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Abstract 

 Cell-free DNA (cfDNA) sequencing provides a non-invasive method for obtaining 
actionable genomic information to guide personalized cancer treatment, but the presence of 
multiple alterations in circulation related to treatment and tumor heterogeneity pose analytical 
challenges. We present the somatic mutation landscape of 70 cancer genes from cfDNA deep-
sequencing analysis of 21,807 patients with treated, late-stage cancers across >50 cancer types. 
Patterns and prevalence of cfDNA alterations in major driver genes for non-small cell lung, 
breast, and colorectal cancer largely recapitulated those from tumor tissue sequencing compendia 
(TCGA and COSMIC), with the principle differences in alteration prevalence being due to 
patient treatment. This highly sensitive cfDNA sequencing assay revealed numerous subclonal 
tumor-derived alterations, expected as a result of clonal evolution, but leading to an apparent 
departure from mutual exclusivity in treatment-naïve tumors. To facilitate interpretation of this 
added complexity, we developed methods to identify cfDNA copy-number driver alterations and 
cfDNA clonality. Upon applying these methods, robust mutual exclusivity was observed among 
predicted truncal driver cfDNA alterations, in effect distinguishing tumor-initiating alterations 
from secondary alterations. Treatment-associated resistance, including both novel alterations and 
parallel evolution, was common in the cfDNA cohort and was enriched in patients with 
targetable driver alterations. Together these retrospective analyses of a large set of cfDNA deep-
sequencing data reveal subclonal structures and emerging resistance in advanced solid tumors. 
 

Introduction 

Genomic analysis of cell-free DNA (cfDNA) from advanced cancer patients allows the 
identification of actionable alterations shed into the circulation and may provide a global 
summary of tumor heterogeneity without an invasive biopsy (1). Plasma cfDNA analysis can 
provide insights from genomic information shed from multiple lesions within a patient, but this 
broader level of insight can introduce added complexity. Indeed, most clinical cfDNA 
sequencing is performed on patients with advanced or metastatic disease, often at the second or 
later line of therapy. 

As a recently developed testing method, clinical cfDNA sequencing has repeatedly been 
benchmarked against tissue sequencing, but these performance comparisons are challenged by 
temporal and spatial heterogeneity in tumors (2–6).  In addition, circulating tumor DNA 
(ctDNA) may be undetectable when shedding of tumor DNA is nominal, such as when therapy 
stabilizes tumor growth (7, 8). Recent efforts to globally characterize tumor heterogeneity using 
both plasma cfDNA analysis and multi-region tumor sequencing highlight the complementary 
nature of the two approaches (9–11). However, there is a paucity of cfDNA data sets large 
enough to evaluate the similarity of tumor-initiating alterations (“truncal drivers”) in solid tumor 
cancers to those found in the cfDNA of advanced cancer patients. Among the various methods 
available for cfDNA analysis, targeted panel deep-sequencing assays that utilize extensive error-
correction methods provide the depth (sensitivity) and genomic breadth necessary to optimally 
survey tumor-derived genomic alterations in plasma cfDNA, even at low allelic fractions (12–
15).  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 12, 2017. ; https://doi.org/10.1101/233205doi: bioRxiv preprint 

https://doi.org/10.1101/233205
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 3 of 24 
  

In order to elucidate the landscape of truncal driver mutations in cfDNA, we first 
evaluated the extent of detectable tumor heterogeneity in a large set of cfDNA deep-sequencing 
data, considering how varying ctDNA levels across patients might impact cfDNA variant 
detection. To distinguish truncal driver mutations from secondary resistance mutations, we 
developed methods to infer clonality and driver status of tumor mutations from cfDNA. We then 
examined the similarity of cfDNA patterns of common driver alterations in a large cohort of 
advanced, previously treated solid tumor patients to those found in treatment-naïve tumor tissue 
compendia. Finally, we explored the landscape of resistance to targeted therapies that was highly 
apparent in the large cfDNA cohort. 

 

Results 

Somatic genomic alterations in cfDNA across 21,807 patients 

Somatic cfDNA alterations were detected in 85% (18,503/21,807) of patients across all 
cancer types, ranging from 51% for glioblastoma to 93% for small cell lung cancer (Figure 1A). 
Half of the reported somatic cfDNA alterations had VAF <0.41% (range 0.03% - 97.6%; Figure 
1B). Alteration-positive samples had on average three or four alterations detected (median=3; 
mean=4.3; range 1-166), including copy number amplifications (CNAs) (Figure S1B). Using the 
maximum somatic cfDNA VAF as an approximate measure of the level of ctDNA in a sample, 
we examined ctDNA level per indication. Although most of the major cancers (bladder, liver, 
prostate, gastric, NSCLC, melanoma, breast) had similar average levels of ctDNA, brain cancers 
had significantly lower levels (Wilcoxon p = 0.006 in comparison with renal) putatively owing to 
the blood-brain barrier whereas CRC and SCLC had significantly higher levels than all other 
indications examined (Wilcoxon p < 0.008 in comparison with bladder). (Similar patterns have 
been previously reported by (40), but without sufficient sample size to determine statistical 
significance.) This variation in ctDNA levels suggested the possibility of inter-indication 
variability in variant detection and therefore in ability to estimate tumor mutation load from 
cfDNA. 

Indeed, the number of cfDNA alterations per sample notably increased in samples with 
higher levels of ctDNA (Figure 1D), likely reflecting improved detection of genomic alterations 
when tumors shed more DNA into circulation. We tested whether ctDNA levels affected tumor 
mutation load estimates by considering the number of SNVs per sample in cfDNA NSCLC 
cases. When the mutations from TCGA NSCLC cases were filtered to those lying within the 
cfDNA panel regions (107 kb of sequence for reported variants), this cohort’s average mutation 
load was 18 mutations/Mb rather than the value of 9 mutations/Mb derived from whole-exome 
analysis. This increased average mutation load and compressed dynamic range across the cohort 
suggested a reduced accuracy for estimating average mutation load using these genomic regions, 
likely because they enrich for cancer driver mutations rather than passenger mutations. 
Nonetheless, the median tumor mutation load estimated from cfDNA steadily increased from 
18.7 muts/Mb (2 SNVs per sample) in low-ctDNA NSCLC samples to 37.4 muts/Mb (4 SNVs 
per sample) in high-ctDNA samples (Figure 1D and S1C). As described below, at least part of 
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the increase in mutation load in high-ctDNA samples was due to increased detection of subclonal 
variants (Figure S2). 

CfDNA copy number analysis of 18 genes across four major cancer indications (lung, 
breast, colorectal, prostate) revealed amplification patterns consistent with known driver 
alterations in each indication (Figure S3). For example, EGFR was the most commonly 
amplified gene in lung cancers, MYC and FGFR1 were the most commonly amplified gene in 
breast cancer, and AR was the most commonly amplified gene in prostate cancer. Notably, some 
established driver genes tended to have higher amplification levels than other genes that reflected 
indication-specific biology. For instance, ERBB2 (HER2) had the highest average amplification 
levels in breast cancer and CRC but had middling amplification levels in lung and prostate 
cancers. 

Comparisons of alteration patterns across alteration types in cfDNA versus TCGA 

To determine whether alteration patterns found in cfDNA recapitulated those found in 
published tissue sequencing studies, the frequencies of SNVs and indels in commonly mutated 
driver genes were compared to the frequencies found in TCGA. Highly similar mutation patterns 
were observed for TP53 and EGFR (Pearson r=0.94 and r=0.78, respectively; Figure 2A and B), 
as well as for KRAS, BRAF, and PIK3CA (r=0.99, 0.99, and 0.94, respectively; data not shown). 
EGFRT790M and EGFRC797S, treatment-induced resistance mutations, were more frequent in the 
heavily pre-treated cfDNA NSCLC cases (10%) relative to the untreated TCGA NSCLC cases 
(0.3%). Excluding T790M and C797S resistance alterations, the Pearson correlation for mutation 
frequencies in the tyrosine kinase domain of EGFR (exons 18-24) rose from 0.78 to 0.90.  

Breast cancer often harbors actionable CNAs in ERBB2 (HER2). We compared the ranks 
of amplification frequencies in breast cancer patients for the 18 CNA genes assayed by the 
cfDNA assay to the same genes in TCGA (amplification status determined by GISTIC), and 
found high rank correlation (r=0.86; Figure 2C). Similarly, 5-10% of lung adenocarcinoma 
(LUAD) is driven by targetable kinase gene fusions. To compare the patterns of gene fusions 
found in cfDNA to those found in tissue, we determined the frequencies per intron of breakpoints 
in the three most commonly observed fusions among lung cancer patients in the cfDNA cohort: 
EML4-ALK, CCDC6-RET, and KIF5B-RET. Breakpoint locations for all three fusions were 
strongly correlated with the frequencies of breakpoints found in published tissue data (r=0.98; 
Figure 2D, Table S5). 

CfDNA clonality and driver alteration prevalence in cfDNA versus TCGA 

The abundance of advanced, treated cancer cases in the cfDNA cohort was expected to 
contribute additional subclonal variants when variant detection in cfDNA was not limited by low 
ctDNA levels. The trend toward increased numbers of cfDNA variants in high-ctDNA samples 
(Figure 1D) and the observation of frequent resistance alterations (Figure 2B) suggested that 
comparisons of this cfDNA cohort to large tumor tissue cohorts like TCGA should account for a 
higher level of mutational heterogeneity in the cfDNA cases. In order to compare the prevalences 
of common alterations between the large tissue cohorts of earlier stage tumors (TCGA) with 
those of the advanced-stage tumors in the cfDNA cohort, accounting for the potentially increased 
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mutational heterogeneity in cfDNA, we derived a “cfDNA clonality” metric using the 
VAF/maximum VAF ratio that would allow us to infer the likely cancer-cell fraction of 
mutations present in the tumor (see Methods). We noted that mutated oncogenes such as EGFR 
could be subsequently amplified, which could inflate the cfDNA VAF leading to an inaccurate 
clonality estimate. Closer examination of the VAF/CN relationship revealed two separate non-
linear behaviors: non-linearity of amplified driver mutations at high VAF and high copy number, 
and clearly subclonal alterations with low VAF that occurred subsequent to, or in a separate 
subclone from, the amplification (Figure 3A, Figures S6-S9). Our model therefore takes into 
account these non-linearities by log-linear copy number normalization of the VAF for driver 
variants and by holding out variants that initially appear subclonal from the normalization 
procedure. We then examined the cfDNA clonality distributions for the most frequently mutated 
genes in lung adenocarcinoma (LUAD), breast cancer, and CRC to understand how this metric 
related to well-known biological properties among cancer mutations (Figure S4).  

EGFR mutations were among the most prevalent alteration across the cfDNA cohort, but 
had different expected cohort-level behaviors in LUAD versus CRC.  In LUAD, EGFR-
activating mutations should occur frequently as drivers and these mutations should tend to be 
clonal.  In CRC, recurrent EGFR extracellular domain mutations would generally be expected to 
be acquired resistance alterations in patients treated with anti-EGFR antibodies such as 
cetuximab, and therefore should tend to be subclonal. As predicted, cfDNA EGFR alterations in 
LUAD were predominantly clonal, whereas in CRC they were predominantly subclonal (Figure 
3B). Direct comparison of the clonality distributions of EGFRL858R in LUAD versus EGFR 
ectodomain mutations in CRC showed an even more striking dichotomy (data not shown). In 
CRC, alterations in the common driver genes APC, TP53, and KRAS were predominantly clonal 
(Figure S4). Strikingly, nonsense mutations in APC had a strong tendency to be clonal (median 
clonality = 0.72), and had significantly higher average clonality than APC missense or 
synonymous alterations (median clonality = 0.07; Wilcoxon p < 10-6), further confirming that the 
cfDNA clonality metric reflected the expected behaviors of tumor-derived alterations (Figure 
3C). In breast cancer, alterations in the common driver genes PIK3CA, AKT1 and TP53 showed 
strong tendencies toward clonality (Figure S4). Additionally, we compared the clonality 
distributions in LUAD of known EGFR driver (e19 del, L858R, etc.) and EGFR resistance 
(T790M, C797S) alterations. Again, as expected, the driver alterations showed a strong tendency 
toward clonality and the resistance alterations showed a strong tendency toward subclonality 
(Figure 3D, Figure S4).  

 Comparisons of mutation prevalence per gene between the cfDNA and TCGA cohorts, 
accounting for cfDNA clonality, revealed that the prevalences of most major driver alterations in 
NSCLC, breast cancer, and CRC were overall similar (Pearson correlation, r=0.85; Figure S5, 
Table S6). Some genes had significant differences in mutation prevalence between cohorts (Chi-
square test), which largely reflected differences in patient demographics (i.e., prior treatment). 
Notable differences included EGFR and KRAS alterations in NSCLC (cfDNA: 43% EGFR-
mutant, 16% KRAS-mutant; TCGA/tissue: 14% EGFR-mutant, 33% KRAS-mutant), a much 
higher frequency of ESR1 mutations in cfDNA breast cancer samples (14%) than in TCGA 
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samples (0.5%), and a substantially higher frequency of TP53 mutations in cfDNA CRC 
samples.   

 

Mutual exclusivity analysis of driver alterations in cfDNA  

To determine whether truncal driver alterations followed patterns of mutual exclusivity 
established in early-stage disease (i.e., TCGA studies), we performed mutual exclusivity analysis 
on common cfDNA alterations in LUAD, breast cancer, and CRC samples. Because driver status 
for CNAs is often unclear or ambiguously reported across studies, we developed and applied a 
cohort-level CNA driver identification method that retains statistical outliers relative to 
background aneuploidies to enrich the initial set of CNA calls for likely driver alterations 
(Figure S10, see Methods). Similarly, cfDNA SNVs, indels, and fusions were filtered to clonal 
alterations (clonality > 0.9) to enrich for likely truncal drivers (see Methods). 

In LUAD, strong evidence for mutual exclusivity was observed in cfDNA across several 
pairs of genes (Figure 4). Importantly, the tendency for mutual exclusivity increased when 
comparing the post-clonality-filtering alterations to the pre-filtering alterations (Figure S11 and 
S12, Tables S7-S12). Of note, KRAS and EGFR were highly mutually exclusive in both cases, 
but with a 40x drop in the proportion of double-mutant [KRAS-alt; EGFR-alt] genotypes after 
filtering to clonal alterations. For MET and EGFR, a tendency toward alteration co-occurrence 
pre-filtering (FDR=6x10-6, logOR=0.6) was flipped to one of exclusivity after filtering 
(FDR=4x10-3, logOR=-1.3), suggesting that mutation co-occurrence before filtering was caused 
by subclonal resistance alterations, as opposed to co-occuring truncal mutations (the pre-filtered 
data had a high prevalence of MET amplifications and EGFRT790M, both of which are associated 
with resistance to erlotinib). A similar pattern of flipping from co-occurrence (non-significant) to 
exclusivity was seen for ERBB2 and EGFR alterations (FDR=5x10-7, logOR=-2.6). 

In breast cancer, five driver genes (ERBB2, FGFR1, BRCA1, BRCA2, AKT1) showed 
tendencies toward mutual exclusivity with PIK3CA after clonality filtering. Exclusivity was not 
necessarily expected for PIK3CA alterations except with respect to AKT1 mutations (22), 
reflecting the more complementary nature of driver alterations in this disease (Figure S11 and 
S12, Tables S7-S12). In CRC, TP53, KRAS, and APC alterations tended to co-occur, as expected 
(data not shown). Mutual exclusivity was observed between KRAS and BRAF, ERBB2, NRAS, 
and MET, similar to reports in tumor tissue. In the pre-filtered data, KRAS and PIK3CA tended to 
co-occur, but in the post-filtering data they showed a weak trend toward exclusivity, suggesting 
the presence of subclonal KRAS resistance alterations in the cfDNA CRC samples. We also 
noted that filtered FGFR1 amplifications and ERBB2 (HER2) amplifications showed a weak 
trend toward exclusivity in breast cancer (unadjusted p=0.04) and CRC, although in the latter 
case significance could not be readily assessed owing to the small number of certain genotype 
classes. 

The landscape of actionable resistance alterations in cfDNA 

The large cfDNA cohort provided a unique opportunity to explore qualitatively and 
quantitatively the evolution of resistance alterations in patients who have progressed on targeted 
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therapies in regular clinical practice. To estimate the frequency of actionable resistance 
alterations (defined as alterations that might influence a physician’s choice of therapy post-
progression) in advanced, previously treated cancer patients, we identified known resistance 
alterations in the cfDNA cohort across six cancer types: NSCLC, breast cancer, CRC, prostate 
cancer, melanoma, and GIST. 3,397 samples of the 14,998 samples analyzed (22.6%) had at least 
one of the 134 known resistance alterations that were identified by the cfDNA test. The 
proportion of samples harboring likely resistance alterations increased when each indication was 
limited to samples harboring driver alterations with associated FDA-approved targeted drugs 
(hereafter, “on-label targetable driver alterations”), consistent with the resistance alterations 
having arisen due to therapy (Figure 5A and B, Table S13). The most common resistance 
alterations were EGFRT790M and MET CNA in NSCLC, AR ligand-binding-domain SNVs in 
prostate cancer, KRASG12/G13/Q61 in CRC, and ESR1L536/Y537/D538 in breast cancer (Figure 5B, 
Table S13). 

Although some resistance mutations can either occur as primary, truncal drivers or 
emerge secondarily upon treatment (e.g., KRASG12X/G13X in CRC can be a truncal driver or 
emerge upon treatment with cetuximab), the cfDNA clonality metric helped distinguish 
resistance alterations whose emergence was likely caused by therapy pressure (Figure S13). A 
conservative estimate, focusing on clearly subclonal SNVs (clonality <0.1), was that at least 
18.6% (ranging 10-34% across cancer types) of samples with on-label targetable alterations 
(381/2,053) had emerging secondary resistance alterations to those on-label therapies. Further, 
24% of those resistance-harboring samples (91/381) had >1 alteration associated with resistance 
to the same therapy, suggesting independent evolution in distinct tumor lesions (23) or sequential 
treatment with distinct therapies targeted to the same gene. For example, one NSCLC patient had 
an EML4-ALK fusion (VAF of 7.1%) and ALK SNVs reported to confer resistance to crizotinib 
(L1196M, 2.5%), crizotinib/alectinib (I1171T, 0.1%), and crizotinib/ceritinib/alectinib (G1202R, 
5%). In another example, the treatment history of certain patients harboring EGFRL858R or 
EGFRe19del driver alterations was immediately apparent by the combined presence of secondary 
EGFRT790M and tertiary EGFRC797S resistance alterations (24 patients had both EGFRT790M and 
EGFRC797S – 21 patients had these two variants in cis, the other 3 were in trans). The cfDNA 
clonality of EGFRC797S was generally lower in those cases than that of EGFRT790M (Figure 3C), 
consistent with tumor evolution following sequential lines of treatment with 
erlotinib/afatinib/gefitinib, followed by osimertinib at progression. 

Novel resistance alterations were also identified in this clinical cohort, including: 
ERBB2T798I (analogous to EGFRT790M) which causes resistance to an ERBB2 tyrosine kinase 
inhibitor; METD1228N, METY1230H, and METG1163R (analogous to ALKG1202R and ROS1G2302R) 
causing resistance of MET exon 14-mutated NSCLC to a next-generation MET inhibitor; and 
five FGFR2 mutations (V564F, N549H, K641R, E565A, and L617V) shown to drive resistance 
to a selective pan-FGFR inhibitor (24–26); and the recurrent EGFR ectodomain mutations 
V441D/G, which arise in the setting of cetuximab resistance in CRC but are not yet characterized 
as functional (27). These putative resistance alterations were consistently subclonal relative to 
the original driver alteration and many were missed by single-metastatic-site tissue biopsy but 
confirmed by repeat biopsy or biopsy of multiple metastases at autopsy (24, 25, 28). 
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To illustrate the temporal dimension of the cfDNA landscape, we identified patients with 
multiple tests and significant clonal structure apparent in their ctDNA. These longitudinal cases 
illustrated emerging or polyclonal resistance after presumptive targeted therapy (Figures 5C and 
D), as well as stability of VAF estimates and clonality estimates over time (Figure 5E). 

 

Discussion 

Much of our understanding of cancer genomes is derived from early-stage, treatment-
naïve cancers via consortia efforts such as TCGA. However, the desire to increase treatment 
efficacy in advanced cancers that likely have evolved considerably from baseline has led to a 
recent shift to “real world” cancer genomics studies focused on the realities of the clinic, yet 
grounded in lessons from earlier-stage cancers (29, 30). It is becoming increasingly clear that 
obtaining comprehensive genomic assessments, across heterogeneous tumor subclones, will be 
necessary for tailoring effective therapies for advanced cancer patients (9, 10). 

We have provided the largest cohort-level snapshot of genomic alterations in advanced 
cancer patients by cfDNA analysis in real-life clinical practice. Our results demonstrate that 
patterns and frequencies of truncal driver alterations in advanced cancers reflect patterns found 
in early-stage disease, but also reflect the increased complexity of advanced, treated cancers. We 
found that cfDNA alterations (SNVs and small, activating indels) in TP53, EGFR, KRAS, 
PIK3CA, BRAF strongly correlated with TCGA tissue alterations (r=0.90-0.99, Figure 2A and 
B), and that correlations for amplification frequency ranks in breast cancer and locations of 
intronic fusion breakpoints in NSCLC were similarly high (Figure 2C and D). The high 
sensitivity of the cfDNA assay combined with the more evolved advanced cancers tested at 
progression, which have greater numbers of mutations than earlier-stage, treatment-naïve 
cancers, may explain most of the differences in estimated tumor mutation load versus TCGA (10, 
30). Importantly, we show that accurate estimation of tumor mutation load from plasma cfDNA 
will require taking ctDNA level into account, as the two factors are correlated (Figure 1D). Our 
estimates of ctDNA levels are based on the copy-number-adjusted allelic frequency of cfDNA 
somatic alterations, and future studies should also consider allele-specific molecule counts 
(germline allele imbalance) in estimates of tumor DNA in circulation. 

Our inference of tumor mutation clonality based on copy-number-adjusted relative 
cfDNA VAF (Figure 3) enabled a recapitulation of mutual exclusivity among truncal driver 
mutations and facilitated identification of subclonal emerging resistance alterations (Figure 4, 
Figure 5C, Figures S6-S8). These results suggest that mutation clonality, as it exists in tumor 
tissue, can be inferred from analysis of relative cfDNA VAFs, as has been previously 
hypothesized (31). High accuracy in VAF estimation is likely key to the success of this 
approach, and notably, VAFs measured by the cfDNA NGS assay used in this study show good 
agreement with digital droplet PCR (32, 33). This approach points to the possibility of analyzing 
the clonal structures of tumors from cfDNA sequencing data, unencumbered by the 
complications of tumor heterogeneity and tumor impurity introduced by single-region tissue 
sampling. Future studies of under-explored biological factors, such as the variability of cfDNA 
shedding across patients and the uniformity of cfDNA shedding across distinct tumor sites 
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harboring genetically distinct clones, could enable statistical modeling of tumor clonal structures 
using cfDNA VAFs and cfDNA molecule counts per locus or per allele. 

The most notable differences in prevalence of driver alterations between cfDNA and 
tissue cohorts were EGFR and KRAS alterations in LUAD (whose prevalences were flipped), and 
the higher frequency of ESR1 mutations in cfDNA breast cancer samples and of TP53 mutations 
in the cfDNA CRC samples. The higher EGFR alteration prevalence in LUAD cfDNA was 
likely due to a population bias resulting from clinicians ordering the cfDNA test at progression 
on an EGFR TKI (median time between diagnosis and plasma collection of 335 days). This is 
supported by EGFRT790M being the one of the most common EGFR variants in the cfDNA 
cohort, second only to EGFR exon 19 deletion driver mutations. Screening known EGFR-mutant 
NSCLC patients at progression for resistance mutations is routine practice whereas re-profiling 
KRAS-mutant NSCLC patients would generally not be done, leading to an over-representation of 
EGFR driver mutations, and the concomitant under-representation of KRAS mutations, in this 
cohort. Similarly, the higher frequency of ESR1 mutations (a documented resistance mechanisms 
to aromatase inhibitors) likely reflects the clinical application of ctDNA assays at progression. 
There are several possible explanations for the higher TP53 prevalence in cfDNA CRC samples 
relative to TCGA: stage III/IV tumors, which predominate the cfDNA cohort, may have higher 
frequencies of TP53 alterations than Stage I/II tumors; more subclonal TP53 mutations may have 
been detected due to the high sensitivity of the cfDNA assay; or some TP53 mutations may stem 
from somatic myeloid malignancies known as clonal hematopoiesis of indeterminate potential 
(34, 35). The most likely explanation is that the TCGA cohort (< 300 samples) underestimates 
TP53 mutation prevalence in CRC relative to the larger 1,374 sample GENIE cohort, the latter 
reporting a 68.5% mutation prevalence for this gene (36).   

The prevalence of actionable resistance alterations that could be linked to FDA-approved 
therapies or clinical trials of novel targeted agents is a key, and clinically important, finding of 
this cfDNA study. Nearly one in four cfDNA-alteration-positive patients (22.6%) across six 
cancer indications had one or more resistance alterations to an FDA-approved on-label therapy 
(Figure 5A and B), which would increase options for clinical decision-making. The significant 
enrichments for these candidate resistance alterations when cohorts were subset to patients with 
actionable driver alterations suggested that they were indeed linked to prior patient treatment. 
Our estimates of the frequencies of secondary, rather than primary, resistance alterations (10-
34% of patients across the six cancer types) were likely conservative, as we examined only low-
level subclonal SNVs (clonality < 0.1), in part because accurate assessment of clonality for 
CNAs remains difficult. As expected, the prevalence of resistance alterations was higher in 
cfDNA than TCGA/tissue, as these alterations would not be present in early stage tissue biopsies. 
For instance, the high frequency of cfDNA ESR1 mutations in breast cancer patients likely 
reflected prior treatment with aromatase inhibitors. Additionally, EGFRT790M was one of the most 
common EGFR mutations found in the cfDNA NSCLC cohort (8% of patients), but was seen in 
only two patients from the TCGA tissue NSCLC cohort (0.3%).  

Although our cohort of clinically ordered cfDNA tests is uncontrolled, its large size 
provides a realistic cross-section of patients with advanced disease at the forefront of cancer 
care. Interpretation of our findings should take into consideration the selection biases related to 
cfDNA test ordering patterns in clinical practice and other potential limitations. Prevalences of 
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genomic alterations may be biased by preferential ordering for patients with certain demographic 
characteristics, such as non-smoking females with NSCLC (thereby enriching for EGFR 
mutation over KRAS mutation). Plasma-based genotyping is often ordered at progression in 
advanced cancer, and thus is biased toward higher prevalences of resistance alterations, as 
discussed above. Although the cfDNA panel (70 genes) was focused primarily on the actionable 
portion of the cancer genome, a tradeoff of its relatively small size may be somewhat reduced 
power and accuracy to infer mutation clonality relative to an assay with a larger genomic 
footprint. However, it is currently impractical to perform whole-exome sequencing of cfDNA at 
>15,000X coverage.  

This clinical cfDNA cohort represents the largest sequencing landscape of resistance in 
advanced cancer patients, and builds upon the body of primary driver alterations characterized by 
the TCGA, GENIE, and other projects. As such, a portion of this database has been included in 
the Blood Profiling Atlas in Cancer, a National Cancer Moonshot Initiative (37). Improved 
detection of resistance mutations may facilitate enrollment in clinical trials and enable the 
development of more accurate biomarkers of response to therapy (24, 38, 39). Therefore cfDNA, 
or other minimally invasive techniques, address a real and unmet need, since it is essential to 
provide real-time resampling of tumor genotype at the time of progression to guide subsequent 
therapeutic strategies. 

 

Materials and Methods 

Characteristics of the cfDNA cohort 

 A summary of the cfDNA cohort used in this study is provided in Table 1. The cohort 
was assembled from 21,807 consecutive cancer patients (25,578 total samples)  tested on the 
Guardant Health cfDNA sequencing platform as part of clinical care. As such, this was an 
observational, non-interventional study. Patients consented to their test results being used in 
research, and all patient data were de-identified as per an institutional review board-approved 
protocol (Quorum Review IRB Protocol 30-001: Research Use of De-Identified Specimens and 
Data). Tests were ordered by 3,283 oncologists across the United States, Europe, Asia, and the 
Middle East from June 2014 to September 2016 (data freeze at 9/22/2016). Disease stage was 
confirmed for each patient by the provider to be advanced disease (Stage III/IV). Treatment 
histories and survival information were generally not available. Over 50 solid tumor types were 
represented [non-small cell lung cancer (NSCLC, 38%), breast cancer (18%), colorectal cancer 
(CRC, 11%), other (32%)], although many cancer types were represented by only a small 
number of samples. See Tables S3 and S4 for comparisons of the cfDNA cohort characeristics 
with those of the pan-cancer TCGA cohort. 

cfDNA sequencing assay and cfDNA variant calling 

 The clinical cfDNA sequencing platform (Guardant360) used in this study has been 
previously described (13). All analysis was performed in a Clinical Laboratory Improvement 
Amendments (CLIA)-certified, College of American Pathologists (CAP)-accredited, New York 
State Department of Health-approved clinical laboratory (Guardant Health, Inc., Redwood City, 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 12, 2017. ; https://doi.org/10.1101/233205doi: bioRxiv preprint 

https://doi.org/10.1101/233205
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 11 of 24 
 

California). CfDNA was isolated from plasma after separating the plasma from 10mL whole 
blood per patient sample. Target capture of a 150kb region (all exons or critical exons of 70 
genes, see Tables S1 and S2) was performed after minimal PCR amplification to ensure assay 
robustness and uniformity across samples. Samples were sequenced to an average depth of 
15,000x raw read coverage per base pair. Somatic cfDNA alterations [single nucleotide variants 
(SNVs), indels, fusions, and copy number amplifications (CNAs)] were identified by a 
proprietary bioinformatics pipeline that reconstructs the original double-stranded cfDNA 
molecules present in a plasma sample, thereby transforming next-generation sequencing (NGS) 
read information into accurate, molecule-based variant calls. High specificity was achieved by 
combining molecular barcoding technology (in-line adapters are ligated immediately after 
cfDNA isolation, prior to PCR and target capture steps) and bioinformatics filtering of 
sequencing errors via statistical filtering of sequencing errors per-base-pair. Small variant 
detection was performed by comparing read-level and molecule-level characteristics to position-
specific reference error noise profiles determined independently for each panel position 
sequencing training data from healthy donors. Observed positional error profiles were used to 
define calling cut-offs for variant detection. This process reduces the variant-detection error rate 
by several orders of magnitude (16, 17, 13). High sensitivity [80% probability of detecting SNVs 
at 0.3% variant allele fraction (VAF)] was achieved in part via end-to-end process improvements 
to ensure maximal recovery of cfDNA fragments throughout the assay. 
 To detect CNAs, probe-level unique molecule coverage was normalized for probe 
efficiency, GC content, and signal saturation, and the probe-level signals were then combined to 
report gene-level copy number. CNA calls were based on decision thresholds established from 
the training data, and considered both the absolute copy number deviation and the background 
variation within each sample’s own unique-molecule-counts distributions (diploid baseline). We 
note that the cfDNA bioinformatics pipeline determines unique molecules per base and 
determines VAF using mutant molecule counts (rather than read counts). This enables per-base 
per-patient detection-limit controls such that variants are only called if the number of unique 
mutant molecules is ≥2 and if the total unique-molecule count at a given genomic position are 
sufficient. Samples that have lower molecule diversity (unique molecules per base) have 
inherently lower sensitivity for variant calling, regardless of sequence-read depth. 

Comparison of cfDNA alterations to TCGA alterations 

 Genomic alterations in cfDNA were compared to those from primarily early-stage, 
treatment-naive tumors in TCGA studies (18). TCGA alterations from 9,077 samples across 27 
cancer types were downloaded from the cBio portal (www.cbioportal.org) on 4/13/2016 using 
the cgdsr R package, and were filtered to the cfDNA panel footprint (Table S1) prior to analysis. 
For gene fusion comparisons, fusion breakpoints compiled from the COSMIC database (v76) 
were used rather than TCGA because of larger sample size (19).  

 Genes used for alteration prevalence comparisons were chosen based on the common 
driver genes in each cancer type documented by TCGA. Genes used for the mutual exclusivity 
analysis were chosen based on the overlap of commonly altered driver genes per cancer type, as 
shown by TCGA, and those alterations that are included in the cfDNA test. Oncoprints were 
generated using the cBio portal OncoPrinter web app (www.cbioportal.org/oncoprinter.jsp). 
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Detection of short indels in tumor suppressor genes was not added to the cfDNA sequencing 
assay until November 2016 (Guardant360 v2.9, see Table S1), and therefore were not included 
in this study. 

Clonality inference of tumor-derived somatic alterations from cfDNA  

 The cfDNA clonality for somatic SNVs, indels, and fusions was initially defined as: 
alteration VAF / maximum somatic VAF in sample. In a patient with a copy-normal tumor (2n 
ploidy) with maximal cfDNA shedding from the tumor (such that non-tumor-derived DNA in 
circulation is negligible), clonal, heterozygous somatic variants should have cfDNA VAF equal 
to 50%. Assuming approximately proportional shedding across subclones and equivalent decay 
across cfDNA molecules in circulation, tumor-derived somatic variants should have cfDNA 
VAF proportional to their cancer-cell fraction (CCF) in the tumor. However, cancer genomes 
have frequent copy number alterations, which could impact the observed variant allele frequency 
in circulation. Point mutations that occur prior to an allele being amplified would have an 
inflated VAF in cfDNA relative to their tumor clonality, whereas mutations occurring after the 
amplification, or in a separate clone, would have VAF that remains in proportion to their 
clonality (assuming no additional copy number changes occur). Therefore, normalizing VAF by 
copy number only makes sense if a copy number alteration follows the point mutation.  

 Additionally, we noted that at high copy number the relationship between VAF and copy 
number becomes non-linear for amplified driver mutations (Figure 3A). Therefore a log 
transformation or non-linear regression approach is more appropriate than simple VAF/CN 
normalization for amplified mutations. We developed a cfDNA clonality model that considered 
both the relative timing of point mutation and amplification, and the non-linearity of VAF/CN at 
high copy number. Given the bifurcating VAF distribution for commonly amplified oncogenes 
(Figure 3A, Figures S6-S9), we normalized VAF to CN only if the initial VAF/maximum VAF 
ratio was >0.1, using a log-linear VAF/ln(CN) normalization for these mutations. Dividing each 
adjusted cfDNA alteration VAF by the adjusted maximum somatic VAF in a given sample then 
yielded the inferred alteration clonality present in the tumor. Note that we examined the 
frequency with which amplifications adversely impacted cfDNA clonality estimation by inflating 
the VAF, and found it to occur in <1% of samples (data not shown).  

To determine reasonable thresholds for clonality filtering of driver alterations, the cfDNA 
clonality distributions were analyzed for SNVs in genes that were commonly mutated in CRC, 
NSCLC, and breast cancer, including either as primary drivers or as secondary resistance 
alterations (Figure 3A and S4). For most genes, the SNV clonality distributions were clearly 
bimodal, with the two maxima typically falling above 0.9 and below 0.1, respectively (Figure 
3A, Figure S4). For the purposes of this study, alterations were considered clonal if their cfDNA 
clonality was >0.9 and subclonal if their cfDNA clonality was <0.1. Hence for the driver 
prevalence comparisons (Figure S5, Table S6), cfDNA alterations with clonality <0.1 were 
filtered out. For the mutual exclusivity analysis, “truncal cfDNA alterations” correspond to 
alterations with cfDNA clonality >0.9. Note that cfDNA clonality filtering does not uniformly 
remove alterations at low VAF, as low-VAF alterations remain in samples with low ctDNA. 
Since cfDNA mutation signatures in low-ctDNA samples are predominated by clonal tumor 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 12, 2017. ; https://doi.org/10.1101/233205doi: bioRxiv preprint 

https://doi.org/10.1101/233205
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 13 of 24 
 

alterations, cfDNA clonality filtering effectively balances out the previous overrepresentation of 
subclonal, lower-VAF variants in high-ctDNA samples (Figure S3). We note that our method 
for estimating cfDNA clonality was independently developed and first described in multiple 
cancer types by (20), and cfDNA clonality determination has also recently been described in 
NSCLC by (21). 

 

Identification of CNA drivers in cfDNA 

The cfDNA assay identifies CNAs based on statistical deviation of the normalized 
number of cfDNA molecules corresponding to a given gene above the diploid baseline. Whereas 
the CNA frequency comparison (Figure 2C) included all reported amplifications, for the mutual 
exclusivity analysis (Figure 4), cfDNA CNA calls were first filtered to likely driver alterations 
to exclude passenger alterations associated with aneuploidy. We used an algorthmic approach 
(“ctDriver”) that iteratively searched through CNAs per sample for outliers above an aneuploidy 
threshold determined from the ensemble of copy number calls in the cfDNA cohort (Figure 
S10). If the maximum CNA was >30% above the second-maximum CNA and >30% above the 
median copy number of all other CNAs in the sample, it was considered a driver. If the second-
maximum was also >30% above the median copy number, both the maximum and second-
maximum CNA were considered drivers. For example, if a sample had one CNA with copy 
number of 3.0 and five CNAs with copy number of 2.2, the former was considered focal and a 
likely driver alteration, whereas the other CNAs were considered likely to be caused by 
aneuploidy and were removed from the analysis. Additionally, any single CNA with cfDNA 
copy number above 5 (the 93rd percentile of the overall copy number distribution) was 
considered a likely driver. We confirmed that these represented high-level outliers by fitting 
linear models of copy-number values that included the per-sample ctDNA estimate as an 
explanatory variable per cancer type. The result of this process narrowed the number of samples 
down to 1,396/6,159 samples with initial CNA calls (22%), and 1,396/16,185 initial CNA calls 
(9%) were deemed “driver CNAs” for the purposes of mutual exclusivity analysis.  

Resistance alterations and longitudinal analysis 

 Known drug resistance annotations (based on the literature) were tabulated for the 13,330 
patients (11,539 with cancer alterations detected) with one of six cancer types with literature-
documented resistance alterations and robust presence in the cfDNA cohort: NSCLC, breast 
cancer, CRC, prostate cancer, melanoma, gastrointestinal stromal tumor (GIST). Patients with at 
least one annotated resistance alteration were further examined for variant clonality (as above), 
presence of additional variants conferring resistance to the same therapy, and presence of 
additional variants conferring resistance to different therapies. 

 Of the 2,222 patients with multiple cfDNA tests, 731 had three or more tests (Figure 
S1A). Those 731 patients were then filtered for known major driver alterations in lung, 
colorectal, and breast cancer where tests were performed at relatively even time intervals. 
CfDNA alterations were then plotted for each test for patients representative of emerging 
resistance, stable clonal structure, and polyclonal resistance.  
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Statistical analysis 

Pearson correlations for SNVs/indels or fusion breakpoints, and Spearman correlations 
for amplification frequencies were calculated from tables of alteration frequencies in the cfDNA 
cohort versus in TCGA. Proportions for driver prevalence were compared using the Chi-square 
test. Mutation count, ctDNA level, and clonality distributions were compared using the 
Wilcoxon rank sum test, as described throughout the text. Fisher’s exact test was used to 
determine the statistical significance and log odds ratios for the mutual exclusivity analysis 
(Figure 4, Tables S7-S12), with adjustment for multiple comparisons within each cancer type 
using the Benjamini-Hochberg method (“false discovery rate”). All analyses were conducted in 
R. 
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Table 1.  Summary of the cfDNA cohort used in this study. No treatment, follow-up, or outcome data were 
available. 
Clinical	characteristic	 Statistics	
Number	of	patients	 21,807	
Number	of	samples	 25,578	
Number	of	patients	with	alterations	 18,503	
Number	of	patients	with	multiple	tests	 2,222	
Number	of	cancer	types	 >50	
Alterations	per	sample	 3	(median);	0-166	(range)	
Days	from	diagnosis	to	blood	draw	 738	(mean);	335	(median)	
Gender	proportion	 56%	female;	44%	male	
Age	range	 23-92	(median,	64)	
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Figure 1. CfDNA alteration detection and ctDNA levels in 21,807 advanced-stage cancer patients. (A) Somatic 
cfDNA alteration detection rates per cancer type in the 21,807-patient cfDNA cohort. Percentages of alteration-
positive samples are indicated. Note that the last 16,939 consecutive samples (Nov 2015-Sept 2016) were analyzed 
with version 2.9 of the cfDNA test, whereas the previous 8,639 samples were analyzed with earlier versions of the 
cfDNA test (see Table S3). SCLC, Small Cell Lung Cancer; CUP, Cancer of Unknown Primary; GBM, 
Glioblastoma. (B) VAF distribution for all somatic SNVs, indels, and fusions detected by the cfDNA test. (C) 
Distributions of ctDNA level per indication. CtDNA levels were significantly higher in colorectal cancer and SCLC 
and signficantly lower in glioma/GBM (“Glioma*”) than in the other cancers shown (Wilcoxon rank sum test). 
Sample numbers per indication are: Colorectal, 1,991; SCLC, 267; Bladder, 210; Liver, 210; Prostate, 909; Gastric, 
260; NSCLC, 8,078; Melanoma, 410; Breast, 3,301; Ovarian, 594; Pancreas, 867; Renal, 220; Glioma/GBM, 107. 
(D) The number of somatic cfDNA SNVs detected per sample versus increasing levels of circulating tumor DNA 
(ctDNA). CfDNA NSCLC samples (n=8,132) are binned by their maximum VAF (cfDNA %) on the x-axis. 
Asterisks indicate significance levels from pairwise comparisons using the Wilcoxon rank sum test (“ns”, not 
significant). 
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Figure 2. Comparison of cfDNA alteration patterns to tumor tissue alteration patterns in TCGA and 
COSMIC. (A) Per-codon mutation frequencies for SNVs in the TP53 coding sequence [cfDNA n=14,696 SNVs 
(10,574 samples); tissue/TCGA n=1,951 SNVs (1,845 samples)]. (B) Per-codon mutation frequencies for 
the EGFR tyrosine kinase domain (exons 18-24) [cfDNA n=3,098 SNVs/indels (2,095 samples; tissue/TCGA n=112 
SNVs/indels (96 samples)]. (C) Rank-by-rank comparison of amplification frequencies in breast cancer from the 
cfDNA cohort (1,010 patients with amplifications out of 2,808 patients) versus the tissue/TCGA cohort (413 
samples with amplifications out of 816 profiled samples). (D) Comparison of EML4-ALK fusion breakpoints for 
cfDNA versus tissue (COSMIC). Top panel: schematic showing breakpoints versus VAF, expressed as cfDNA 
percentage, for EML4-ALK fusions detected in cfDNA. Bottom panel: breakpoint frequency per EML4 intron; tissue 
data were compiled by COSMIC database (http://cancer.sanger.ac.uk/cosmic) from various literature sources.  
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Figure 3. Determination of cfDNA clonality. (A) Copy number versus VAF for EGFR in NSCLC. Note the two 
different non-linear behaviors among low-VAF and high-VAF alterations. (B) CfDNA clonality is plotted for all 
EGFR mutations in LUAD (blue) or CRC (pink). Thresholds for clonality filtering are indicated by vertical grey 
lines. The median clonality and percentage of mutations that were clonal (clonality>0.9) or subclonal (clonality<0.1) 
for all EGFR mutations, for L858R alone in LUAD, or for recurrent ectodomain mutations (“ecto”) in CRC are 
shown in table below. (C) CfDNA clonality for all APC SNVs in CRC cases. Nonsense variants are colored red, 
missense variants are green, and synonymous are grey. (D) CfDNA clonality of a canonical EGFR driver alteration 
(L858R) and two resistance alterations (T790M, C797S) in cfDNA from 1,119 NSCLC samples. Note the 
relationship between variant clonality and order of treatment with a given therapy is consistent with the sequential 
emergence of each resistance alteration (erlotinib is given to patients with EGFRL858R; EGFRT790M confers resistance 
to erlotinib, and patients with EGFRL858R,T790M can then be given osimertinib; EGFRC797S confers resistance to 
osimertinib).  
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Figure 4. Mutual exclusivity analysis of cfDNA alterations for lung adenocarcinoma before and after filtering 
for clonality and CNA driver status. Numbers of patients are indicated at bottom right of each plot. The top 
oncoprint shows all alterations in alteration-positive patients, whereas the bottom oncoprint shows truncal SNVs, 
indels, and fusions (clonality > 0.9), and likely driver CNAs across patients that have at least one clonal driver 
alteration. Grey boxes indicate the absence of alterations, and the color/shape combinations corresponding to the 
various alteration types are indicated below each oncoprint. Frequencies of gene alterations within each plot are 
indicated at left (samples lacking clonal alterations in the selected genes were omitted). 
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Figure 5.  CfDNA landscape of resistance to on-label therapies across cancer types. (A)  Landscape of 
resistance alterations in cfDNA. Numbers of patients with various resistance alterations (y-axis, left) to targeted 
therapies (x-axis, bottom) in six common cancer types (top) are plotted. Note that some patients harbored multiple 
distinct resistance alterations. Cancer type/genotype categories are: AR-mutant prostate cancer, ALK-fusion-positive 
NSCLC, EGFR-mutant NSCLC, breast cancer with ESR1 or ERBB2 (HER2) mutations, CRC, BRAF-mutant 
melanoma, and KIT-mutant gastrointestinal stromal tumor (GIST). The "EGFRmut" category for NSCLC includes 
variants A722V, L747P, L747S, V769M, T854A, T854S (18 mutations in total). (B) The numbers of samples 
harboring putative resistance mutations found in cfDNA and the corresponding on-label targeted therapies across six 
cancer types. (C) Longitudinal monitoring analysis of a patient with emerging resistance (T790M) in the third draw 
after presumptive EGFR inhibitor therapy indicated by L858R. Note that y-axis is log scale. (D) Monitoring analysis 
showing polyclonal ESR1 mutations, which confer resistance to aromatase inhibitors, and possible patient response 
to therapy over time. Asterisk indicates four additional amplifications were detected in the first sample. (E) 
Monitoring analysis showing stability of the clonal stucture (rela tive VAF) over consecutive draws.  
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