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Summary 

 

Working memory, the ability to keep recently encountered information available for immediate 

processing, has been proposed to rely on two mechanisms that appear difficult to reconcile: self-

sustained neural firing, or the opposite—activity-silent synaptic traces. Here we show that both 

phenomena can co-exist within a unified system in which neurons hold information in both 

activity and synapses. Rapid plasticity in flexibly-coding neurons allows features to be bound 

together into objects, with an important emergent property being the focus of attention. One 

memory item is held by persistent activity in an attended or “focused” state, and is thus 

remembered better than other items. Other, previously attended items can remain in memory but 

in the background, encoded in activity-silent synaptic traces. This dual functional architecture 

provides a unified common mechanism accounting for a diverse range of perplexing attention 

and memory effects that have been hitherto difficult to explain in a single theoretical framework. 
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Introduction 

Our capacity to hold and manipulate information over delays of a few seconds has long been 

thought to be subserved by the persistent firing of neurons during the delay (Funahashi, 2017; 

Fuster and Alexander, 1971). However, a number of recent studies have instead proposed 

“activity-silent” working memory, in which synaptic weights hold information during the delay, 

even in the absence of neuronal firing (Silvanto, 2017; Sreenivasan et al., 2014; Mongillo et al., 

2008; Stokes, 2015). This dispute comes at a time when it is also becoming clear that working 

memory (WM) is not a homogeneous store.  When we hold multiple items in WM, strong 

attentional effects are apparent. For example, people are faster and more accurate to recall the 

last item encoded, or the last item that was brought to mind (Chun et al., 2011; Oberauer, 2002; 

Souza and Oberauer, 2016; Zokaei et al., 2014a).  

 

One item in memory, termed the ‘focus of attention’, appears to be in a privileged state. It is 

decodable using functional MRI and is susceptible to TMS, unlike the unfocused items which 

considered to be stored but in a non-privileged state (Lewis-Peacock et al., 2012; Sprague et al., 

2016). In contrast, unfocused items can only be decoded after their latent representation is re-

activated (Rose et al., 2016; Wolff et al., 2017). Thus both active and inactive representations 

may coexist in WM, and items can move between these two states (LaRocque et al., 2014; 

Postle, 2016; Zokaei et al., 2014b). Computational neural models of both active (Compte et al., 

2000; Zenke et al., 2015) and silent (Mi et al., 2017; Mongillo et al., 2008) WM have been 

separately postulated, but neither type of model on their own accounted for shifts of attention 

within WM. Here we unify these divergent approaches in a new class of memory model.  
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Rapid synaptic plasticity at the millisecond scale has been used to explain how a pattern of inputs 

can be remembered (Fiebig and Lansner, 2017; Sandberg et al., 2003). In these synaptic models, 

simultaneously-activated neurons become more strongly connected, so that when a partial pattern 

is later presented, the original combination of active neurons can be re-activated, by associative 

recall. At longer time scales, synaptic plasticity may underlie associative episodic memory 

(Burgess and Hitch, 2005; Rizzuto and Kahana, 2001), or long term memory, which can provide 

the synaptic backdrop to support an active WM (Litwin-Kumar and Doiron, 2014, 2014; Zenke 

et al., 2015). Rapid plasticity in auto-associative networks can also account for serial recall of 

sequences of items (Fiebig and Lansner, 2017; Howard and Kahana, 2002) – including serial 

order effects such as primacy and recency (Farrell and Lewandowsky, 2002) – because new 

information may use up free space, or overwrite old information (Matthey et al., 2015; Sandberg 

et al., 2003). Because the physiological meaning of a neuron’s firing depends upon its input and 

output connections, plasticity in these models could lead to neurons whose activity represents 

different things on different trials – a property that we characterize here as flexible coding. 

However these models do not produce stable persistent-activity states in feature-selective 

neurons, which has long been considered a hallmark of WM (Funahashi, 2017).  

 

In contrast, in sustained activity models, items are held WM by virtue of delay-period activity 

(Compte et al., 2000; Funahashi, 2015; Funahashi et al., 1989), which relies on positive feedback 

to allow stimulus-induced activity to persist or resonate, leading to an “attractor” state. 

(Chumbley et al., 2008; Wimmer et al., 2014; Zipser et al., 1993). Although such active 

maintenance may also depend upon rapid changes in synaptic weights (Hansel and Mato, 2013; 
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Pereira and Wang, 2015), these models do not generally allow memory recall from a silent 

inactive state.   

 

The present work unites persistent activity attractors with silent synaptic storage. In our new 

class of memory model, both active and silent representations are essential to WM. We propose 

that persistent activation serves as the focus of attention that encodes recent activity patterns into 

synapses. Rapid plasticity in flexibly-coding neurons allows features to be bound together into 

objects, with an emergent property being that the last item is maintained actively.  Recent, 

previously-attended items are preserved instead in synaptic traces. They are in a non-privileged 

state but, importantly, can be re-activated by partial information.   

 

We propose that attention arises from the interaction between two distinct types of neural 

representation: fixed feature neurons, and freely-conjunctive neurons (Fig.1A). Feature neurons 

may be sensory, motor or conceptual. They have fixed receptive fields or tuning curves – as 

observed in posterior cortical areas.  In contrast, the freely-conjunctive neurons can rapidly 

change their connection weights with the feature cells, and therefore their activity does not 

represent a fixed feature or item in memory. Instead, through rapid plasticity on each trial, a 

conjunctive cell will come to encode a conjunction of simultaneously active features, by forming 

a reciprocal associative mapping to feature-selective neurons.  

 

Persistent activity arises by mutual excitation between feature and conjunction neurons. The 

conjunction neurons form a limited-capacity store that can hold many kinds of information in 

one place. Thus, our model bridges the gap between neuron-level descriptions and the 
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psychological notion of a general-purpose register, sometimes termed a “memory slot” (Cowan, 

2010; Luck and Vogel, 1997), a concept which has not as yet been characterized at the level of 

single prefrontal neurons. Such registers are difficult to explain unless individual neurons can 

encode different types of WM content at different times. Our model permits this by allowing 

rapid synaptic changes so conjunctive neurons can represent many kinds of information, 

depending on the recent context.  

 

We suggest that two lines of evidence point to such conjunction neurons being located in 

prefrontal cortex (PFC): firstly, PFC is highly active in memory and manipulation (Eriksson et 

al., 2015; Postle et al., 2006), yet secondly, information is not always easy to decode 

(Christophel et al., 2012; Cogan et al., 2017; Kamiński et al., 2017). Although WM contents can 

undoubtedly be decoded from many PFC neurons, about 60% of prefrontal neurons appear to be 

nonselective, and even for those that are selective, they often show less than a 50% modulation 

of their firing rate by information in WM (Miller et al., 1996; Parthasarathy et al., 2017). This 

apparently-nonselective component of prefrontal activity could reflect transient and flexible 

coding by conjunctive units.   

 

In this study, we first aim to provide a single common mechanism accounting for a diverse range 

of perplexing attention and memory effects. Second, we attempt to explain neurophysiological 

data where items in memory initially produce persistent activity, which then falls “silent” when 

attention shifts to new information (Konecky et al., 2017). Third, we aim to explain why many 

imaging studies conclude that attention and working memory are “distributed” processes 

involving both prefrontal and sensory brain areas (Christophel et al., 2017; Gayet et al., 2017, 
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2017; Xu, 2017).  In our simulations, we chose to examine the extreme situation where 

conjunctive neurons are fully nonselective for features. This limiting scenario is of course 

implausible, since no single prefrontal neuron could receive input from every feature neuron. 

However we argue that it is a highly illustrative paradigmatic case. In reality prefrontal neurons 

will necessarily have some degree of selectivity, but here we focus only on characterizing the 

novel concept of how rapid plasticity can give rise to flexible coding, and therefore we model 

purely conjunctive neurons as distinct from feature-selective neurons.   
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Fig.1: Conjunctive neurons to support attention and working memory 
 
A Two populations of neurons are distinguished based on their inputs. Posterior neurons (green) encode sensory-motor features, 

whereas prefrontal neurons (blue) are “conjunctive”: i.e. they are able to rapidly increase or decrease their synaptic connectivity with 

patterns of feature neurons, using a Hebbian associative rule. We simulated 12 feature-selective neurons (f) and 4 freely-conjunctive 

neurons (c). An active combination of neurons (pink) causes strengthening of synapses in both directions, producing a stable attractor 

across brain areas.  c=conjunctive cells, f=feature cells. W=synaptic weights, i=sensory input.   

B Sequence of proposed neuronal events during attention, encoding and retrieval in working memory. 1. Sensory input activates 

features. In this case a vertical red bar located at the top left of the display activates separate feature neurons tuned to orientation, color 

and location.  2. Features excite conjunctive neurons, which compete. 3. The winning conjunction drives sustained activity. 4. New 

input to the system (in this case an oblique purple bar at bottom left) disrupts current firing activity, but synaptic weightings remain. 5. 

Probe feature (in this case red colour) re-activates the original conjunctive unit that encoded the red vertical bar. 6. Conjunctive unit 

re-activates original features, completing recall.   
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Results 
1. Operation of the Model 

  
When a stimulus is perceived (Fig.1B; Movie S1), conjunctive neurons compete through lateral 

inhibition to become active in response to the combination of active features. In the example 

shown in Fig.1 the conjuncton units learn rapidly to encode combinations of color, orientation 

and location (Fig.1B.2). During encoding into WM, the winning conjunctive unit sustains the 

activity of all co-active feature neurons through mutual excitation. This strengthens synapses in 

both directions through rapid Hebbian plasticity, further stabilizing the active pattern. Once a 

conjunctive unit succeeds in reciprocally activating a set of feature units, attention is focused on 

the activated features, binding the features of a compound stimulus into a perceptual object.  

 

The reciprocal feature-to-conjunctive synapses keep the novel combination of features 

persistently active, even when the stimulus is no longer present (Fig.1B.3).  

 

When a new stimulus arrives, a new pattern of sensory input destabilizes internal activity, thus 

triggering a shift of attention towards the newly activated features. A new conjunction may win, 

to become the new focus of attention. Crucially, however, synapses between the previous 

object’s constituent features and one particular conjunctive unit remain strengthened even after 

those neurons fall silent (Fig.1B.4). Thus, presenting any one feature of a previously attended 

object (e.g. color, as shown in Fig.1) will act as a memory probe, re-activating the corresponding 

conjunction neuron (Fig.1B.5), and therefore also the other features that were associated with it 

(Fig.1B.6). The object’s features are therefore recalled by auto-associative pattern completion, 
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which brings them back into an attended, foreground state.  Separate objects must always be 

encoded sequentially, which we suggest is plausible in light of the empirically observed 

attentional bottleneck in feature binding (Reynolds and Desimone, 1999).  

 

To demonstrate the power of the model, we simulated a common visuospatial WM task (Fig.2A) 

in which participants remember the orientations of a set of colored bars (e.g. Gorgoraptis et al., 

2011; Pertzov et al., 2016). Neurons were modelled as firing-rate units obeying a Hebbian 

plasticity rule (see Methods). Memory items were composed of combinations of features, and up 

to four unique items were presented sequentially to the feature units. After a delay, we probed 

one of the items by activating its color-feature alone, and recording whether its orientation was 

subsequently re-activated. Remarkably, just four color, orientation, location and conjunctive 

neurons each are needed to explain a wide range of behavioral and neurophysiological data, 

which no models have yet captured (Table S1). 

 

Crucially both the activation and learning equations were implemented continuously over a block 

of trials, with blank input in between trials, so that encoding, recall and interference from the 

previous trial all arose naturally from the way stimuli were presented. We tuned the model to 

perform at levels comparable to humans at this task (see Methods). For clarity, here we elected 

to keep the model’s operation almost identical for all the simulations, even though the 

experimental data we match come from a variety of tasks and measures.  
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2. Capacity limits and serial order in WM 
  
A key feature of WM is its limited capacity. The more items held in memory, the less accurately 

they are remembered (Luck and Vogel, 1997; Bays and Husain, 2008). Simulated recall accuracy 

(Fig.2B) matched the set-size effect from classical visuospatial WM experiments (Fig.2C). This 

is because each additional stimulus competes for conjunctive neurons, and may corrupt or 

overwrite synaptic traces of previously-seen objects. Whether a previous item is overwritten is 

determined by the how well the currently-active features match the existing synaptic weights, 

which are themselves continuously subject to Hebbian rules. Therefore in our model, capacity is 

limited by interference between items in memory, in line with convergent evidence from 

multiple WM domains (Almeida et al., 2015; Farrell et al., 2016; Oberauer and Lewandowsky, 

2014). Note that accuracy is lower than human data because the model chooses between four 

options rather than two, but varying the model parameters can make it arbitrarily more accurate 

(Fig.S8,S9). Importantly the model predicts the counterintuitive finding that storing extra 

features within a single object either occurs automatically(Allen et al., 2006) or else may incur 

no extra cost (Luck and Vogel, 1997). In fact our model predicts that in some situations a benefit 

can be observed for adding a new irrelevant but distinguishing feature to each object (Fig.S7).   
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Fig.2: Predicting visuospatial WM capacity, encoding and decay 

A To simulate WM performance, four objects are presented sequentially, by activating feature 

neurons (f, activity depicted as a heatmap from dark blue to red) indicating the color, orientation and 

location of each item. Conjunctive units (c) are shown below as four differently-colored traces. 

Conjunctive units compete to become active for each object. One conjunctive unit wins for each 

object, driving activity that persists even after input is removed (yellow parts of heatmap). At the 

time of the probe, a single feature is stimulated, triggering pattern completion. Recall is accurate if 

the orientation of the corresponding item is re-activated. Two example trials are shown; note that 

different patterns of conjunctive units are activated on different trials even for the same stimuli, 

depending on trial history. Example 1: good encoding. Example 2: weak encoding of the second 

item. Two conjunctive neurons with similar recent preferences compete to encode object 2 

(arrowhead). When it is probed, item 4 is reported instead. 

B & C When more items are encoded in the model, recall accuracy is reduced, as observed in data 

(adapted from Luck and Vogel, 1997).  

D & E The last item encoded in the model is recalled better than others, as it remains active in the 

focus of attention during the delay period, matching observed serial order curves. Figure adapted 

from (Gorgoraptis et al., 2011) indicates the probability of reporting the target item as calculated by 

fitting the distribution of responses in a similar task.   

F&G Shorter encoding durations reduce modelled recall accuracy. Data from a similar task (adapted 

from Bays et al., 2011) where adding items reduced both initial encoding rate and asymptote. The 

model qualitatively reproduces the interaction observed in human performance.   

H & I The model predicts faster memory decay when more items are stored. This matches the 

empirical interaction between memory-set size and delay. Data adapted from (Pertzov et al., 2016) 

shows the modelled probability of reporting the target.
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3. Serial order effects  

When we remember a sequence of objects, we recall the first and last objects better (primacy and 

recency). Our model can reproduce both of these effects. Simulated performance (Fig.2D) 

matched the serial position curve obtained in WM experiments (Fig.2E). The simulation 

suggests that neutrally, primacy benefits arise because the first object in a trial does not need to 

compete with ongoing persistent activity from a previous item (Fig.1B4). In our model this relies 

on the fact that, at the start of each trial, feature units are inhibited but previous synaptic weights 

are not erased – though there is no explicit signal to forget items from the previous trial. Recency 

benefits arose for two reasons: the finally-encoded item did not incur retroactive interference 

from subsequent items, and was already in an active rather than silent state at recall.  

 

4. Encoding and maintenance 

The time-course of encoding was interrogated by presenting items for brief durations, and 

demonstrated exponential saturation with an asymptote dependent on the number of items 

encoded. In a similar empirical study (Bays et al., 2011), memory precision (1/standard deviation 

of response angular error) followed a similar pattern. In that study, the probability of choosing 

the target was not calculated, but their reported precision appears to correspond well to our 

model’s probability of reporting the correct target orientation (Fig. 2F&G).  

 

Simulations demonstrated that memory deteriorates faster when increasing numbers of items are 

remembered (Fig.2H&I), as shown in a recent study (Pertzov et al., 2016). This arises because a 

greater proportion of items are held in an unattended state. Unattended items are more vulnerable 

to interference, because their synapses are gradually weakened over time according to the 
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plasticity rule. Our model also makes the strong prediction that an item stored in an attended 

state (e.g. the final item in a sequence) is more robust to decay over time.   

  

 
5. Shifting the Focus of Attention  

An important advance over other models, is the ability of our model to re-activate a previous 

item by bringing it into the focus of attention. The logic here is that sensory input can guide 

attention by pattern-completion. In behavioral experiments, an “incidental” task inserted into the 

memory delay can shift attention to one of the items in memory (Fig.3A) (Zokaei et al., 2014a) 

bringing it into the foreground. We simulated “retro-cueing” one of the items during the memory 

delay by presenting one of its features for a brief period, which brought that item back into the 

focus of attention (Fig. 3B). The external cue could thus re-activate a memory item which was 

previously encoded silently.  Note that this simulation illustrates how feature-selective units can 

exhibit task-dependent modulation because they also receive non-sensory input through rapidly-

plastic synapses from the conjunctive units.  

 

Recall of the incidentally-cued item improved, compared to the uncued item (Fig.3C), matching 

experimental data (Fig.3D). This attentional shifting also explains how cues that indicate which 

item will be probed (predictive retro-cues, Rose et al., 2016) improve performance, even 

paradoxically when controlling for the retention interval’s duration (Myers et al., 2017).   
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Fig.3: Shifting the focus of attention in WM 

A Experiment (Zokaei et al., 2014a) where participants remembered two items, each comprising 

three features: color, location and orientation. During the retention interval, a color was shown, 

and as a secondary task, the location of the corresponding object had to be recalled. At the end of 

the delay, a color was shown which could indicate the same (“congruent”) or different 

(“incongruent”) object than the one tested during the delay. Participants then reported the 

orientation of the corresponding object. Reproduced under the terms of the Creative Commons 

Attribution 3.0 Unported (CC BY 3.0) license (https://creativecommons.org/licenses /by/3.0) 

from figure 1A of Zokaei et al. 2014, The Journal of Neuroscience. January 1, 2014. 34(1);158-

162.. 

B Similar events were simulated, with an incidental cue (IC) during the delay. If the first object 

was cued, then persistent delay activity shifted to the cued item.   

C&D The model predicts that the item in the focus of attention before recall is reported more 

accurately, matching data.  Reproduced under CC BY license from figure 1B of Zokaei et al. 

2014. 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 15, 2017. ; https://doi.org/10.1101/233007doi: bioRxiv preprint 

https://doi.org/10.1101/233007


18 
 

 
6. Recall 

After the probe feature was activated, it took a number of time steps for the conjunction and 

response feature units to become active. We measured this time to obtain reaction time 

predictions, which varied inversely with accuracy similar to empirical data (Fig.S1).  

 

The process of recall may also be susceptible to interference, because it effectively uses pattern 

completion to re-activate the other features of the corresponding object. In particular, the 

memory probe itself can interfere with recall, for example if it contains a feature on the 

dimension that needs to be reported (Fig.S2), in line with empirical probe-interference effects 

(Souza et al., 2016). Interference of another kind arises when recalling items as a whole series: 

often the preceding or following item is reported instead (Smyth, 1996; Solway et al., 2012). 

Although our simulations probe a single item at a time, they still demonstrate such “transposition 

errors”, where consecutively presented objects are confused (Fig.S3).  

 
 

7. Neural encoding of items in WM 

Three major predictions emerge about neural decoding. First, an emergent property of our 

framework is that sustained activity represents a single item held in memory (Funahashi, 2017), 

but not multiple items (Lara and Wallis, 2014). We used a linear decoder to extract information 

about one feature of one of the items in WM, after items had been encoded. The predictions of 

the model for decodability from feature-selective neurons (Fig.S4) are in keeping with human 

and nonhuman physiological data demonstrating that only the attended WM item is decodable 

using standard techniques (Konecky et al., 2017; Lewis-Peacock et al., 2012; Sprague et al., 
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2016).  Second, evoking neural activity by stimulation can restore decodability from EEG signals 

(Rose et al., 2016; Wolff et al., 2017). We simulated transcranial magnetic stimulation (TMS) by 

an indiscriminate pulse of activation to feature neurons (Fig.4A), and decoded one feature 

dimension from feature-selective units (Fig.4B). If the model’s color and orientation feature 

dimensions are considered as mapping to spatial location and stimulus category respectively, 

then the simulation matches the effects of TMS on decoding (Fig.4C) (Rose et al., 2016), or if 

they are instead mapped to spatial location and orientation, then the model’s results reproduces 

the effects of a high-energy visual pulse (Wolff et al., 2017). Simulating a stronger pulse of 

stimulation disrupted attention, but not synapses. This worsened recall of the attended item, yet 

contrarily improved unattended items (Fig.4D&E), precisely as demonstrated empirically 

(Zokaei et al., 2014a).  
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Fig.4: Introducing a pulse of excitation during the delay period  

A After presenting two items, during the delay all feature neurons f received an excitatory input 

pulse i=+1, consequently activating conjunction neurons.  

B&C We tried decoding the identity of each of the two stimuli from feature neuron activity. 

Although the first object was not decodable without the pulse, it became transiently 

distinguishable (*) after the pulse. This matches the observed increase in decodability after TMS 

(Rose et al., 2016).  

D&E Stronger pulses altered model performance, abolishing the benefit for the second item, 

which was in the focus of attention. The pulse disrupted persistent activity, re-instating 

competition between conjunctive neurons. The prediction matches observed effects of TMS 

targeting motion-selective cortex (Zokaei et al., 2014a).  
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Third, the model predicts that decoding from prefrontal cortex is unreliable (Lee and Baker, 

2016). This is because the concept of a receptive field breaks down for conjunctive neurons. The 

same activity can have different meanings on different trials, dependent on residual synaptic 

weights from previous trials. Such neurons should show much stronger representations over 

short timescales. We predict this will manifest behaviorally, with better recall for a feature 

combination present on the previous trial (Fig.S5), because the same conjunction unit will be re-

used. Moreover, neural activity patterns in conjunction neurons predict stimuli strongly if we 

consider data only from contiguous pairs of trials, compared to data from temporally-separated 

trials (Fig.5A), and the pattern similarity should be even lower when intervening stimuli involve 

a recombination of the features (Fig.5B-D). This confirms that each conjunctive neuron’s 

activity represents different things, as its synaptic weights change. Such a system can flexibly 

encode a broad variety of novel information rapidly, without incurring the combinatorial 

explosion that haunts previous fixed-selectivity models (Matthey et al., 2015; Postle et al., 2006).  
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Fig.5: Conjunctive unit representations are stable over short timescales   
 
Conjunctive units change their selectivity over short periods. If selectivity were stable, neural patterns should be similar when the 

stimulus is the same. We compared similarity of the pattern of an earlier trial, to trial n, during the delay periods of a series of 1-item 

trials.  

A) The similarity of the conjunctive neurons’ delay activity pattern is calculated for trials where the stimuli were identical (blue line) 

or different (red line). Patterns were more similar when stimuli were the same, compared to when stimuli were different, indicating 

“classical encoding” at least for nearby trials. This classical behavior decreased with the temporal distance between trials. Since we 

modelled the extreme case where neurons are purely conjunctive, with no feature selectivity, consistency of pattern is completely 

abolished after about 6 trials.  

B-D) The model predicts that interference reduces pattern similarity over time by overwriting the synaptic weights.  If the objects in 

intervening trials share one feature with the nth trial object, but mismatch on the other feature dimension, then we say the conjunction 

between the two feature dimensions is “violated”.  

 B) When the intervening trial contained a violation, the patterns on the n-2 and nth trials reflected the stimuli much more weakly, 

indicating interference or overwriting of the original conjunction.  

 C and D) Trials 3-back and 4-back were similarly examined, this time asking how many intervening conjunction violations occurred. 

The more overwriting that occurred between the n-3 and nth trials, the less classical encoding could be observed.  
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8. Simulation of task sets 

The same system can also implement stimulus-response rules, if some feature neurons represent 

motor plans. In this case, we encode a task rule by attending to a stimulus and a motor plan 

together. For example, if a left-hand movement plan is activated while a red color-feature is 

simultaneously activated, they will be encoded together into working memory. The conjunction 

of sensory features with a motor plan creates a task-set mapping (Duncan et al., 2012).  Later, 

that stimulus can also re-activate the corresponding motor plan by pattern-completion, triggering 

the movement – so that the stimulus generates a response. Task sets can therefore be rapidly 

formed by sequentially attending to stimulus-response pairs (Curtis and D’Esposito, 2003), and 

deciding on an action is simply the motor analogue of WM recall. 

 

To simulate stimulus-response mapping, we presented the task rules sequentially, each consisting 

of a pairing between one color and one response (Fig.S6A). Then on each subsequent trial, a 

single color from the set was shown, and the response was recorded. The model reproduces 

Hick’s law, in which response times are longer in situations when more response options are 

possible in the current task set (Fig.S6B) (Proctor and Schneider, 2017). It also produces faster 

reaction times when the response is repeated from the previous trial (Fig.S6C), in line with 

experimental evidence (Schvaneveldt and Chase, 1969).   

 

In this situation, the role of prefrontal conjunctions can be viewed as controlling representations 

in posterior cortex, i.e. routing information from perceptual to motor representation as governed 

by task sets held in working memory, a role classically assigned to executive/supervisory 

attention. Critically the model predicts that, because the task rules are held in WM across many 
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trials rather than being repeatedly overwritten, the current stimulus and response (i.e. the active 

task rule) are consistently decodable from conjunctive neurons, until the rules change (Fig.S6D). 

This contrasts with WM storage, where frequent overwriting leads to poor decoding, and may 

explain why task rules have generally been easier to decode from PFC (Reverberi et al., 2012; 

Sakai, 2008).    
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Discussion 
The model of freely-conjunctive neurons presented here accounts for both sustained firing and 

activity-silent synaptic traces in WM (Silvanto, 2017; Stokes, 2015), and consequently makes a 

range of testable behavioral and neural predictions (Table S1). This neuronal framework 

provides a parsimonious mechanism for feature binding, general-purpose memory ‘slots’, and 

task sets. The model reproduces classical WM effects of capacity, serial order, encoding rate, 

temporal decay (Fig.2), reaction times, and transposition errors (Fig.S1&3), as well as the ability 

to switch attention between items within memory – a phenomenon that evades most current 

models (Fig.3). At a neural level, it explains why it is difficult to decode memory contents from 

prefrontal activity, why only the item in the focus of attention can be decoded elsewhere 

(Fig.S4). Further it explains why decodability can be restored by re-focusing an unattended item, 

or after a perturbation such as transcranial magnetic stimulation (TMS) or  bottom-up input 

(Rose et al., 2016; Wolff et al., 2017), which presumably re-activate the conjunctive neurons and 

thus an object’s features through synaptic traces (Fig.4). The model also makes strong novel 

predictions about probe interference, trial-to-trial effects  (Fig.S2&5), and disruption of neural 

pattern similarity by intervening stimuli (Fig.5).  

 

Relation to previous models 

Rapid plasticity has long been demonstrated in cortical neuron receptive fields (Edeline et al., 

1993) and may arise through a variety of synaptic mechanisms (Zucker, 1989; Tsodyks and 

Markram, 1997; Fischer et al., 1998; Dittman et al., 2000; Jensen et al., 1996; Malsburg, 1981). 

It has previously been suggested to underlie short-term retention of information in a network of 
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selective and nonselective neurons (Mongillo et al., 2008), similar to theories of hippocampal 

binding in long-term memory (Burgess and Hitch, 2005; Rizzuto and Kahana, 2001). Rapidly 

plastic networks account well for serial recall (Farrell and Lewandowsky, 2002; Fiebig and 

Lansner, 2017; Sandberg et al., 2003) but cannot distinguish between focused and unfocused 

items in memory, and do not explain sustained delay-period firing (Funahashi, 2017). Sustained 

activity models may also account for some attentional effects on decodability (Schneegans and 

Bays, 2017) but cannot reinstate information that becomes fully undecodable.  

 

To support flexible attractor states, we postulated two distinct modes of neural representation 

(Fig.1). First, feature-selective neurons are traditional, place-coded (“labelled-line”) units. They 

are selective because they have some fixed, non-plastic inputs (or in the case of motor units, 

fixed outputs).  But if plasticity modifies both the input and output synapses of a neuron, the 

meaning or interpretation of a neuron’s firing will also change. This is simply because neurons 

code information only in virtue of their inputs and outputs. Plasticity therefore begets a new 

category of flexibly-coding neurons, where the information signaled by firing is protean and 

dependent on the history on each trial. Decoding the fine-grained identity of stimuli from 

prefrontal cortex is unreliable compared to posterior sensorimotor regions (Cogan et al., 2017; 

Lee and Baker, 2016), because the idea of a receptive field breaks down. Standard decoding 

methods assume trial-to-trial stability of activation patterns to represent a given feature, and so 

do not measure the sequential effects we predict. This flexible coding scheme is crucial for our 

model to generate two phenomena. First, it permits sustained activity that is guided dynamically 

by task sets or objects in memory, which we postulate corresponds to attentional interactions 

between frontal and temporo-parietal regions. Second, because individual neurons can encode 
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different things at different times, information must compete to be encoded by any conjunctive 

neuron – thus leading to a capacity limit for general-purpose information storage, observed in 

both WM and attention. This may help resolve a long-standing theoretical debate on whether 

working memory consists of pointers, or activated long-term memory (Norris, 2017): 

conjunctive neurons act as pointers that activate long-term memories. 

 

Relaxing the model’s assumptions 

In this study we deliberately chose to study the simplest possible model that could support 

conjunctive neurons. The very small number of neurons, and their simple learning and dynamics, 

makes it much easier to see how they interact to generate the novel predictions. Moreover it is 

much more transparent where the model can or cannot match existing data. Naturally there are 

many directions in which the model needs to be extended, to fully reproduce the phenomena 

observed in real neurons. A number of its assumptions can plausibly be relaxed.   

 

1. Pure flexible and stable representations 

For simplicity we have treated conjunctive neurons as “pure”: i.e. that they are homogeneous and 

domain-general, resulting in inability to decode information across many trials. This is certainly 

implausible because all-to-all connections between PFC and feature-selective neurons are not 

feasible. Moreover, how can we then explain studies that do demonstrate decoding of WM from 

prefrontal areas? In reality, we envisage that each conjunctive neuron is likely to receive inputs 

from only a subset of feature neurons. In order for conjunctive neurons to bind features into 

objects, these inputs must at least include multiple feature dimensions and multiple features in 

each dimension. The model is therefore potentially compatible with the presence of mixed 
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selectivity (Rigotti et al., 2013), which would provide a background of weak input selectivity 

based on the presence or absence of connections, upon which rapid plasticity is superimposed.  

 

Further, there may also be significant topography in conjunctive cells connectivity. For example, 

different regions of prefrontal cortex may be specialized for remembering different kinds of 

information (Romanski, 2004). This may have two desirable consequences. First, aspects of the 

attended object – especially information that is highly topographical in posterior areas, such as 

stimulus category and spatial location – would be consistently decodable from prefrontal cortex 

(Lee and Baker, 2016) but will be modulated by relevance (Kornblith and Tsao, 2017).  Second, 

conjunctive neurons in different prefrontal subregions may connect preferentially to visual, 

motor or auditory cortex, which could account for the separability of  visuospatial and 

phonological WM and also their overlap (Morey et al., 2011).  We note that stable mixed 

selectivity, even without plasticity, could in some situations produce binding and capacity limits 

(Matthey et al., 2015). However without additional mechanisms, it would presumably not 

account for attentional shifts, activity-silent storage, or apparent control over posterior cortical 

areas, and moreover makes it challenging to internally ‘read-out’ WM contents.  

 

We treated “features” as just simple perceptual attributes, but we believe that our class of 

feature-selective neurons could include any aspect of the world that is encoded in a stable way, 

including those aspects that incorporate long-term knowledge, such as object identity, category, 

or even linguistic information such as word meanings. These attributes are likely to be encoded 

stably in posterior cortical areas, in contrast to the temporary combinations of information 

represented in an ephemeral way – e.g. for online manipulation – as typified by our conjunctive 
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neurons.  The current simulations used only a single, rapid learning rate, but it remains to be 

studied how this could be reconciled with longer-term learning. 

 

2. Internal control over attentional shifts 

We have assumed that attentional shifts are externally cued. Endogenous shifts of attention are 

not modelled. One way of implementing internally-generated attentional modulation would be to 

de-stabilize the persistent activity by adding delayed suppression, or refractoriness, to the 

competitive conjunctive neurons. The result would be that, after an object is attended, its activity 

is extinguished after a delay, leading to a transient and unstable focus of attention.  Akin to some 

models of visual attention guidance (Itti and Koch, 2001), attention will then be successively re-

deployed towards the weakest-represented features in WM. This could potentially account for 

four key phenomena: (a) rehearsal, in which attention moves sequentially between items during a 

memory delay, (b) the ability to free-recall WM items in order, (c) the guidance of visual search, 

and (d) in our model, to permit serial encoding of a simultaneously-presented memory array. 

 

Although WM maintenance commonly engages PFC, evidence from neuropsychology and 

functional imaging suggests PFC’s role includes cognitive control, WM manipulation, and 

response selection, rather than simply WM storage (Bechara et al., 1998; D’Esposito and Postle, 

1999; Rowe et al., 2000; Thompson-Schill et al., 2002), and it remains to be tested whether the 

conjunctive neurons we propose can perform such functions. For example, we cannot account for 

the ability to “gate out” distractors, and prevent them from being encoded in WM.  If sensory 

input is sufficiently weak, in our model, it can cause transient activation of conjunctive neurons 

without capturing attention, such that the ongoing attractor state remains stable. But how could 
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irrelevant distractors be ignored, while still allowing relevant inputs to capture attention? To 

achieve this, conjunctive units would themselves need to be under higher-level control. The 

current model, with only one layer of conjunction units, does not explain higher order control of 

attention, since sufficiently-strong bottom-up stimuli that match a conjunction will always tend 

to re-activate that conjunction and thus capture the focus attention. The conjunction and feature 

neurons together simply act as a “matched filter” amplifying patterns that have recently been 

active (Chrysikou et al., 2014; Hayden and Gallant, 2013). Perhaps gating vs granting access to 

working memory by preventing this might be controlled by interactions between prefrontal 

cortex and the basal ganglia (Badre, 2012; Chatham et al., 2014). 

 

3. Location of conjunctive neurons 

Conjunctive-coding neurons might not be confined to prefrontal cortex. Other regions that play a 

role in working memory, such as the hippocampus, basal ganglia or thalamus, might also contain 

freely conjunctive neurons. Moreover, there may be a continuum or overlap of mechanisms 

subserving working memory and episodic memory (Fiebig and Lansner, 2014). However the 

volatile synaptic weights we propose would produce strong but evanescent trial-by-trial 

selectivity changes (Fig.5), quite unlike the rapid but long-lasting associations proposed in the 

hippocampus. A more intriguing possibility is that both freely-conjunctive and stable-feature 

neurons are actually present in the same brain regions, with a spectrum between highly-plastic 

and stably-coding neurons. 
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4. Spiking and synchrony  

Neurophysiological evidence points to synchrony of neuronal firing as a key feature of attention 

(Myers et al., 2017). Since we only simulated firing rates, synchrony and oscillations are not 

observable. Our reciprocal activation and “reverberatory” sustained firing could lead to spiking 

synchrony that is cross-region and attention-dependent. The current model makes no specific 

predictions regarding theta- and gamma-band activity. To generate such predictions, a spiking 

model, possibly including the thalamus and intracortical oscillations, may be needed. This is far 

from trivial and further study is required to determine if a spiking implementation of this 

network would generate the same predictions. An open question is how this might be reconciled 

with evidence that multiple items may be stored in an electrically active state. For example, 

could several attractors be simultaneously active, kept distinct through inhibition (Wei et al., 

2012) or multiplexed by phase relative to oscillations (Jensen et al., 2002; Lisman and Jensen, 

2013)? Our model is incompatible with these possibilities. 

  

In summary, a single architecture captures both persistent activity attractors and silent synaptic 

memory. We introduce a new scheme of transient flexible neuronal coding, that can support 

many empirical phenomena (Tables S1/2) including the “focus of attention”, and generates 

numerous testable neural predictions.  
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Methods 
  
The present model considers a minimal arrangement for three feature dimensions, each with four 

possible feature values, allowing 12 features to be encoded. Each feature unit receives input 

when a particular feature is present in the stimulus. Four conjunctive units are fully connected 

reciprocally to the 12 feature units. These connections are all excitatory, and initialized to be 

random. Four conjunctive neurons is the minimum possible number that can bind information 

from four objects. The fully-connected network therefore required 48 weights to conjunctions 

from features (Wcf) and 48 to features from conjunctions (Wfc). The activity of all units f and c 

were initialized to zero at the start of simulation, and weights Wfc and Wcf were randomly 

assigned from a uniform distribution over the interval [0, 1]. In its simplest form, the activity 

update equation was:  

 

The conjunctive-feature synapses Wcf and Wfc were updated by a Hebbian covariance rule, 

whereas the fixed inter-conjunction (Wcc) and inter-feature (Wff) synapses each comprised two 

components:  

1) blanket lateral inhibition between conjunction neurons or between features within the 

same dimension, to implement competition,  and  

2) self-excitation, so that firing does not stop suddenly when external input is removed, but 

rather decays exponentially with time. 

So the update equations can be written out more fully as: 
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In these equations, c and f are the activities of conjunctive neurons and feature neurons, and i is 

the external input.  The six synaptic free parameters α were:  

α1 , α4 : mutual lateral inhibition between neurons  

α2 , α5 : self-excitation or temporal decay, and  

α3 , α6 : synaptic gain for the conjunction-to-feature and feature-to-conjunction synapses, 
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for the conjunctive and feature neurons respectively. β is the baseline neuron activity, γi are the 

learning rates, and ε is the amount of noise added to the conjunctive units. The function σ 

constrains values lie between 0 and 1 and, for simplicity, was chosen as: σ(y)=min(1, max(0, y)). 

The identity matrix I produces self-excitatory synapses, and a matrix of ones (1) produces lateral 

inhibition. In simulations, the 12 features were arranged into 3 dimensions (color, orientation and 

location), so that the feature-to-feature inhibition (Wff) was arranged in 3 blocks of 4 units.  N 

indicates a gaussian white noise vector with s.d.=1. We constrained learning rates to be identical 

in both directions (γ1=γ2), and noise was in fact not required in order to obtain the typical 

patterns of errors reported here (ε=0), giving effectively 8 free parameters. A minimal algorithm 

to reproduce the main result is provided at the end of this section.  

Implementation of stimuli and simulations 
Model equations were simulated in MATLAB (code available at 

[www.smanohar.com/wp/wm/download.html]). A web-based interactive simulation can be 

accessed at http://www.smanohar.com/wp/wm. Each run simulated 200 trials. To test different 

hypotheses, the simulation setup was varied from a canonical setup. The canonical simulation 

resembled common working memory experiments (Bays and Husain, 2008). A series of objects 

was presented, followed by a memory probe that triggers recall. Each object excited one feature 

in each dimension (colour, orientation and location).  The features of the objects presented on 

each trial were random, with the constraint that no two objects within one trial shared any 

features. Each trial started with a foreperiod for equilibration lasting 200 time steps, with the 

features inhibited (input i = –1). Then during the encoding epoch, each memory item was 

presented by activating the corresponding feature units, by maximally activating the features 

present in the object (i = +1) and inactivating the absent features (i = –1). Stimuli were presented 
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for 120 time steps, followed by an inter-stimulus interval of 50 time steps with no input (i=0). 

After the last item was presented, the memory delay period of 240 time steps followed, with no 

input, mimicking a retention interval. Then at the probe epoch, the feature acting as the retrieval 

cue was activated (i=+1), and the other features were inhibited (i = –1). The probe lasted 120 

time steps. Finally, the response interval constituted 220 time steps with no input. This permitted 

re-activation of the features to be recalled. The feature that reached the highest level of activity 

during this period was selected as the response. In the case of an exact tie-breaker the decision 

was randomized.  An example of this sequence of events shown in Video S3. 

  

Parameter selection was performed initially by trial and error to achieve the hypothesized 

dynamics. First, the decay, inhibition and input weightings αi for the conjunctive and feature 

neurons were adjusted to create a sustained activity plateau and to ensure that conjunctive 

neurons competed in a winner-takes-all manner. Then the learning rates γ i were adjusted to allow 

sufficiently rapid weight changes such that over 50 time steps, a trace remained that represented 

which combination of feature units had been active. The baseline was approximately 20% 

maximal to permit deactivation of neurons, so that conjunction units that lose the competition 

will ‘unlearn’ their associations (Stanton and Sejnowski, 1989). A small amount of noise was 

added to ensure conjunction units were never identical, to facilitate symmetry-breaking. 

  

Certain effects were more or less sensitive to changes in model parameters. Overall accuracy 

could be made to range from consistent 100% to consistent 0%, depending on choices of α i, β, γi 

and ε.  We aimed for 70% overall accuracy, allowing a wide dynamic range of performance to 

examine the predicted effects, so this was the regime in which the main simulations were run.  
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Simulation 1: set size 

Simulation parameters were as above, with αi = { –0.28, 1.03, 0.05,   –0.28, 0.75, 0.05 }; 

β=0.175,  γ = {0.02, 0.02};  ε = 0.005. Timings were: foreperiod=200 steps, objects=120 steps, 

inter-stimulus=50 steps, retention delay=240 steps, probe=120 steps, recall=240 steps. Trials 

proceeded as above, with four items presented sequentially. One, two, three and four items were 

presented in different trials, and each serial position was probed. For multi-item sequences, each 

item in the sequence was probed equally often. This gave ten (1+2+3+4) trial types, and 200 

trials of each type were simulated. The average accuracy over all serial positions was calculated 

for each set size (Fig.2B). Error bars are the standard error of the accuracy when trials were 

broken into subsets of 20 trials each. Simulations were performed both using interleaved trials, 

and also with one condition per block, and comparable results were obtained with both methods. 

 

Capacity limits were naturally limited to four in this simulation because only four conjunctive 

neurons were present. However the capacity limit does not directly relate to the number of 

conjunctive neurons, but rather, to the proportion of conjunctive neurons that will become 

simultaneously active during winner-takes-all competition (¼ in this case). This is in turn 

determined by the level of inhibition. A simulation using 8 conjunctive neurons also reproduced 

the set-size effects, with inhibition tuned to allow two neurons to be active at once.  

 

Note that absolute modelled accuracy was lower than in the empirical data, because participants 

made same/different judgements (chance=50%) whereas our simulations recalled actual features 

(chance=25%).  
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Simulation 2: serial position 

The run was identical to simulation 1 above. Trials were grouped according to the serial position 

of the probed item, and by set size (Fig.2D). Accuracy was calculated as per simulation 1. Note 

that in all simulations, feature unit activity was held at zero at the start of each trial (i = –1) to 

simulate a foreperiod or inter-trial interval. This permitted the first item of the sequence to be 

encoded faster. We then explored different parameter sets, varying α, β, γ and ε. The recency 

effect was robust across a wide range of parameters, and was often strong enough to push 

performance to 100% for the last item. The presence of a primacy effect was more strongly 

dependent on the specific presentation timings and on the choice of α i . This matches empirical 

studies of visual WM, which do not always find primacy effects.  

Simulation 3 – encoding duration:  

The time that each item was presented for was varied. This ranged from 10 to 120 time steps (in 

increments of 20 ms), with all items being presented for the same duration. The inter-object 

duration was fixed at 50 ms as in previous simulations. The average accuracy was collapsed 

across all serial positions for each set size, and plotted as a function of encoding duration 

(Fig.2F). The simulation demonstrates an interaction between set size and time, such that when 

more items are stored, the decay is faster.  In order to avoid floor effects for this simulation, 

where accuracy in the 4-item condition could approach chance very quickly as the encoding 

duration decreases, we increased the ‘stickiness’ of conjunction units in the model, by reducing 

the decay factor α1 and uptitrating their input gain from each other (α2)  and from the feature 

units (α3). We therefore set  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 15, 2017. ; https://doi.org/10.1101/233007doi: bioRxiv preprint 

https://doi.org/10.1101/233007


48 
 

α = {  –0.5, 1, 0.08,    –0.28, 0.7, 0.05}   and   β = 0.2  

for this simulation, and the consequence was that the overall accuracy of the model increased 

from 75% to around 90% while preserving the set size and serial position effects. This ‘higher 

performance’ regime was used for simulations 3, 4 and 5. Other than improved overall accuracy, 

these parameters produced qualitatively similar effects to the primary simulations (Fig.S9).  

Simulation 4: effect of memory delay 

We varied the number of time steps after the final item was presented, until the onset of the 

probe. The delay varied between 200 and 1800 steps. For each duration, simulations of 200 trials 

were run for 1, 2, 3 and 4 items, with each possible position being probed (i.e. total 2,000 trials 

per duration). In order to avoid floor effects, where accuracy in the 4-item condition could 

approach chance as the delay increases, we used the same regime as Simulation 3. Data is plotted 

as a function of the delay (Fig 2H).  

Simulation 5: transposition errors 

Here we studied the tendency to incorrectly report features from items temporally adjacent to the 

probed item. This arises because occasionally, the same conjunctive unit is activated for two 

consecutive objects, when the second object fails to sufficiently drive a different conjunction 

unit. In this case, features of two consecutive objects will be confused. 

Data were taken from the standard 4-item condition where four items were presented and one is 

probed, using parameters of Simulation 3. For this simulation, trials were grouped according to 

serial position of the probed item. Four responses were possible on each trial, and for each trial, 

we take the serial position at which the reported feature actually appeared on that trial (Fig.S3B). 

This figure shows a histogram of the model’s responses. Over 2000 trials, the probability of 
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making each of the four responses was calculated.  Each line shows the probability of reporting 

the orientation of the four items presented in the sequence (x-axis), when a particular serial 

position was probed (each as a different line). We show logarithms of the mean error rate as in 

(Farrell and Lewandowsky, 2004), and added a small offset of 10-3 since some runs had zero 

errors. Error bars are standard error of the logarithm of mean error rate. The four possible 

responses are aligned such that the correct response appears at position zero, at the center of the 

graph (i.e. the probed item’s orientation). Sometimes the model erroneously reports an item 

previous to the one probed (x<0) or an item later than the item probed (x>0). The mean of the 

four probe conditions is shown in red.   

Simulation 6: Incidental retrocue 

In the empirical study, the primary task involved recalling the orientation of the item with a 

given color, and the secondary  task (“incidental cueing”) required participants to report the 

location of the item with a given color, which could be congruent or incongruent to the 

ultimately-probed item.  We simulated the empirical task (Fig.3D) by presenting two items, as 

per the 2-item condition in simulation 3. After the items were presented, a 120 time-steps 

retention period followed, then the probe feature (incidental cue) for one of the two items was 

activated for 40 time steps (“IC” in Fig. 3E). After a further 120 time steps corresponding to 

recall of the third dimension for this item, a further memory delay of 120 time-steps was 

included. Then the final memory probe was activated, and recall of the second dimension was 

measured as previously. This final probe could either be the same item (congruent), or the other 

item (incongruent), as the one cued for the first response. 200 trials were simulated for each 

condition. Accuracy was plotted for the valid and invalid incidental cue conditions (Fig. 3F). 
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Simulation 7: Reaction time (RT) 

RT was calculated by finding the time at which the winning feature reached its maximal value in 

the period after the probe. The time to reach 98% of maximum was used, rather than using an 

absolute threshold, because the final stable value of an activated feature differed when different 

model parameters were used. Using an arbitrary fixed threshold or the rate of rise yielded 

qualitatively similar but less consistent RT effects. To examine basic set size and serial position 

effects, the same trials were used as in simulation 1. Mean RT with standard error is shown 

(Fig.S1A), in comparison to data (McElree and Dosher, 1989) (Fig.S1B). RT was generally 

inversely related to accuracy.  

Simulation 8: probe interference:  

Many working memory tasks have asked participants to adjust features of the probe to match the 

remembered features (Zhang and Luck, 2008). In these experiments, the probe contains a feature 

that is irrelevant to recalling the item. For example, if participants must report the orientation of a 

bar with a given color, then using a colored bar as a probe introduces an orientation feature that 

conflicts with the remembered item. The model predicts this will interfere with re-focusing the 

item (Fig.S2). To simulate this, sequences of 1 to 3 items were presented to the model, using an 

identical setup to simulation 1. However at the time of probe, two features were activated; one in 

the probe dimension, and one in the recall dimension. As previously, the probe feature input was 

+1, and other features on that dimension were -1. However an additional input +1 was added for 

one orientation feature.  The additional feature, in the recall dimension, was one that had not 

been presented on that trial. Since only 4 features were present in this model, this constraint 

meant that we could only test set sizes of one to three items.  
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Performance was worse when the probe contained an interfering item. There is some empirical 

support that this might indeed be the case (Souza et al., 2016). The simulation predicts 

interference across all set sizes.  Conversely, we can also predict an improvement in performance 

for probes containing an additional helpful feature, for example if participants must report an 

object’s orientation given both its color and its location.   

Simulation 9: Weak TMS pulse reactivates delay period decoding 

Here we enquired whether the model could reproduce the phenomena where unattended items, 

which are not normally decodable from brain activity, could be brought back into a temporarily 

decodable state by applying a pulse of activation. Empirically this has been demonstrated using a 

nonspecific high-energy visual stimulus pattern (Wolff et al., 2017), or by applying a TMS pulse 

to sensory cortex (Rose et al., 2016). In the simulation, two items were presented sequentially to 

the model, exactly as in simulation 1. During the delay period, the feature neurons received a flat 

high-valued input (i=+1) for 10 time steps. This was compared to an identical condition with no 

stimulus. The delay period therefore comprised wither 120 timesteps + 10 timestep pulse + 120 

time steps, or in the no-stimulus condition, 250 timesteps (Fig 4A).  

2000 trials were simulated, and half the trials were used to construct a linear classifier that 

predicts the identity of each of the two items presented on that trial. The two classifiers were 

tested on the remaining trials, to give the decoding accuracy. Decoding was performed across 

trials at each time point independently, indicating the degree to which neural activity in the 

feature units predicted the identity of each item. The first object presented was termed the 

‘unattended’ object, since during the delay, attention was focused on the second (final) object. 

Decodability of the unattended item was transiently restored after the pulse (Fig.4B dark blue 
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trace), reproducing the phenomenon in the TMS study (Fig.4C) and using a high-energy neutral 

visual stimulus.  

Two further predictions are that 1) stimulation of prefrontal regions should have similar effects, 

and 2) selectively stimulating specific feature neurons e.g. in sensory cortex will have stronger 

effects when those features are part of an item currently  in memory – i.e. when the synapses 

from that feature neuron to the conjunctive neurons are already strong.  

Simulation 10: Strong TMS pulse disrupts focus of attention 

A strong TMS pulse to sensory cortex (MT+) has been shown to disrupt the focus of attention. 

To reproduce this, we used precisely the same simulation as in 9, but increased the pulse duration 

to 20 timesteps duration. We compared accuracy for probing the first item, vs the second item 

that was presented, with and without pulse. The presence of the pulse reduced accuracy for the 

second item, but paradoxically improved memory for the first item (Fig.4D). This is because the 

pulse indiscriminately re-activated the feature and conjunction neurons, disrupting the focus of 

attention but not the underlying memory traces. Indeed after the pulse, the attractor state 

sometimes shifted back to the first item. Precisely this phenomenon was observed in a TMS 

study (Zokaei et al., 2014a) (Fig.4E). The model predicts the same effects if prefrontal neurons 

are stimulated.  

Simulation 11: Delay-period decoding  

Three items were presented in sequence to the model. This was identical to simulation 1 except 

that the delay period duration between items was increased to 100 time steps, to test decoding 

during the stable attractor state. Each serial position was probed on 2000 trials. As in simulations 

9 and 10 above, half the trials were used to construct linear classifiers that predict the identity of 
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the item that was shown at each given serial position on a trial. The three classifiers were then 

tested on the remaining trials, to give the decoding accuracy. Decoding at each moment in a trial 

indicates the degree to which neural activity in the feature units predicted the identity of the item 

presented at each serial position (Fig.S4A).  We then asked 6 questions, as in (Konecky et al., 

2017): can the first item be decoded in the first delay, in the second delay, or in the third delay; 

can the second item be decoded in the second or third delay; can the last item be decoded in the 

third delay (Fig.S4B)? The feature neurons strongly encoded the most-recently-presented item. 

Using the activity of conjunction units, however, nothing could be decoded above chance using a 

linear classifier.  

Simulation 12: Previous trial repetition effect  

This effect was examined by using all trials taken from simulation 1. We compared trials in 

which the probed-item’s features on the probe dimension and the recall dimension were the same 

or different to the probed item of the previous trial.  Trials were grouped according to whether 

the previous trial’s probe color was the same as the current trial’s probe color, and also whether 

the probed-item’s orientation was the same or different to the previous trial’s probed-item 

orientation (Fig.S4). When the identical item was probed, recall was more accurate. 

Simulation 13: Pattern similarity after intervening conjunctions  

We ran 2000 trials of the 1-item memory condition, and examined delay-period activity in 

conjunction units. If neurons have classical receptive fields, then when the same stimulus is 

presented as on a previous trial, the activity pattern will be similar, whereas if the stimulus is 

different, the patterns will be dissimilar.  Two major predictions of flexibly-conjunctive neurons 

is that the pattern similarity will decrease both with the number of intervening trials (Fig.5A), 
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and also when intervening stimuli form different conjunctions with the same features (Fig.5B-

D).  

The similarity between representations on trial n and trials n-2, n-3 up to n-10 were examined, in 

the middle 100 timesteps of the delay period. For each inter-trial distance, trials were divided 

according to whether the same or different stimulus was shown on those two trials (Fig.5A). We 

considered only 2 feature dimensions in this analysis, so that the each pair of trials had the same 

stimulus 25% of the time. For n-1 to n-4, it was possible to further subdivide trials according to 

the stimuli presented on intervening trials. A “violation” of the conjunction was defined as an 

intervening stimulus which is similar on one feature dimension but dissimilar on the other feature 

dimension, to trial n. No violation occurs if the intervening stimulus is the same as on trial n, or 

if it contains no features in common with trial n. Trials were split according to the number of 

these intervening violations.  

Simulation 14: Implementing simple task rules 

To implement execution of actions, we re-labelled the ‘orientation’ dimension as ‘action’, so that 

there were 4 possible motor actions, which could be coupled to the 4 possible colors (Fig.S6). To 

provide the model with instructions for the task rules, each stimulus-response (S-R) mapping was 

activated, one at a time. For example, to provide the instruction “red means press button 1”, we 

activated the “red” colour unit and the “button 1” action unit simultaneously. Analogous to 

working memory encoding, a conjunction unit became associated with each pairing. In each 

block, we presented either 1, 2, 3 or 4 rules. After presenting the rules, 12 color cues randomly 

drawn from those rules were shown sequentially, analogous to memory probes. After each cue, 

activation of the motor units was measured.  We tested the responses to one, two, three and four 

simultaneous S-R mappings.  
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The sequence of events was thus very similar to the working memory task, and reaction times 

and accuracy were calculated in the same way as before (Fig.S6A). Two differences in 

implementation were needed to permit appropriate action selection over many trials. First, we 

lengthened encoding (240 steps) and shortened the probe duration (80 steps). This increased the 

stability of the mappings. Second, rather than inhibiting the features during the inter-trial 

interval, no input was provided (i = 0 rather than -1), which allowed the units to maintain their 

ongoing activity. The attentional focus thus remained active throughout the experiment.  Without 

these two changes, interference led to forgetting of the task rules over the first 5 to 10 trials. 

 

Two important empirically observed effects in choice reaction time experiments are Hick’s law –

the increase in RT with log(number of options) – and the repetition effect. To examine Hick’s 

law, we calculated the mean RT on correct trials, in blocks where there were 1 to 4 rules 

presented (Fig.S6B). To study the effect of stimulus-response repetition on consecutive trials, 

trials in the 2-rule blocks were categorized according to whether the same stimulus was present 

on the previous 0, 1 or 2 trials (Fig.S6C), and the mean RT was calculated separately for correct 

and incorrect response trials. Data for correct trials from (Schvaneveldt and Chase, 1969) were 

re-plotted next to simulations. Decoding from conjunctive units was performed as previously 

done for feature units, as a function of time. For each trial the classifier was trained on other 

trials in the same block (Fig.S6D). For comparison, accuracy when the classifier was trained on 

the previous block was also measured. During WM tasks no decoding was possible from 

conjunctive units. But in this simple stimulus-response task, decoding was possible across a 
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block of trials which shared the same rule. The presentation of new task rules at the start of a 

block effectively overwrites the conjunctive neurons’ weights, precluding decoding.      

 

Simulation 15: Removing the third (task-irrelevant) feature dimension 

In previous simulations, each object consisted of three features, but one of the features is task-

irrelevant. Simulation 3 was run with standard conditions and timings but on half of trials, the 

third dimension features were treated as absent (i=-1) for every object. We contrasted recall 

accuracy for conditions where objects consisted of all 3 features vs. only 2 features (Fig.S7). The 

primacy and recency effects were observed to be smaller.       

Simulation 16: Exploring the parameter space 

We examined 9 free parameters in the model: the baseline activity, lateral inhibition x 2 (for 

conjunction and feature units), self-excitation x 2, reciprocal excitation x 2, and learning rates x 2 

(Fig.S8). For each combination of parameters, 50 trials per condition were simulated for set-sizes 

1 to 4, for all serial positions (500 trials per parameter set). The canonical model was perturbed 

along two parameters at a time. For each pair of parameters, a range of values above and below 

the canonical parameter values were tested, with 10 linearly-spaced levels of each parameter, to 

give a 10x10 grid. The parameter values used in Simulation 1 thus lie at the center of each grid, 

and the figure represents all possible cardinal planes through that point in a 9-dimensional 

hyperspace.  

 

Each simulation resulted in a serial position curve like Fig.2D, from which we could quantify the 

set size effect (linear slope of accuracy as set size varies, collapsed across serial position), 
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primacy effect (difference in accuracy between final and penultimate items in sequence, 

averaged across set sizes 2-4) and recency effect (difference in accuracy between first and 

second items in sequence, averaged across set sizes 2-4). The size of each effect was smoothed 

using a 3x3 boxcar, and is portrayed by pixel color in the 10x10 grids. 
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Minimal algorithm to reproduce main results 

 
α  [ –0.28, 1.03, 0.05,    –0.28, 0.75, 0.05  ] 
β  0.175 
γ  0.02 
Wff  α5 eye(12)  + α4 [ 
    1 1 1 1 0 0 0 0 0 0 0 0  
    1 1 1 1 0 0 0 0 0 0 0 0  
    1 1 1 1 0 0 0 0 0 0 0 0  
    1 1 1 1 0 0 0 0 0 0 0 0  
    0 0 0 0 1 1 1 1 0 0 0 0  
    0 0 0 0 1 1 1 1 0 0 0 0  
    0 0 0 0 1 1 1 1 0 0 0 0  
    0 0 0 0 1 1 1 1 0 0 0 0  
    0 0 0 0 0 0 0 0 1 1 1 1   
    0 0 0 0 0 0 0 0 1 1 1 1   
    0 0 0 0 0 0 0 0 1 1 1 1   
    0 0 0 0 0 0 0 0 1 1 1 1   
] 
Wcc   α2 eye(4) + α1 ones(4)  
 
c  [0 0 0 0]T 
f  [0 0 0 0  0 0 0 0  0 0 0 0]T 
W  rand(12,4)                 // as γ1 == γ2, Wfc == Wcf T 
t  0 
while t < stimulus.length { 
 f  β + Wff (f – β) + α3 W (c – β) + stimulust  
 f  max(0,min(1,f)) 
 c  β + Wcc (c – β) + α6 WT (f – β) + 0.005 * randn(4,1) 
 c  max(0,min(1,c)) 
 Δ  (f – β)(c – β)T 
 W  max(0,min(1, W + γ Δ)) 
} 
choice  findmax( f[4:8] ) 
 
stimulust  { 
    200 × [-1 -1 -1 -1  -1 -1 -1 -1  -1 -1 -1 -1]  // foreperiod 
    120 × [+1 -1 -1 -1  +1 -1 -1 -1  +1 -1 -1 -1]  // obj1 
     50 × [ 0  0  0  0   0  0  0  0   0  0  0  0]   
    120 × [-1 +1 -1 -1  -1 +1 -1 -1  -1 +1 -1 -1]  // obj2 
    300 × [ 0  0  0  0   0  0  0  0   0  0  0  0]  // delay 
    120 × [+1 -1 -1 -1  -1 -1 -1 -1  -1 -1 -1 -1]  // probe 
    220 × [ 0  0  0  0   0  0  0  0   0  0  0  0]   
} 
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Supplementary Figures 

 

 

Figure S1: Reaction times  (Simulation 7) 
 
The time taken to recall an item can be indexed by how fast the winning feature rises after probe 
presentation. An inverse relation with accuracy is observed, in keeping with behavior, with items 
already in the focus of attention showing the fastest responses. (Simulation 8 below) 
A) Reaction times were extracted from trials of simulation 1, quantified as the time after the 
probe at which the winning feature reached 95% of its maximum value. The faster the attractor 
settled into a stable winning state, the shorter the reaction time. Each line represents a different 
set size, and the X-axis indicates serial position of the probed item within the memory set. 
Reaction times were approximately inversely related to accuracy on each condition. 
B) This is consistent with race-models of WM recall (Pearson et al., 2014), and aligns with 
behavioural data (McElree, 2006; McElree and Dosher, 1989)(Figure adapted from McElree & 
Dosher 1989). 
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Figure S2: Novel prediction – Probe interference (Simulation 8) 
The model predicts that the probe can itself interfere with recall if it contains irrelevant features. 
The irrelevant features compete with the probe feature, and reduce the probability of correct re-
focusing of the item.   
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Figure S3: Errors are more likely to be sequentially neighbouring items (Simulation 5) 

A Transposition errors (sequence positional errors, or swap errors) arise when features of a 
temporally adjacent item are instead reported. In this example trial, the conjunction neuron 
activated by object 2 remained active for object 3 (vertical dashed line), so when item 2 or 3 is 
probed, the incorrect response feature is sometimes activated.   
B Items that were either just before (x<0), or just after (x>0), the probed item tended to be 
reported more often.  
C A qualitatively similar pattern of errors is observed in a verbal WM task in which a list of 
words had to be recalled in order (adapted from Expt.3 of Farrell and Lewandowsky, 2004). A 
very similar falloff with inter-item distance is also seen in visuospatial memory using sequence 
change-detection (Smyth and Scholey, 1996), but their data did not permit distinguishing 
forward and backward transpositions.   
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Figure S4: Decoding from feature units during the delay period (Simulation 11) 
Feature-neuron activity during the delay period of the 3-item condition was examined. For each time point, the activity of the four 
color units was used to decode (across trials) the identity of each presented color. A linear classifier was trained on the activity in the 
feature units f on 50% of trials, and tested on the remaining trials. A) The decoder accuracy for each of the three items is shown, as a 
function of time. The three delay periods of interest, following the presentation of each item, are shown as pink bars below. B) 
Average decoder accuracy during each of the delays. During the first delay we could decode the identity of the first item’s 
colour.  During the second delay, we could decoded the second items’ color but not the first item’s color. In the third delay we could 
decode the third item’s color but not the other two colors. Dotted line is chance. C) Data from (Konecky et al., 2017), showing 
decodability of only the most recent item presented during a monkey WM task. The neurons were in fact from the principal sulcus, 
and 35% of neurons recorded here were feature-selective, though the remaining neurons were not.  
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Figure S5: Novel prediction: Trial-to-trial conjunctions effect (Simulation 12) 
Since conjunctive neuron selectivities rely upon synaptic traces from the trial history, we predict 
that the stimuli presented on the previous trial generate interference effects with the current trial. 
The model predicted that when the probed item’s features were identical to those of the item 
probed on the previous trial, responses were more accurate.   
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Figure S6: Acting on multiple task rules (Simulation 14) 
Here we simulated a simple N-alternative choice task, where each colour indicates that a 
particular button should be pressed.  
A) At the start of each block, a set of task rules was encoded. A single color and motor plan 
feature were activated simultaneously, indicating the rule for example “if red, press left”. After 1 
to 4 rules were presented, a series of test trials followed. One of the colour features that was 
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presented previously was activated, corresponding to presenting a cue. The subsequent response 
unit activation was measured, to indicate the model’s response. Reaction times were calculated 
as previously from the time of stimulus onset.  
B) The RT increased with the logarithm of the number of rules encoded, according to Hick’s 
law.  
C) RTs were split according to stimulus repetition history. If the same stimulus was tested on the 
previous trial (‘BAA’), or on the previous two trials (‘BAAA’), then the RT on correct trials was 
faster than if the stimulus was different (‘BA’), in keeping with data. Dotted line: RT on correct 
trials replotted from Expt 4 of (Schvaneveldt and Chase, 1969), in which one of 4 responses was 
selected after seeing one of 4 stimuli, according to an arbitrary stimulus-response mapping. The 
model also predicts errors will be faster than correct responses, with an inverted stimulus-
repetition effect. 
D) Unlike in the WM task, decoding is possible from conjunctive units, since the task set is 
maintained rather than overwritten on each trial. For each test trial, the stimulus identity was 
decoded using the other trials in the same block for training (red), or the trials in the previous 
block (blue). Decoding was possible within the block, because a consistent conjunction unit 
pattern – representing the task rule corresponding to the current stimulus – was activated.     
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Fig. S7:  Novel prediction: Benefit with an extra feature dimension (Simulation 15) 
Previous simulations had three features per object (colour, orientation and location), of which 
only two were task-relevant. The third, irrelevant, feature was distinct for each object. Removing 
the task-irrelevant feature (e.g., presenting sequential items all at one location, rather than at 
different locations) worsens model performance, in particular by reducing primacy and recency 
benefits.   
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Fig.S8: Influence of model parameters upon central behavioral effects (Simulation 16) 

We examined the effect of varying 9 free parameters in the model, varying two of them at a time. 
The parameter values used in the main paper lie at the centre of each 10 x 10 grid, and the figure 
represents all possible pairs of free parameters. For each parameter combination, we quantified 
the set size effect (reduction in accuracy as set size increases), primacy effect (difference in 
accuracy between final and penultimate items in sequence) and recency effect (difference in 
accuracy between first and second items in sequence. Warm pixels indicate larger effects. 
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Fig.S9: Basic results for ‘high-accuracy’ parameter regime (used for simulations 3 to 5) 
To prevent floor effects when simulating encoding and delay effects, we required a higher initial 
performance level, and adjusted the parameters accordingly. This figure demonstrates the 
equivalent of Figure 2C, using this new set of parameters. Performance is overall higher but 
demonstrates qualitatively similar effects.  
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Table S1: Empirical findings explained by the model 
 

Phenomenon 
explained 

Mechanism in model Refs 

Set size reduces recall 
accuracy 

Competition between conjunction units  
interference 

(Zhang and Luck, 2008) 

Primacy – first item 
benefit 

No competition with previous items at 
encoding 

(Baddeley, 1996) 

Recency – last item 
benefit 

Features retained in active state; no retrograde 
interference  

(Gorgoraptis et al., 2011) 

Only last item encoded 
actively in firing rates 

Subsequent items capture focus of attention (Konecky et al., 2017) 

Shifting attention to item 
improves recall 

Re-activation by pattern completion focuses 
attention on item by sustained activity. 
Subsequently probing that item is faster and 
more accurate, as it is already active. 

(Myers et al., 2017; Souza 
et al., 2016; Zokaei et al., 
2014b) 

Additional features in an 
object remembered 
without extra cost 

During encoding, synaptic weights increase in 
parallel to all concurrently active features.  

(Allen et al., 2006; Luck 
and Vogel, 1997; Sala and 
Courtney, 2007) 

Frontoparietal 
activation during WM 
maintenance 

Conjunctive and feature neuron firing required 
for focus of attention and thus for encoding 

(Rowe et al., 2000; Sakai 
et al., 2002) 

Frontoparietal 
connectivity is signature 
of shifting attention 

Synapses between conjunctive and feature 
units are bidirectionally activated to drive 
persistent activity 

(Heinen et al., 2017; 
Scolari et al., 2015; 
Szczepanski et al., 2013) 

Synchrony between 
posterior and frontal 
regions during WM  

Reciprocal excitation between conjunctive and 
feature neurons crucial for stable attractor of 
focus of attention. 

(Fries et al., 2001; 
Gregoriou et al., 2009) 

Fine-grained decoding 
from PFC during WM is 
elusive 

Conjunctive neurons encode information 
flexibly across trials, with selectivity 
depending on recent history 

(Cogan et al., 2017; 
Harrison and Tong, 2009; 
Lara and Wallis, 2014; 
Sprague et al., 2016) 

Working memory 
operates as an attentional 
template 

Unattended items in WM maintained 
synaptically so stable attractor is reactivated by 
partial information  

(Lavie and Fockert, 2005; 
Woodman et al., 2007) 

Memory contents lead to 
obligatory capture of 
attention 

Partial information pertaining to items in silent 
WM is amplified, leading to persistent activity 
/ focus of attention  

(Olivers et al., 2006; Soto 
et al., 2008) 

WM capacity correlates 
with complexity of task 
set 

One WM object corresponds to one stimulus-
response pairing 

(Conway et al., 2003; 
Duncan, 2010) 

PFC subserves both WM 
and  task set maintenance  

Conjunctive neurons can flexibly bind actions 
to stimulus features, or groups of features, 
together 

(Barch et al., 1997; 
Duncan et al., 2000) 
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Neural decoding of 
unattended items in WM 
is weak 

Unattended items encoded in synaptic traces (Lewis-Peacock et al., 
2012; Sprague et al., 
2016) 

TMS to feature areas, or 
indiscriminate sensory 
stimuli, can re-activate 
representations  

Neurons reactivated by TMS pulse that are 
connected synaptically to conjunctive neurons 
(i.e. unattended WM items) are selectively 
amplified by reciprocal synapses 

(Rose et al., 2016; Wolff 
et al., 2017) 

TMS to posterior cortex 
disrupts benefit conferred 
by focus of attention  

Electrical activity i.e. persistent activation is 
disrupted by electrical stimulus, but synapses 
are not 

(Zokaei et al., 2014a) 

rTMS to PFC disrupts 
WM by altering posterior 
activity 

Reducing conjunctive unit excitability reduces 
stability of attentional attractors 

(Zanto et al., 2011) 

Attention operates by 
frontal amplification of 
posterior feature-selective 
neurons 

The attractor basin formed by mutual 
conjunctive and feature synapses allows 
conjunctive units to control gain in feature-
selective neurons. 

(Desimone and Duncan, 
1995; Merrikhi et al., 
2017; Moore and 
Armstrong, 2003) 

Primacy effect not robust Depends on ITI and events before trial (BADDELEY, 2000) 
Transposition errors New conjunction unit not always activated for 

new items 
(Farrell and 
Lewandowsky, 2004) 

Binding must be serial Conjunctive neurons encode all simultaneously 
active features. 

(McLean et al., 1983; 
Treisman and Gelade, 
1980) 

More items mean faster 
decay 

Focus of attention is robust to decay (Pertzov et al., 2016) 

Errors report succeeding 
items more than prior 
items 

More recently encoded items have stronger 
synaptic weights, and more likely to intrude. 

(Farrell and 
Lewandowsky, 2004) 

Probe can interfere with 
recall 

Irrelevant features in probe suppress 
reactivation of items 

(Souza et al., 2016) 

Reaction times inversely 
related to accuracy 

Time taken for conjunctive unit to activate 
features depends on synaptic strength and 
competition from other units 

(McElree and Dosher, 
1989; Pearson et al., 
2014) 

Encoding rate slower 
when more items stored 

Items encoded briefly are more susceptible to 
interference from other items in memory 

(Bays et al., 2011) 
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Table S2: Psychological concepts corresponding to the model 
  
Binding Simultaneous activation of two feature neurons causes a single conjunction 

neuron to become active and form bidirectional connections to those feature 
neurons. 

Focus of 
attention 

Active representation in feature-selective neurons, coupled with a conjunctive 
unit that is simultaneously active. The two types of neuron are mutually 
excitatory and generate persistent activity.  

Unfocused 
item in WM 

Bidirectional increases in synaptic weights between a combination of place-
coded feature neurons, and one conjunction neuron 

Recall  Associative re-activation of a pattern of activity in feature neurons. 
Task set One of the feature dimensions represents motor-plan neurons. During 

encoding, the simultaneous activation of a motor plan and a perceptual feature 
causes a conjunctive unit to associate the two. Reactivating the perceptual 
feature triggers the motor program. 

Top-down 
control 

Conjunction neurons effectively amplify feature neurons that were previously 
encoded as WM items.  

Forgetting 
from WM 

Activation of feature neurons by an external stimulus provides new input. This 
input competes to be represented by conjunction neurons. The conjunction 
neuron with the most-similar connections will be activated and re-wire to 
encode the stimulus. This interfering stimulus thus overwrites and displaces an 
item previously in WM. 

 

 

 

Movie S1: Timecourse of activity during working memory encoding and recall. (A) top left 
panel shows the instantaneous rate of change in weights Δ, (B) below is shown the current 
synaptic weights. (C) top right illustrates the object currently encoded by the feature neurons. 
The drawn intensity of each possible stimulus is the product of the activity of the corresponding 
feature neurons. During encoding this corresponds to the objects presented to the model.  (D) 
lower panels show the feature neuron activity as a heatmap, as a function of time, and the 
activities  of the four conjunctive neurons as traces. Delay period activity generally corresponds 
to the final item presented. Errors occur when one conjunctive neuron is active for two objects, 
or when one conjunctive unit fails to win the competition.   
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