first matters in the deterministic approxima-
tion when λ/L = 2/`.

The reassortment steady state solution derived in sec-
tion 6.1 represents the `→∞ limit. This solution has the
correspondingly correct asexual speed va(U) = 2L/`2 and
first deviates from asexual at λ = 0. Corrections for finite
` must therefore produce a solution with the correct asex-
ual speed, va(2U), up to λ/L = 2/`. For finite (but large)
`, the mutation wing is described by the full differential
equation for the asexual front, eq. (A.4). As explained in
appendix Appendix A, finite ` corrections are only relevant
for fitnesses f̃ > 1 − 1/`. Since the wing start fitness f̃s
must be less than the nose fitness Q̃, we can estimate that
the corrections become significant only when 1−Q̃ = O( 1

` )
which as for the two-chromosome asexual corrections also
occurs for v

va(U) −1 = O( 1
` ). For speeds below this thresh-
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old, corrections help the solution asymptote to the correct
asexual limit for finite `. For speeds above this threshold,
finite ` effects are negligible and the solution matches the
infinite ` steady state derived in section 6.1.

Appendix C.2. Crossover of oscillation dynamics for finite
`

The speed curves in fig. 1 show considerable depen-
dence on ` in the low mating regime. The changes of the
speed are predominantly due to changes in the jump size
of the mean fitness, as seen in the plots of the period and
jump size in fig. 5. The size of the mean jump is deter-
mined by the nose speed at the start of the reassortment
phase, which depends on when reassortment interrupts the
mutation phase. In the absence of mating the population
would eventually approach the asexual steady state. The
oscillation dynamics for general ` and λ interpolate be-
tween two extremes, when either the population is close or
far to the asexual steady state when reassortment starts.

The infinite ` limit described in section 7.1 is always
far from the steady state (indeed no steady state formally
exists in this limit). The front is an expanding flat line that
advances at speed roughly va. The line of subpopulations
with size, nc, sufficient to reassort to the nose trails behind
the front, also advancing at roughly speed va, like the ridge
in fig. 7. The X-most point of the nc line moves purely
in the X direction at speed vx = va, and similarly for the
Y -most point. During the reassortment phase, this implies
that the nose speed is vn = vx + vy = 2va. According to
eq. (37), the nose-mean ratio β = vn/va ≈ 2 results in a
jump in mean fitness of size ∆〈Z〉 = Q/

√
3 = 0.58Q. This

regime applies for large ` (so that the approach to steady
state takes a long time) with moderate λ/L > O(1/`) (so
that the mutation phase is not too long). In fig. 5, the large
` jump sizes plateau to 0.58Q up to O(1/`) corrections.

In the opposite regime—for fixed ` as the speed is just
rising from the asexual speed—the population is close to
steady state when reassortment starts. This happens for
λ/L ≈ 2/` when reassortment is just enough to matter for
the asexual steady state, as derived in the previous ap-
pendix section. In the steady state, the whole population
advances at va in the X = Y direction so the X-most point
with αc moves at only vx = va/2 in the X direction. The
reassortment nose speed is therefore vn = vx + vy = va,
implying (from eq. (37)) a vanishing jump size: this is a
marginal case. Small values of ` are more similar to the
steady state because the 1/` effects induce curvature of
the front earlier in the mutation phase. So for small ` the
fitness distribution and the speed remain in the crossover
regime between the steady state and the infinite ` limits
for a greater range of λ/L values in fig. 5.

For intermediate mating rates, the speed curves in fig. 1
are ` independent. This likely happens because the lin-
eages important for reassortment descend from points that
start the mutation process in the single parent regime.
Then ` can be scaled away as in the reassortment steady
state analysis.

Appendix D. Additional figures

Figure D.13: Speed comparison between deterministic (blue) and
stochastic simulations (teal) for a range of ` ≡ log(s/U). Smaller `
values appear lower in the plot. As discussed in section 5.1, the first
speedup due to reassortment is at λ/L = 2/` for the deterministic
model. Reassortment affects the stochastic dynamics for smaller λ/L
due to fluctuations in the width of the asexual distribution. The red
curves, which are stochastic simulations with fixed ` but different q,
overlap greatly and show very little dependence on q except when
stochastic effects are important for λ/L < 2/`.

X

Y

Q̃ wing start
(z̃, w̃) = (f̃s, w̃s)

x̃ = x̃s

⌧M

⌧G

f̃M

z̃G

Figure D.14: The dependence on reassortment rate of low-mating
steady-state quantities, rescaled according to eq. (9). The diagram
on the left illustrates the quantities plotted. These include the nose
fitness Q̃, the fitnesses for the wing start: fitness f̃s, transverse fitness
w̃s, and X chromosome fitness x̃s. For the wing-supporting cycle, the
fitnesses after mutation, f̃M , and after growth, z̃G, together with the
times for mutation, τM , and growth, τG, are also plotted.
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Figure D.15: The nose and mean fitness trajectories for the three
chromosome (K = 3) model. The nose trajectory is colored by
whether establishment is due to a greater influx of reassorters (bluer)
or mutants (redder). Sexual reproduction is implemented using the
“communal” model of Neher et al. [29] in which each chromosome is
sampled separately from the population, so the reassorted population

is ν(x1, x2, x3) = Nr
n(x1)

N
n(x2)

N
n(x2)

N
. The oscillation dynamics at

low (λ/L = 0.5) and intermediate (λ/L = 0.8) mating rates are
similar to the two chromosome case shown in figs. 4 and B.12. The
realistic parameter values used are the similar to the two chromo-
some plots: N = 108, s = 0.03, 3U = 10−6 and N = 1012, s = 0.01,
3U = 10−4.
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[24] Igor M Rouzine, Éric Brunet, and Claus O Wilke. The traveling-
wave approach to asexual evolution: Muller’s ratchet and speed
of adaptation. Theoretical population biology, 73(1):24–46,
2008.

[25] Oskar Hallatschek. The noisy edge of traveling waves. Proceed-
ings of the National Academy of Sciences, 108(5):1783–1787,
2011.

[26] Su-Chan Park, Damien Simon, and Joachim Krug. The speed
of evolution in large asexual populations. Journal of Statistical
Physics, 138(1-3):381–410, 2010.

[27] Richard A Neher and Oskar Hallatschek. Genealogies of rapidly
adapting populations. Proceedings of the National Academy of
Sciences, 110(2):437–442, 2013.

[28] Michael M Desai, Aleksandra M Walczak, and Daniel S Fisher.
Genetic diversity and the structure of genealogies in rapidly
adapting populations. Genetics, 193(2):565–585, 2013.

28

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233320doi: bioRxiv preprint 

https://doi.org/10.1101/233320
http://creativecommons.org/licenses/by-nc/4.0/


[29] Richard A Neher, Boris I Shraiman, and Daniel S Fisher. Rate
of adaptation in large sexual populations. Genetics, 184(2):
467–481, 2010.

[30] Richard A Neher, Taylor A Kessinger, and Boris I Shraiman.
Coalescence and genetic diversity in sexual populations under
selection. Proceedings of the National Academy of Sciences, 110
(39):15836–15841, 2013.

[31] Daniel B Weissman and Oskar Hallatschek. The rate of adapta-
tion in large sexual populations with linear chromosomes. Ge-
netics, 196(4):1167–1183, 2014.

[32] Daniel B Weissman and Nicholas H Barton. Limits to the rate
of adaptive substitution in sexual populations. PLoS Genet, 8
(6):e1002740, 2012.

[33] Igor M Rouzine and John M Coffin. Evolution of human im-
munodeficiency virus under selection and weak recombination.
Genetics, 170(1):7–18, 2005.

[34] IM Rouzine and JM Coffin. Highly fit ancestors of a partly
sexual haploid population. Theoretical population biology, 71
(2):239–250, 2007.

[35] Igor M Rouzine and John M Coffin. Multi-site adaptation in the
presence of infrequent recombination. Theoretical population
biology, 77(3):189–204, 2010.

[36] S Gheorghiu-Svirschevski, IM Rouzine, and JM Coffin. Increas-
ing sequence correlation limits the efficiency of recombination
in a multisite evolution model. Molecular biology and evolution,
24(2):574–586, 2007.

[37] Su-Chan Park and Joachim Krug. Rate of adaptation in sex-
uals and asexuals: a solvable model of the fisher–muller effect.
Genetics, 195(3):941–955, 2013.

[38] Marcos A Antezana and Richard R Hudson. Before crossing
over: the advantages of eukaryotic sex in genomes lacking chi-
asmatic recombination. Genetics Research, 70(1):7–25, 1997.
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