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Abstract:	 
 
With	hundreds	of	species	interacting	with	each	other	as	well	as	with	specific	proteins	and	cells	in	our	
body,	the	gut	microbiome	is	a	complex	ecosystem	embedded	within	a	complex	organism.	Microbiome	
impacts	on	host	health	can	shape	key	aspects	of	fitness,	such	as	development,1	fecundity,2	and	
lifespan,3,4	while	the	host	in	turn	can	shape	the	microbiome.5	However,	complex	interactions	between	
microbes	can	make	impacts	unpredictable,	such	as	when	toxin-producing	Clostridium	species	cause	
pathogenesis	after	antibiotics	reduce	gut	diversity.6	A	pressing	need	exists	to	deconstruct	the	effects	of	
gut	diversity	on	host	health,	and	new	mathematical	frameworks	are	needed	to	quantify	the	high	
dimensionality	of	this	problem.	Central	to	the	microbiome-host	relationship	are	questions	of	how	
bacterial	diversity	is	maintained	in	the	gut7	and	how	this	diversity	impacts	host	fitness.8	Here	we	show	
that	interactions	between	bacteria	are	major	determinants	of	host	physiology	and	the	maintenance	of	
bacterial	diversity.	We	performed	a	complete	combinatorial	dissection	of	the	naturally	low-diversity	
Drosophila	gut	microbiome	using	germ	free	flies	colonized	with	each	possible	combination	of	the	five	
core	species	of	bacteria,	forming	a	discrete	5-dimensional	cube	in	ecological	state	space.	For	each	
species	combination,	we	then	measured	the	resulting	bacterial	community	abundances	and	fly	fitness	
traits	including	(i)	development,	(ii)	reproduction,	and	(iii)	lifespan.	Notably,	we	found	that	the	fly	gut	
environment	promotes	bacterial	diversity,	which	in	turn	accelerates	development,	reproduction,	and	
aging.	From	these	measurements	we	calculated	the	impact	of	bacterial	interactions	on	fly	fitness	by	
adapting	the	combinatorial	geometry	approach	of	Beerenwinkel-Pachter-Sturmfels9	(BPS),	originally	
built	to	measure	genetic	interactions,	to	the	microbiome.10	We	found	that	host	phenotypes	(e.g.	
lifespan)	from	single	associated	bacterial	species	are	not	predictive	of	host	phenotypes	when	in	diverse	
communities.	Furthermore,	we	found	evidence	that	high-order	interactions	(involving	3,	4	and	5	species)	
are	widely	prevalent	and	impact	both	host	physiology	and	the	maintenance	of	bacterial	diversity,	which	
ecologists	have	recently	predicted.11	In	regard	to	evolution,	the	impacts	of	bacterial	interactions	on	
community	composition	parallel	the	impacts	on	host	fitness	traits,	providing	a	feedback,	which,	
propagated	over	time,	may	poise	a	population	for	emergence	of	co-evolving	microbiome-host	units. 
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Introduction: 
 
Gut	bacteria	impact	host	fitness	in	beneficial	and	detrimental	ways,	for	example	by	improving	a	poor	
diet12-14	or	by	pathogenesis.6,15	Identifying	specific	bacteria	responsible	for	these	effects	has	been	
difficult,	in	part	due	to	high	gut	diversity	but	also	because	interactions	between	bacteria	can	depend	on	
context,	both	in	terms	of	neighbor	species	and	the	gut	environment.16	For	example,	a	bacterium	may	
produce	a	specific	B-vitamin	in	response	to	its	neighbors.17,18	Each	microbial	response	can	potentially	
impact	the	host,	and	host	feedbacks	can	mitigate	or	exacerbate	changes	in	the	microbial	community.19	
However,	vignette	examples	may	be	misleading,	as	the	true	complexity	of	a	gut	microbiome	has	never	
been	exhaustively	quantified.	Thus,	it	remains	an	outstanding	challenge	to	reverse	engineer	the	
interaction	networks	that	characterize	community	microbiome-host	effects	relative	to	single	bacterial	
species	microbe-host	interactions.	Quantifying	the	set	of	all	possible	interactions	of	n	species	is	a	
combinatorial	problem	with	2n	distinct	bacterial	communities.	As	n	approaches	the	diversity	of	the	
mammalian	gut	with	100s	of	species,	this	problem	becomes	experimentally	intractable.	
 
The	fruit	fly	(Drosophila	melanogaster)	gut	microbiome	serves	as	an	effective	combinatorial	model	
because	as	few	as	five	species	of	bacteria	consistently	inhabit	the	gut	of	wild	and	laboratory	flies,20-22	
making	25	possible	combinations.	We	first	isolated	fly	gut	bacteria	in	culture,	constructed	germ-free	flies	
by	bleaching	the	embryos,	and	reinoculated	the	newly	emerged	adult	flies	via	continuous	feeding	with	
defined	flora	using	established	protocols.23,24	Here,	we	made	all	32	possible	combinations	of	the	five	
bacterial	species	commonly	found	in	the	fruit	fly	gut:	Lactobacillus	plantarum	(Lp),	L.	brevis	(Lb),	
Acetobacter	pasteurianus	(Ap),	A.	tropicalis	(At),	and	A.	orientalis	(Ao).	We	quantified	the	microbiome	
composition	and	resultant	host	phenotypes	to	determine	the	relationship	between	gut	microbe	
interactions	and	host	fitness.	
	
To	calculate	the	complexity	of	the	microbiome-host	interactions,	we	employed	mathematical	methods	
which	quantify	genetic	epistasis,9	i.e.	interactions	between	genetic	loci	(Box;	Math	Supplement).	By	
adapting	these	tools	to	the	microbiome,	we	draw	an	analogy	between	bacterial	species	and	genetic	
loci,10	and	thereby	introduce	a	logical	framework	to	deconstruct	microbiome-host	complexity.	Our	
approach	is	combinatorial	in	nature,	with	a	distinguishing	feature	that	it	considers	not	only	the	26	
‘standard’	interaction	tests	among	five	species,	but	also	an	additional	set	of	936	more	fine-grained,	
‘non-standard’	interaction	tests	(Box;	Math	Supplement).	Whereas	a	standard	test	in	n-dimensions	
describes	a	single	interaction	equation	that	uses	all	possible	2n	bacterial	combinations	(all	external	faces	
of	the	n-cube),	our	non-standard	tests	describe	many	more	interaction	equations	by	considering	subsets	
of	the	complete	information	(Box;	Math	Supplement).	This	enables	us	to	quantify	lower-dimensional	
paths	through	the	high-dimensional	microbiome.		
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Box:	Geometric	interpretation	of	species	interactions.	Like	epistatic	gene	interactions,9	bacterial	
species	interactions	in	the	fly	gut	can	be	described	geometrically.	To	do	so	we	denote	by	binary	strings	
the	species	composition.	For	two	species	A	and	B,	00	denotes	the	absence	of	both	species,	01	and	10	
denote	the	presence	of	either	species	A	or	B,	respectively,	and	11	denotes	the	presence	of	both	species.	
To	each	such	string	one	associates	a	phenotype	measurement	w,	for	example,	fitness.	Interaction	
between	the	two	species	can	then	quantitatively	be	described	by	the	formula	u11	=	w00	+	w11	‒	w01	‒	w10	

measuring	deviation	from	additivity.	The	interaction	is	positive	if	the	sum	of	the	phenotypes	w11	and	w00	
is	bigger	than	the	sum	of	the	phenotypes	w01	and	w10.		

	
F	1:	Geometric	interpretation	of	the	interaction	between	two	species.		
The	vertices	00,	10,	01	and	11	of	the	blue	rectangle	represent	the	four	microbiome	compositions	for	two	bacterial	species.	The	
heights	above	the	points	00,	10,	01,	and	11	represent	the	corresponding	phenotypes.	A	single	flat	red	plane	connects	the	four	
phenotype	points	if	there	is	no	interaction	(center),	that	is,	if	the	phenotype	of	both	species,	w11,	can	be	deduced	from	the	
phenotypes	of	the	two	single	species,	w01	and	w10.	The	figures	on	the	left	and	right,	represent	the	cases	where	the	interaction	is	
positive	(right)	and	negative	(left).	In	these	cases,	the	red	surfaces	connecting	the	four	phenotypes,	are	divided	into	two	
triangular	regions,	indicating		the	curvatures	of	the	surfaces.		

	
This	geometric	approach	for	describing	interactions	generalizes	to	higher	dimensions	and	yields	many	
different	quantitative	interaction	measurements,	including	standard	tests	like	u11	and	non-standard	
tests,	which	are	a	broad	category	using	less	than	the	complete	number	of	vertices	on	the	cube	(F	2;	see	
BPS9	and	Math	Supplement	for	complete	description).	Together,	these	expressions	can	be	used,	for	
instance,	to	analyze	how	the	non-additivity	among	a	subset	of	species	combinations	depends	on	other	
bystander	species	(see	Fig	S14-S17).		
	
	
	
	
	
	
	
	
F	2:	Geometric	interpretation	of	the	standard	three	species	interaction	compared	with	two	non-standard	interaction	tests.			
(Left)	Standard	three-way	interaction,	u111	=	w111		-	(w110	+	w101	+	w011)	+	(w100	+	w010		+	w001)	-	w000,	comparing	the	phenotypes	
(not	drawn)	of	all	eight	bacterial	combinations,	represented	as	vertices	of	the	cube.		(Center)	By	contrast,	the	vertices	of	the	
blue	rectangular	region	describe	a	non-standard	test,	which	yields	the	interaction	g	=	w000	-	w011	-	w100	+	w111		involving	the	
phenotypes	(not	drawn)	of	the	four	bacterial	combinations	000,	100,	011	and	111.		(Right)	The	five	vertices	of	the	blue	solid	
bipyramid	delineate	a	non-standard	test,	m	=	w001	+	w010	+	w100	-	w111	-	2w000,		derived	from	a	linear	combination	of	other	
interactions.	This	particular	bipyramid	compares	the	phenotypes	(not	drawn)	of	three	single	bacterial	combinations	to	the	
combination	with	all	three	species	and	the	germ-free	case.		
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Results: 
 
Microbial	diversity	increases	in	the	intra-host	environment 
 
Gut	microbiomes	support	high	diversity,	which	facilitates	complexity	in	the	microbiome-host	
relationship.	A	classic	problem	in	ecology	is	how	this	species	diversity	persists	despite	positive	feedbacks	
that	tend	to	destabilize	the	community.7	Ecological	models	suggest	that	specific	patterns	of	negative	
species	interactions	can	dampen	positive	feedbacks	to	produce	stable	communities.7,11	Two	related	
patterns	of	stabilizing	interactions	have	been	proposed,	(i)	sufficient	competition	between	pairs	of	
bacteria,7	and	(ii)	higher-order	(more	than	pairwise)	negative	interactions	that	emerge	when	higher	
diversity	is	present.11		
We	first	measured	the	stability	of	bacterial	diversity	in	vitro.	We	found	that	in	vitro	culture	supported	
only	low	diversity,25	with	a	maximum	of	two	species	coexisting	in	three	rich	media	types	that	have	a	
similar	composition	to	fly	food.	This	suggests	that	simple	bacterial	interactions	do	not	support	diversity	
(Fig.	1a).	However,	when	we	examined	the	same	combinations	in	the	fly	gut,	high	diversity	was	
maintained,	up	to	the	complete	five	species	community	(Fig.	1a,	Fig.	S1),	indicating	that	the	host	
environment	stabilizes	diversity.	Diversity	significantly	increased	the	total	bacterial	load	(r=0.72,	p=3.3E-
6,	n=32).	Average	total	bacterial	load	ranged	from	165,220	colony	forming	units	(CFUs)	per	fly	for	
combination	3	(Ap	alone)	to	702,550	CFUs	per	fly	for	combination	28	(Lp+Lb+At+Ao).	However,	on	a	
species	by	species	basis,	abundance	stayed	constant	or	decreased	(r=-0.43,	p=0.050	for	Lb;	r=-0.50,	
p=0.047	for	Ap;	r=-0.84,	p=0.0001	for	At;	p>0.3	for	Lp	and	Ao).		
We	first	quantified	species	interactions	by	calculating	pairwise	correlations	in	species	abundances	as	a	
function	of	the	number	of	species	present	(Fig.	1b).	Correlations	became	more	negative	for	individual	

species	pairs	as	diversity	increased	(p=0.03,	n=10,	Kendall’s	
Tau	checked	by	Wilcoxon	signed	rank,	see	Methods).	We	
used	two	methods	to	calculate	the	directional	interactions	
(i.e.	AàB	vs.	BàA).	First,	we	fit	a	generalized	Lotka-
Volterra	model	and	found	that	bacterial	interactions	are	
generally	positive	when	only	two	species	are	present	(Fig.	
1c),	suggesting	unstable	diversity.26	However,	as	diversity	is	
increased	in	the	fly,	interactions	become	more	negative	
(Fig.	1c).	We	directly	calculated	the	same	interactions	at	
high	and	low	diversity	using	Paine’s	classic	approach27	and	
found	equivalent	patterns	(Fig.	S2),	suggesting	again	that	
stabilizing	interactions	emerge	as	diversity	increases,	
consistent	with	the	theory	that	high-order	interactions	
support	diversity.11	To	specifically	test	whether	high-order	
interactions	occur,	we	used	the	BPS9	framework	(see	Box).	
Basing	our	calculations	on	the	average	total	bacterial	load	
per	fly,	we	found	significant	negative	high-order	
interactions	by	both	standard	and	non-standard	tests	(Fig	
S3;	Math	Supplement),	consistent	with	theoretical	
predictions.11 
 
Figure	1.	Microbiome	interactions	stabilize	diversity	in	the	fly	gut.	(a)	
Microbial	diversity	is	maintained	inside	the	fly	gut	to	a	greater	degree	
than	in	liquid	coculture.	Flies	(n=24	per	bacterial	treatment)	were	
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continuously	fed	their	bacterial	treatment	(32	total	treatments)	for	10	days	before	crushing,	plating,	and	enumerating	CFUs	
(Fig.	S1).	The	same	bacterial	treatments	were	inoculated	(3	to	6	replicates)	into	three	rich	media	types	that	are	similar	in	
composition	to	fly	food	and	passaged	3	times	at	48	hour	intervals	and	assayed	by	plating	after	the	third	passage.	For	all	
treatments	the	bacterial	diversity	displayed	is	the	number	of	species	detected	versus	the	number	inoculated.	(b)	Pairwise	
correlations	in	abundance	for	the	5	species	of	bacteria	in	fly	guts	with	2-species,	3-species,	4-species,	and	5-species	present.	
More	positive	correlations	are	apparent	at	low	diversity,	whereas	more	negative	correlations	occur	as	diversity	increases	
(p=0.03;	see	Methods).	(c)	Data	were	fit	to	a	generalized	Lotka-Volterra	model	to	determine	the	interaction	matrix,	M	(see	
Methods).	Consistent	with	the	correlations	in	B,	more	negative	interactions	occur	in	more	diverse	guts	(left:	1	to	2	species;	
right:	3,	4,	and	5	species).	Direct	calculation	of	interaction	strength27	produced	a	similar	pattern	(see	Fig.	S2).	
 
Microbial	diversity	preferentially	inhibits	weak	colonizers 
 
The	intra-host	environment	additionally	drives	probabilistic	bacterial	colonization	in	the	fly	gut,24	
whereas	isotropic	media	lead	to	deterministic	bacterial	colonization	(e.g.	in	well-mixed	soil25).	To	test	
how	diversity	impacts	the	rate	of	colonization,	we	calculated	the	proportion	of	flies	colonized	by	each	
species	as	a	function	of	the	number	of	species	fed	(Fig.	S4a).	Lp	and	Ao	colonized	at	nearly	100%	
independent	of	background	diversity,	whereas	Ap	and	At	(and	to	a	lesser	extent	Lb)	colonize	at	a	lower	
rate	as	diversity	increases.	This	pattern	changed	when	the	input	of	new	bacteria	was	terminated	by	
transferring	flies	continuously	to	fresh	food	(Fig.	S4b).	Ap	in	particular	colonized	better	in	more	diverse	
guts,	suggesting	that	bacterial	interactions	may	aid	Ap	populations.	The	diversity-dependent	
colonization	load	is	consistent	with	niche	processes	of	competitive	exclusion:24,28	as	diversity	increases,	
the	available	niches	are	more	likely	to	become	occupied	by	a	strong	colonizer	(e.g.	Lp	or	Ao),	
subsequently	inhibiting	weaker	colonizers	(e.g.	Lb	or	At).		
	
We	note	that	the	limit	of	detection	(~1000	CFUs)	may	mask	low	abundance	colonization.	While	the	limit	
of	detection	did	not	impact	the	analysis	of	bacterial	interactions	(Fig.	1b,c;	Math	Supplement),	
additional	analysis	of	colonization	of	individual	flies	by	plating	indicated	that	many	flies,	which	appear	
uncolonized,	were	in	fact	colonized	at	levels	below	the	limit	of	detection.24		
 
Microbial	diversity	accelerates	development 
 
We	next	investigated	what	effect	gut	diversity	has	on	host	fitness	traits.	The	time	an	egg	takes	to	
develop	into	an	adult	influences	fitness	because	faster	development	reduces	generation	time.29	On	our	
replete	food,	both	germ-free	and	flies	colonized	with	all	5	bacteria	species	have	a	~10	day	development	
rate	(Fig.	2a).	We	hypothesized	that	fly	development	would	be	relatively	robust	to	changes	in	bacterial	
composition.	However,	as	we	dissected	the	5-member	bacterial	community,	we	observed	faster	
development	rate	with	increasing	bacterial	diversity	(Fig.	2a;	Fig.	S5;	r=-0.48,	p=0.006,	n=32,	Pearson	
coefficient).	The	overall	decreased	development	rate	demonstrates	that	higher	gut	diversity	can	
increase	fly	fitness. 
 
Bacterial	food	conversion	drives	development	rate 
 
We	hypothesized	that	changes	in	fly	development	are	primarily	nutritional	and	therefore	due	to	changes	
in	total	bacterial	load	rather	than	individual	species.30	Because	gut	bacterial	abundance	correlates	with	
food	bacterial	abundance	in	flies,31	we	compared	the	adult	bacterial	load	with	each	of	the	physiology	
phenotypes	(Fig.	S6).	We	found	a	significant	negative	correlation	between	bacterial	load	and	
development	rate	(indicating	faster	development;	r=-0.52,	p<0.005),	indicating	that	bacterial	
interactions	influence	some	aspects	of	host	physiology	through	total	bacterial	load.	
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The	link	between	juvenile	development	rate	and	adult	bacterial	composition	could	be	influenced	both	
by	bacterial	populations	in	the	food	and	by	parental	effects.	To	differentiate	these	hypotheses,	we	
performed	two	experiments.	First,	we	quantified	bacterial	load	in	the	fly	food	(Fig.	S7).	Significantly	
fewer	bacteria	occurred	per	mg	in	fly	food	than	in	the	gut	of	adult	flies	(p=1.3E-8,	n=16,	paired	sample	t-
test),	but	there	was	a	significant	correlation	between	total	bacterial	abundance	in	fly	food	and	in	fly	guts	
(r=0.80,	p=2.3E-4,	n=16,	comparing	matched	bacterial	combinations)	as	previously	reported.31	However,	
in	contradiction	to	the	prediction	that	bacterial	load	drives	development	rate,	there	was	no	correlation	
between	food	bacterial	abundance	and	development	rate	(r=0.018,	p=0.95,	n=16	for	total	CFUs).	On	an	
individual	species	basis	though,	Ao	abundance	was	correlated	with	development	rate	(r=-0.89,	
p=0.0095,	n=7	for	Ao	CFUs).	However,	there	was	no	correlation	with	the	other	fly	physiology	parameters	
measured,	suggesting	that	a	single	species,	Ao,	influences	development	rate	in	the	larval	stage. 
 
We	next	tested	whether	there	was	a	maternal	effect	on	development	rate	by	removing	the	maternal	
bacterial	association.	We	harvested	eggs	from	germ-free	flies	and	associated	them	with	all	32	bacterial	
combinations.	This	experiment	showed	insignificant	differences	in	development	rate	compared	with	the	
experiment	with	gnotobiotic	females,	indicating	that	maternal	effects	do	not	set	developmental	timing	
(Fig.	S8).	In	contrast,	heat-killed	duplicates	of	the	experiment	showed	significantly	slowed	
developmental	pace	(p<0.005,	n=16,	paired	sample	t-test),	suggesting	that	active	bacterial	metabolism32	
is	important	for	fly	development	(Fig.	S8).	From	a	fitness	perspective,	these	results	indicate	that	female	
flies	gain	an	advantage	for	their	offspring	by	associating	with	these	diverse	bacterial	consortia. 

Figure	2.	Microbiome	diversity	impacts	host	physiology.	(a)	The	number	of	days	to	adulthood	was	measured	as	the	first	pupa	
to	emerge	from	fly	vials	changed	out	every	three	days	during	the	lifespan	experiment.	The	development	rate	increases	as	gut	
diversity	increases.	Median	n=24	per	bacterial	treatment	(see	Fig.	S5).	(b)	Mean	fecundity	per	female	per	day	was	measured	
concomitantly	with	development	rate	over	the	flies’	lifespans.	Median	n=65	vials	measured	per	bacterial	treatment.	Variation	
in	fecundity	decreases	as	gut	diversity	increases	(Fig.	S5,	S9).	(c)	Lifespan	decreases	as	gut	diversity	increases.	Median	n=100	
flies	per	bacterial	treatment	(Fig.	S5,	S10).	(d)	Fitness	calculations	using	a	Leslie	matrix	populated	with	data	from	a-c	reveals	an	
increase	in	fitness	and	a	decrease	in	variation	as	gut	diversity	increases. 
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Variation	in	fly	fecundity	decreases	with	increasing	diversity 
 
Fitness	is	closely	tied	to	fecundity,	the	number	of	viable	offspring	produced	by	an	individual.	We	
counted	the	number	of	adult	progeny	produced	per	fly	over	its	lifespan	and	found	that	overall,	average	
fecundity	did	not	vary	as	a	function	of	increasing	biodiversity	(r=0.072,	p=0.70,	n=32,	Pearson	
coefficient)	or	bacterial	load	(r=0.082,	p>0.05,	n=32,	Pearson	coefficient;	Fig.	S5,	S9).	However,	the	
variance	in	fecundity	between	bacterial	combinations	with	the	same	number	of	species	decreased	as	
species	were	added	(Fig.	2b,	S9;	r=-0.91,	p=0.08,	n=4	diversities,	Pearson	coefficient;	p=0.001,	t-test	
comparing	deviations	with	1	or	2	species	vs.	3	or	4),	indicating	that	diversity	decreases	the	risk	of	low	
fecundity.	 
 
Germ-free	flies	live	longer	than	flies	colonized	by	bacteria	
 
In	1927,	Steinfeld3	showed	that	germ	free	flies	live	longer	than	their	microbially-colonized	counterparts.	
This	result	that	the	microbiome	can	impact	aging	has	been	replicated	in	flies	and	vertebrates.4,33	
Consistent	with	these	previous	studies,	our	germ-free	flies	survived	longer	than	flies	colonized	with	all	5	
species	of	bacteria	(mean	lifespan	±	s.e.m.	was	53.5	±	1.5	germ-free	vs.	43.5	±	1.1	for	5	species	
gnotobiotics).	Examining	fly	survival	as	a	function	of	increasing	gut	diversity,	we	found	a	decrease	in	
survival	over	many	different	bacterial	associations	(Fig.	2c,	S5,	S10;	r=-0.54,	p=0.002,	n=32)	and	as	a	
function	of	bacterial	load	(r=-0.47,	p<0.005).	The	trend	of	decreased	lifespan	corresponds	to	an	increase	
in	fecundity	(average	daily	fecundity	vs.	lifespan:	r=-0.50,	p=0.003,	n=32;	Fig.	S11a)	and	is	not	explained	
by	differences	in	fly	activity	(Fig.	S12).	Such	life	history	tradeoffs	are	well-documented	in	the	literature	
and	are	believed	to	constitute	a	differential	allocation	of	resources	between	long	term	body	
maintenance	and	reproduction.29,34	This	suggests	the	tradeoff	may	be	inherent	and	that	high	
reproduction	and	long	life	are	mutually	exclusive.		
	
To	examine	this	hypothesis,	we	used	antibiotics	to	remove	the	microbiome	of	high	fecundity	flies	and	
measured	the	resulting	change	in	lifespan	for	female	flies.	We	first	allowed	flies	with	the	high	fecundity	
microbiomes	to	reproduce	for	21	days	(to	a	level	greater	than	total	lifetime	fecundity	of	germ-free	flies),	
and	we	subsequently	eliminated	the	microbiome	using	antibiotics.	In	general,	the	midlife	elimination	of	
gut	flora	lengthened	fly	lifespan	by	roughly	15%	compared	to	flies	continuously	fed	live	bacteria	
(p=0.007,	n=7,	paired	sample	t-test,	Fig.	S11b),	without	decreasing	total	fecundity	(p=0.2,	n=7,	paired	
sample	t-test,	Fig.	S11b).	This	result	demonstrates	that	the	life	history	tradeoff	is	not	necessarily	fixed	
and	suggests	that	flies	choose	rapid	and	high	fecundity	in	response	to	a	perceived	risk	of	death	due	to	
microbes.	However,	two	specific	bacterial	combinations	showed	no	increase	in	lifespan	when	given	
antibiotics,	Ao	and	Lp+Lb+Ao.	Very	similar	microbiome	compositions	showed	significant	lifespan	
extension	(e.g.	Lp+Ao	and	Lp+At+Ao),	demonstrating	the	complexity	of	the	microbiome-host	
relationship.	When	we	performed	the	reverse	experiment	and	associated	midlife	germ-free	flies	with	
high	fecundity	bacteria,	there	was	a	significant	increase	in	fecundity	and	a	significant	decrease	in	
lifespan	(p=0.007,	n=4,	paired	sample	t-test	for	fecundity;	Fig.	S11b;	p=0.006,	n=4,	paired	sample	t-test	
for	lifespan),	consistent	with	our	initial	experiments	(Fig.	2),	and	indicating	that	the	life	history	tradeoff	
is	dynamic	throughout	life.	
 
Microbial	diversity	increases	host	fitness 
 
We	wondered	how	the	lifespan-fecundity	tradeoff	impacted	organismal	fitness,	which	is	defined	as	the	
rate	of	population	growth.	To	address	this	question,	we	combined	our	data	for	development,	fecundity,	
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and	lifespan	in	the	Leslie	matrix,35	a	classical	model	of	population	growth,	to	calculate	organismal	fitness	
under	each	bacterial	association.	Overall,	fitness	was	relatively	consistent	across	different	bacterial	
associations	(Fig.	2d).	However,	the	variation	between	low	diversity	microbiomes	fitness	was	higher	
than	between	high	diversity	microbiomes,	indicating	that	the	life	history	tradeoff	is	more	effective	at	
high	diversity.	
 
Microbial	interactions	impact	host	fitness	 
 
Previous	studies	of	complex	microbiomes	have	suggested	that	interactions	among	species	drive	impacts	
on	the	host.	For	example,	Clostridium	difficile	pathogenicity	induction	is	repressed	by	the	presence	of	
other	species.6	Alternatively,	interactions	may	be	mediated	by	the	host:	gut	colonization	by	a	specific	
Escherichia	coli	strain	can	induce	tolerance	to	Burkholderia	infection	in	the	lungs	mediated	by	IGF-1.15	
Our	data	suggest	complex	interactions	between	bacteria	with	impacts	on	host	physiology.	For	instance,	
flies	mono-colonized	with	Lp,	At,	or	Ao	have	mean	survival	times	of	47,	48,	and	43	days	respectively.	No	
significant	changes	occur	with	pairs	of	species,	but	fly	survival	drops	to	41	days	when	all	three	bacteria	
are	inoculated	together.	To	determine	whether	the	interaction	is	of	high	order	compared	to	the	
alternative	hypothesis	that	pairwise	interactions	can	explain	the	three	species	phenotype,	we	applied	
the	mathematics	of	epistasis	(Box),9	which	was	originally	developed	as	a	framework	to	calculate	
interactions	between	genes	in	high	dimensions.	Here	we	generalize	the	method	to	characterize	high-
dimensional	interactions	in	the	microbiome. 
 
We	used	this	epistasis	framework	to	calculate	the	interactions	between	gut	bacterial	species	and	their	
impacts	on	host	physiology	(Math	Supplement).	Notably,	the	effects	on	host	physiology	could	not	be	
attributed	to	simple	changes	in	individual	species	abundances,	aside	from	the	development	rate	of	7	
samples	containing	Ao	as	noted	previously.	Instead,	we	found	significant	effects	of	species	interactions	
on	host	physiology	and	total	bacterial	load	(Fig.	3a-d,	S3),	with	wide	prevalence	of	non-additive	pairwise	
and	high-order	interactions.	Interestingly,	development	rate	interactions	tend	to	be	negative.	Negative	
epistasis	in	genetics	suggests	the	two	loci	are	in	the	same	pathway,	i.e.	they	are	redundant.	By	analogy,	
negative	microbiome	epistasis	in	development	rate	suggests	redundant	mechanisms,	such	as	nutrition,30	
confer	microbiome	effects	on	the	host.	In	contrast,	time	to	death	interactions	tend	to	be	positive,	
suggesting	that	bacterial	interactions	synergistically	modulate	different	pathways.	CFUs	and	fecundity	
(Fig.	3e-h)	both	show	significant	positive	and	negative	interactions,	suggesting	both	synergy	and	
redundancy.	The	magnitudes	of	the	interactions,	when	normalized	to	the	number	of	species	present,	
are	often	as	large	as	the	effects	of	individual	species	introductions,	indicating	that	the	species	
interactions	are	as	important	as	the	presence	of	the	species	themselves	(Math	Supplement).	Thus,	
changes	in	gut	microbiome	composition	impact	host	physiology	in	non-additive	ways.	 
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Figure	3.	Microbial	interactions	drive	the	microbiome-host	relationship.	(a-d)	Interactions	become	stronger	as	diversity	
increases.	For	(a)	bacterial	load,	(b)	development,	(c)	fecundity,	and	(d)	time	to	death,	we	calculated	the	interaction	coordinates	
for	standard	tests	(pink	dots)	and	non-standard	tests	(blue	dots)	for	phenotype	data	(Fig.	1,2).	Filled	circles:	significant	
interactions;	open	circles:	non-significant	interactions.	See	Fig	S13	for	standard	tests	with	species	identities.	(e-g)	Standard	
interaction	coordinates	for	fecundity	(panel	c	and	Fig.	S13)	are	depicted	on	the	5-cube	significant	positive	interactions	(gray)	vs.	
significant	negative	interactions	(red).	(h)	No	significant	5-way	interaction	occurs	for	fecundity.	Bacterial	combinations	are	
indicated	in	binary	as	the	vertices	of	the	5-cube.	(i-l)	Comparisons	between	the	distributions	of	standard	and	non-standard	
interactions	show	significant	shifts,	indicating	context-dependence	of	the	interactions	due	to	bystander	species.	To	provide	a	
visual	comparison	of	interaction	strengths	between	the	phenotypes,	raw	data	were	first	normalized	(z-scores)	and	then	
interactions	were	calculated. 
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Complexity	in	the	microbiome	could	arise	due	to	context-dependent	effects,	where	two	species	interact	
differently	depending	on	the	presence	of	a	third.	We	found	a	large	dependence	on	context	by	
calculating	how	interactions	change	in	the	presence	of	bystander	species.	The	“non-standard	tests”	we	
computed	(see	Box;	Math	Supplement)	are	adaptations	of	generally	known	interaction	tests	called	
marginal	and	conditional	epistasis	in	genetics.	Comparing	these	non-standard	tests	to	the	standard	ones	
provides	a	quantitative	measure	of	context-dependence.	We	found	significant	context-dependence	(Fig.	
3i-l;	Fig.	S14-S17;	Math	Supplement),	indicating	that	low-dimensional	interactions	are	significantly	
changed	by	the	addition	of	bystander	species.	Thus,	the	dimensionality	of	the	microbiome	is	high,	and	
the	impacts	of	individual	species	vary	greatly	according	to	their	co-inhabitants	of	the	gut.	However,	in	
some	specific	cases	where	a	standard	test	indicated	epistasis,	certain	related,	non-standard	tests	of	the	
same	bacterial	species	interactions	indicated	additivity	(Fig.	S14-S17).	Therefore,	our	methods	reveal	
lower	dimensional	routes	to	additively	traverse	the	high-dimensional	microbiome	landscape	(Fig.	3a-d;	
Math	Supplement	Fig.	S5-8).	While	we	found	no	consistent	interaction	patterns	to	infer	these	routes	a	
priori,	the	results	suggest	a	path	to	predictability	if	we	can	discover	rules	of	these	low-dimensional	
interactions	on	the	high-dimensional	landscape.	 
 
From	an	evolutionary	perspective,	many	reports	document	host-specialized	microbiomes	with	a	
phylogenetic	signature	and	correlated	fitness	consequences	of	this	co-adaptation.36-39	We	observed	no	
relationship	between	host	fecundity	and	bacterial	abundances	(Fig.	S6a),	suggesting	that	the	
microbiome-host	unit	may	not	necessarily	select	more	fit	individuals	nor	favor	cohesive	group	
selection.10,40	Rather,	we	see	a	significant	relationship	between	the	bacterial	interactions	generated	by	
bacterial	abundance	and	host	fecundity	phenotypes	(Fig.	S6b-d),	indicating	that	microbiome	epistasis	
shapes	community	structure	and	that	this	structure	similarly	shapes	host	fitness.	The	high	level	of	
epistasis	in	the	community	landscape	and	correlated	epistasis	in	host	fitness	traits	suggest	that	
differences	in	microbiome	diversity	between	hosts	may	be	stable24,41	and	have	phenotypic	
consequences	(Fig.	2),	which	increases	standing	phenotypic	diversity	in	a	population	of	hosts,	priming	
hosts	and	their	microbiomes	for	divergent	selection	but	not	causing	it.	We	propose	correlated	epistasis	
between	microbiome	ecology	and	host	fitness	as	a	mechanism	that	poises	a	microbiome-host	system	
for	formation	of	specialized	gut	communities.	 
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Materials	and	Methods	
 
Fly	stock	maintenance:	Wolbachia-free	Drosophila	melanogaster	Canton-S	flies	were	reared	on	a	
cornmeal-based	medium	(6.67%	cornmeal,	2.7%	active	dry	yeast,	1.6%	sucrose,	0.75%	sodium	tartrate,	
0.73%	ethanol,	0.68%	agar,	0.46%	propionic	acid,	0.09%	methylparaben,	0.06%	calcium	chloride,	and	
0.01%	molasses).	Fly	stocks	were	maintained	at	25˚C,	60%	humidity,	and	12:12	hours	light:dark	cycles.	
Fly	stocks	were	tested	for	the	presence	of	known	RNA	viruses	by	RT-PCR	and	in	this	regard	were	virus-
free.24	Germ-free	fly	stocks	were	kept	in	sterile	conditions	over	multiple	generations	to	reduce	any	
heterogeneity	due	to	parental	nutrition	derived	from	microbiome	variability. 
 
	Germ-free	fly	preparation:	Wolbachia-free	and	virus-free	Drosophila	melanogaster	Canton-S	flies	
reared	on	a	cornmeal-based	medium	were	transferred	to	embryo	collection	cages	and	allowed	to	
acclimate	in	the	cage	for	at	least	one	day	before	egg	collection.	On	the	morning	of	egg	collection,	a	yeast	
paste	was	added	on	a	grape	juice	agar	plate.	Flies	were	left	to	lay	eggs	on	this	grape	juice	agar	plate	for	
5-6	hours.	Eggs	were	then	collected	into	a	0.4	µm	cell	strainer.	In	a	biosafety	cabinet,	fly	eggs	were	
rinsed	twice	in	10%	bleach	(0.6%	sodium	hypochlorite)	for	2.5	min	each,	once	in	70%	ethanol	for	30	
seconds,	and	three	times	in	sterile	dH2O	for	10	seconds	each.	Approximately	50	eggs	were	transferred	to	
sterile	fly	media	(10%	glucose,	5%	active	dry	yeast,	1.2%	agar,	0.42%	propionic	acid)	with	a	sterile	cotton	
swab. 
 
Bacteria	strains:	Lactobacillus	plantarum,	L.	brevis,	Acetobacter	pasteurianus,	A.	tropicalis,	and	A.	
orientalis	bacteria	were	isolated	from	D.	melanogaster	lab	flies.	Bacteria	were	grown	overnight	in	MRS	
media	in	a	shaker	set	at	30˚C.	The	bacteria	were	resuspended	at	a	concentration	of	108	cells/mL	in	
sterile	PBS	for	fly	gnotobiotic	preparations23	so	that	constant	numbers	of	CFUs	were	inoculated	per	fly	
vial.	The	32	combinations	of	the	5	bacterial	strains	were	mixed	using	a	Beckman	Coulter	Biomek	NXP	
workstation	to	standardize	the	inoculum.	Vials	were	swabbed	to	ensure	correct	bacterial	species	were	
present	and	no	contaminants. 
 
Adult	gnotobiotic	fly	preparation:	Germ-free	flies	aged	5-7	days	were	sorted	into	10%	glucose,	5%	
active	dry	yeast	medium	inoculated	with	a	defined	mixture	of	bacteria.	Each	vial	contained	a	total	of	
5x106	CFUs	(50	µL	of	108	bacteria/mL).	Ten	female	and	ten	male	flies	were	transferred	into	each	vial.	
Gnotobiotic	flies	were	flipped	into	freshly	inoculated	media	every	3	days. 
 
Concurrent	lifespan	assay,	fecundity	(pupae	counts),	fly	development	(Fig	2a-c): We	measured	all	host	
fitness	phenotypes	concurrently	in	mixed	sex	populations	in	order	to	mimic	more	natural	conditions.	To	
measure	the	lifespan	of	flies	on	each	combination	of	bacteria,	we	recorded	the	number	of	flies	living	and	
number	of	flies	dead	daily	until	the	entire	population	was	dead.	Dead	flies	were	removed	when	the	vials	
were	flipped.	Average	daily	female	fecundity	was	assessed	by	counting	total	amount	of	pupae	in	each	
vial	after	the	adults	were	flipped	to	a	fresh	vial.	Due	to	the	variable	developmental	times	involved,	vials	
were	monitored	daily	for	14	days	after	removing	the	adults.	 
As	part	of	this	experiment,	we	counted	the	day	when	the	first	adult	emerged	from	each	vial.	We	chose	
this	metric	because	adults	were	housed	in	the	same	vial	for	3	days	and	therefore	the	start	of	
development	was	not	synchronized.		
	
Development	Assays	(Fig.	S8):	In	the	experiments	presented	in	Fig.	S8,	development	times	were	
assessed	for	each	egg	introduced	to	the	vial.	Eggs	were	first	dechorionated	and	sterilized	as	in	Germ-
Free	Fly	Preparation	section.	Eggs	were	then	suspended	in	1x	PBS	with	0.1%	TritonX	detergent	to	allow	
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pipetting	of	the	eggs.	Roughly	30	eggs	[and	always	>20]	were	pipetted	into	the	recipient	vial.	Timing	of	
pupation	and	eclosion	in	vials	that	flies	had	previously	developed	in	was	assayed	at	one	day	intervals	for	
non-heat-killed	(blue	dots)	and	heat-killed	(red	dots)	vial	preparations.	For	the	germ-free	eggs	
inoculated	with	fresh	bacteria	(Fig.	S8	black	points)	developmental	timing	was	assessed	at	~3	hour	
intervals.		
 
Bacterial	load	counts	(Fig.	S1): To	assess	the	number	of	colony	forming	units	(CFUs)	per	fly,	flies	were	
washed	in	70%	ethanol	for	5	seconds,	rinsed	in	ddH2O	for	5	seconds,	and	then	put	into	the	well	of	a	96-
well	plate	containing	100	µL	PBS	and	80	µL	0.5	mm	glass	beads.	Plates	were	heat	sealed	with	aluminum	
sealing	film	then	beat	beaten	for	60	seconds	at	maximum	speed	in	a	MiniBeadBeater-8	converted	to	
hold	a	96-well	plate	using	a	custom-built	attachment.	Plates	were	then	pinned	with	a	96-pin	replicator	
(Boekel)		in	three	technical	replicates	per	fly	onto	selective	media	that	allowed	us	to	visually	distinguish	
each	bacterial	species.	Selective	media	are	as	follows:	MRS	with	X-gal	grows	only	Lp	and	Lb	within	2	
days.	Lb	colonies	turn	blue	while	Lp	colonies	remain	yellowish-white.	MYPL	with	5	mg/L	tetracycline	
grows	only	Ap	and	Ao.	MYPL	with	50	mg/L	gentamycin	grows	only	At	and	Ao.	The	flat	Ao	colonies	with	a	
distinct	ruffled	border	are	easily	visually	distinguished	from	the	rounder,	thicker,	and	browner	Ap	and	At	
based	on	colony	morphology. 
 
Locomotion	assay	(Fig.	S12): Gnotobiotic	flies	were	prepared	as	previously	described.	Ten	females	and	
ten	male	flies	were	sorted	into	each	vial.	Each	vial	was	flipped	every	3	days	into	media	inoculated	with	
its	bacteria	mixture.	After	the	9th	days	(the	third	flip),	gnotobiotic	flies	were	flipped	into	a	vial	containing	
sterile	media	(10%	glucose,	5%	yeast,	1.2%	agar,	and	0.42%	propionic	acid).	These	vials	were	placed	into	
the	LAM25	(Locomotor	Activity	Monitor)	kept	in	25˚C,	60%	humidity,	and	12	hour	light:	12	hour	dark	
cycles	and	monitored	for	7	days.	 
 
Fitness	calculations	(Fig	2d): Estimated	fitness	per	vial	within	treatment	using	Leslie	matrix	(1,000x	per	
treatment).	For	each	replicate	Leslie	matrix,	we	randomly	sampled	from	the	experimental	replicates	of	
development	time	data	per	treatment.	Female	fecundity	was	counted	as	zero	until	the	day	of	adult	
emergence.	Thereafter,	the	fecundity	was	filled	from	the	data	by	random	sampling	of	the	5	different	
replicates	for	each	time	point.	 
The	diagonal	was	filled	with	“1”s	corresponding	to	the	development	time.	After	development,	the	adult	
survival	data	was	used,	by	randomly	sampling	the	5	adult	survival	probability	replicates	for	each	day.	
The	remaining	values	in	the	matrix	are	zeros.	We	then	calculated	the	dominant	eigenvalue	of	the	matrix	
for	each	of	the	1,000	replicate	samplings,	giving	us	a	range	of	fitness	estimates.	This	fitness	value,	!,	
corresponds	to	the	daily	fold	expansion	of	the	population,	"#$% = !",	under	ideal	conditions. 
 
Statistical	analyses: All	statistics	were	calculated	using	R	unless	otherwise	noted.	Survival	data	average	
curves	were	calculated	as	the	cumulative	proportion	of	the	population	that	died	over	time.	A	2-
parameter	Gompertz	function	was	selected	using	the	‘drc’	package	in	R	(v.3.3.3),	" ' = ()*+,(.+/),	
where	"(')	is	the	proportion	of	the	population	surviving	as	a	function	of	time.	The	same	approach	was	
applied	to	fit	the	fecundity	data,	resulting	in	a	3-parameter	Gompertz	model	selected	by	the	Akaike	
information	criterion,	1 ' = 12()*

+,(.+/)
. 
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Figure	S1.	Representative	raw	bacterial	abundance	counts	(CFUs)	for	each	fly	with	each	bacterial	
combination.	X-axes	indicate	individual	flies.	Y-axes	are	CFUs	on	a	log10	scale.	Color	scheme	indicates	
species	identity	consistent	with	Fig	1c.	For	each	bacterial	combination,	the	first	12	flies	are	from	a	
treatment	where	flies	were	fed	defined	bacteria	continuously	for	10	days	and	then	transferred	daily	to	
fresh	food	for	5	days.	The	last	24	flies	for	each	bacterial	combination	are	for	the	treatment	where	fly	
development,	fecundity,	and	time	to	death	were	measured	(Fig	2).	Note	that	there	are	subtle	
differences	between	the	first	12	and	last	24	flies	for	some	bacterial	combinations	(e.g.	Ap+At+Ao).	These	
differences	are	quantified	in	Fig	S3a	versus	S3b.	
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Figure	S2.	Pairwise	bacterial	interactions	in	the	fly	gut	transition	from	positive	to	negative	as	diversity	
increases.	Direct	interaction	strength	was	calculated	per	Paine26	as	noted	in	Math	Supplement.	Average	
microbial	abundances	across	replicates	were	used.	(a)	Interactions	calculated	by	comparing	treatments	
with	two	species	to	treatments	with	one	species.	(b)	Interactions	calculated	by	comparing	the	treatment	
with	five	species	to	the	treatments	with	four	species.	(c)	Number	of	flies	where	not	all	inoculating	
bacteria	were	detected	(1,000	CFUs	limit	of	detection)	for	each	bacterial	combination	when	flies	were	
continuously	fed	bacteria.	(d)	Number	of	flies	where	not	all	inoculating	bacteria	were	detected	(1,000	
CFUs	limit	of	detection)	for	each	bacterial	combination	when	flies	were	daily	transitioned	to	germ-free	
food	for	5	days	after	an	initial	10-day	continuous	inoculation	period.	 
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Figure	S3.	Microbial	interactions	drive	the	per-fly	
bacterial	load.	Standard	interactions	(pink)	and	non-
standard	interactions	(blue)	are	both	show	significant	
densities	of	non-zero	scores.	Mean	total	bacterial	
abundance	from	each	bacterial	combination	(n=24	
flies	continuously	fed	bacteria,	same	raw	data	used	as	
in	Fig	1b)	was	calculated	and	converted	to	a	z-score.	
Interactions	were	calculated	for	all	26	standard	tests	
and	910	non-standard	tests	(Math	Supplement).	
Histograms	of	interaction	scores	(large	vertical	bars)	
were	converted	to	a	probability	density	function	
(smooth	curve)	using	a	Gaussian	kernel.	Actual	scores	
are	shown	below	the	histograms	(short	vertical	lines).	
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Figure	S4.	Higher	gut	diversity	decreases	the	proportion	of	colonized	flies	for	weak	colonizers.	(a)	Flies	
continuously	fed	on	food	colonized	with	a	high	bacterial	load	show	a	decrease	in	the	likelihood	of	
detecting	colonization	for	certain	species	(1,000	CFUs	limit	of	detection).	Ap,	At,	and	to	a	lesser	extent	
Lb	showed	lower	likelihood	to	colonize	as	total	diversity	increased.	Lp	and	Ao	showed	complete	
colonization	across	a	gradient	of	species	diversity.	(b)	This	change	in	colonization	likelihood	shifted	when	
we	flipped	flies	daily	to	fresh	food	for	five	days	after	an	initial	10-day	colonization	by	continuous	
inoculation.	Notably,	Ap	colonization	likelihood	increased	with	increasing	diversity	when	we	removed	
the	bacterial	supply,	suggesting	Ap	is	a	better	competitor	than	it	is	a	colonizer. 
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Figure	S5.	Raw	data	from	development	rate,	fecundity,	and	time	to	death.	(a)	Development	time	raw	
data	by	microbial	treatment.	Each	bar	within	a	treatment	is	the	fastest	developing	fly	within	a	vial.	(b)	
Time	to	death	raw	data	by	microbial	treatment.	Each	bar	represents	the	lifespan	of	an	individual	fly.	
Male	and	female	flies	are	aggregated	as	no	statistically	significant	difference	could	be	detected	between	
male	and	female	lifespans	in	these	mixed	sex	experiments.	(c)	Fecundity	per	day	per	female	raw	data	by	
treatment.	Each	bar	represents	the	total	fecundity	measured	from	a	single	fly	vial	normalized	to	the	
number	of	adult	female	flies.	
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Figure	S6.	Pearson	correlation	of	raw	phenotypes	and	interactions.		(a)	Raw	data	correlations	between	
measured	host	and	bacterial	phenotypes	indicates	significant	relationships	between	phenotypes	except	
between	fecundity	and	total	gut	CFUs.	(b)	Pearson	correlation	of	all	standard	interaction	strengths	
between	measured	host	and	bacterial	phenotypes	indicates	significant	relationships	between	the	three	
different	host	phenotype	interactions	but	no	significant	relationship	between	total	gut	CFUs	and	any	of	
the	host	phenotype	interactions.	(c)	Pearson	correlation	of	interaction	strengths	for	all	standard	and	
non-standard	tests	indicates	significant	relationships	between	all	phenotypes.	(d)	Pearson	correlation	of	
only	significant	interaction	strengths	after	multiple	comparisons	correction	(standard	and	non-standard	
tests)	between	measured	host	and	bacterial	phenotypes	indicates	significant	relationships	between	all	
phenotypes.	Scatter	plots	below	the	diagonal.	Histograms	on	the	diagonal.	Correlation	coefficients	and	
significance	values	(*	indicates	p<0.005;	**	indicates	p<0.001;	***	indicates	p<0.0001)	above	the	
diagonal.	
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Figure	S7.	Raw	bacterial	abundance	counts	(CFUs)	for	fly	food	treatments	with	16	selected	bacterial	
combinations.	X-axes	indicate	individual	food	samples	1	to	6.	For	each	combination,	the	first	three	
samples	are	from	the	first	biological	replicate,	and	the	last	three	are	from	the	second	biological	
replicate.	Y-axes	are	CFUs	on	a	Log10	scale.	Color	scheme	indicates	species	identity	consistent	with	Fig	
1c.		
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Figure	S8.	Parental	effects	and	live	bacteria	influence	offspring	developmental	pace.	16	different	
microbial	combinations	and	germ-free	flies	(same	as	in	Fig.	S7)	were	tested	for	their	impacts	on	
developmental	pace	(number	of	days	from	egg	laid	to	adult	emergence	from	pupal	case).	In	the	original	
experiments,	the	developmental	pace	was	measured	for	flies	where	eggs	were	directly	laid	by	females	
continuously	inoculated	with	their	bacterial	combination.	To	test	the	role	of	parental	effects,	we	
experimentally	varied	the	source	of	the	eggs	as	well	as	the	bacterial	treatment.	Bacterial	combination	is	
indicated	above	each	plot.	Black	points	show	data	for	n=20	eggs	taken	from	germ-free	mothers.	Yellow	
points	show	the	standard	data	(Fig.	2a)	as	a	reference.	Blue	points	show	data	where	colonized	vials	(with	
flies	and	bacteria)	were	emptied	of	all	their	flies	(and	larvae)	and	then	n=20	germ	free	eggs	were	
introduced.	No	significant	differences	were	detected	between	yellow	and	blue	treatments.	Red	points	
show	data	where	the	treatment	was	identical	to	the	blue	points	except	that	the	vials	were	heat-killed	of	
bacteria	at	60˚C	for	1	hour	(and	tested	for	sterility)	prior	to	germ-free	egg	introduction.	This	treatment	
significantly	increased	the	development	time	(see	main	text).	The	fastest	development	times	were	for	
eggs	introduced	to	fresh	vials	inoculated	with	bacteria	but	without	previous	fly	occupation.	In	this	final	
treatment	(black	dots)	there	was	very	little	variation	between	treatments	except	that	flies	lacking	all	
Acetobacter	species	were	delayed	by	1	to	2	days	with	respect	to	their	cohort.	 
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Figure	S9.	Curve	fits	to	raw	fecundity	data	aggregated	from	all	5	experimental	replicates	for	each	
bacterial	combination.	Curve	fits	to	a	3-parameter	Gompertz	distribution	are	depicted	(see	Methods).	
Bacterial	combinations	are	grouped	by	the	number	of	species.	(a)	Single	species	and	germ-free	flies.	(b)	
Species	pairs	and	germ-free	flies.	(c)	Species	trios	and	germ-free	flies.	(d)	Species	4-way	combinations,	5-
way	combination,	and	germ-free	flies.	All	[grayscale]	curves	are	kept	as	a	reference.	 
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Figure	S10.	Curve	fits	to	raw	lifespan	data	aggregated	from	all	5	experimental	replicates	for	each	
bacterial	combination.	Curve	fits	to	a	2-parameter	Gompertz	distribution	are	depicted	(see	Methods).	
Bacterial	combinations	are	grouped	by	the	number	of	species.	(a)	Single	species	and	germ-free	flies.	(b)	
Species	pairs	and	germ-free	flies.	(c)	Species	trios	and	germ-free	flies.	(d)	Species	4-way	combinations,	5-
way	combination,	and	germ-free	flies.	All	[grayscale]	curves	are	kept	as	a	reference.	 
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Figure	S11.	A	fitness	tradeoff	exists	between	lifespan	and	fecundity.	(a)	In	agreement	with	prior	
reports,	higher	fecundity	is	associated	with	shorter	lifespan.	This	tradeoff	is	apparent	for	average	daily	
fecundity	as	well	as	total	fecundity	per	female.	The	scatter	plot	is	based	on	the	data	from	Fig.	2b-c	for	
only	female	flies.	(b)	The	lifespan	fecundity	tradeoff	can	be	broken	by	putting	flies	on	antibiotics	after	
their	peak	reproduction	(dots	=	data	from	Fig.	2b-c;	red	circles	=	gnotobiotic	flies	were	treated	with	
antibiotics	(see	Methods)	after	21	days	of	reproduction,	which	encompasses	the	natural	peak	fecundity.	
Note	the	shifts	in	lifespan	between	the	regular	treatment,	the	antibiotic	treatment,	and	the	late-life	
bacterial	inoculation	treatment.	Lifespan	was	significantly	extended	whereas	total	fecundity	stayed	high.	
Shifting	germ-free	flies	to	gnotobiotic	treatment	after	21	days	of	life	decreased	the	lifespan	without	
achieving	higher	reproduction.	n=100	flies	per	treatment	for	‘original’	and	‘antibiotic.’	n=60	flies	per	
treatment	for	‘gnotobiotic.’ 
 
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2017. ; https://doi.org/10.1101/232959doi: bioRxiv preprint 

https://doi.org/10.1101/232959


 
 
 
Figure	S12.	Average	fly	activity	is	unrelated	to	the	fitness	phenotypes.	Fly	movement	is	associated	with	
overall	metabolism,	including	food	intake	and	energy	expenditure.	To	search	for	behavior	changes	
underlying	the	physiological	differences	in	our	bacterial	treatments,	we	examined	changes	in	fly	motility	
for	each	bacterial	treatment	(n=32)	in	5	replicate	trials	(n=20	flies	per	trial)	using	the	LAMS	(Trikinetics)	
population-based	motility	assay.	Trials	were	carried	out	for	7	days.	Flies	were	flipped	into	fresh	vials	and	
placed	in	the	activity	monitoring	device.	The	first	24	hours	of	data	were	removed	to	allow	for	fly	
acclimation	to	the	new	vial.	Overall,	we	found	no	significant	differences	between	bacterial	combinations	
nor	were	there	any	correlations	in	the	mean	values	with	the	other	physiological	data.	 
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Figure	S13.	Standard	interactions	calculated	for	each	phenotype	in	Fig.	2	and	depicted	in	Fig.	3a-d.	
Labeling	style	matches	Fig.	2.	Error	bars		are	the	propagated	error	from	the	raw	phenotypes.	 
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Figure	S14.	Detailed	comparisons	of	the	standard	three-way	interaction	versus	the	related	non-
standard	tests	that	incorporate	w111	and	w000	for	total	CFU	counts.	Interactions	on	the	total	bacterial	
load	in	flies	between	sets	of	three	species	(equations	g=square,	i=circle,	k=triangle,	m=plus,	n=ex	(‘x’),	
and	u111=diamond)	in	Math	Supplement)	are	compared	to	determine	(i)	whether	additive	non-standard	
tests	can	describe	cases	of	non-additive	standard	tests	and	(ii)	whether	context	of	other	species	changes	
interactions.	Each	of	the	10	combinations	of	three	species	(denoted	in	panel	titles	as	“k”,	“l”,	and	“m”)	is	
compared	along	with	the	four	variants	of	bystander	species	(denoted	in	the	panel	titles	as	“*”,	and	
shown	by	the	different	colored	symbols).	The	lack	of	correlation	between	the	colors	indicates	that	
bystanders	change	interactions.	As	an	example	of	an	additive	non-standard	test	explaining	a	non-
additive	standard	test,	see	the	second	panel	from	the	left,	“klm**”.	Here,	k=Lp,	l=Lb,	and	m=Ap.	Note	
that	the	black	diamond	(standard	test)	is	negative,	but	the	black	circle	(equation	i)	is	roughly	zero,	
indicating	that	if	we	consider	the	Lb	bacterial	load	and	the	load	of	the	combination	with	Lp	and	Ap	
together,	they	are	equal	to	the	load	in	flies	with	the	bacterial	combination	of	Lp+Lb+Ap.		
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Figure	S15.	Detailed	comparisons	of	the	standard	three-way	interaction	versus	the	related	non-
standard	tests	that	incorporate	w111	and	w000	for	development	rate	data.	Interactions	on	the	total	
bacterial	load	in	flies	between	sets	of	three	species	(equations	g=square,	i=circle,	k=triangle,	m=plus,	
n=ex	(‘x’),	and	u111=diamond)	in	Math	Supplement)	are	compared	to	determine	(i)	whether	additive	non-
standard	tests	can	describe	cases	of	non-additive	standard	tests	and	(ii)	whether	context	of	other	
species	changes	interactions.	Each	of	the	10	combinations	of	three	species	(denoted	in	panel	titles	as	
“k”,	“l”,	and	“m”)	is	compared	along	with	the	four	variants	of	bystander	species	(denoted	in	the	panel	
titles	as	“*”,	and	shown	by	the	different	colored	symbols).		
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Figure	S16.	Detailed	comparisons	of	the	standard	three-way	interaction	versus	the	related	non-
standard	tests	that	incorporate	w111	and	w000	for	mean	daily	fecundity	data.	Interactions	on	the	total	
bacterial	load	in	flies	between	sets	of	three	species	(equations	g=square,	i=circle,	k=triangle,	m=plus,	
n=ex	(‘x’),	and	u111=diamond)	in	Math	Supplement)	are	compared	to	determine	(i)	whether	additive	non-
standard	tests	can	describe	cases	of	non-additive	standard	tests	and	(ii)	whether	context	of	other	
species	changes	interactions.	Each	of	the	10	combinations	of	three	species	(denoted	in	panel	titles	as	
“k”,	“l”,	and	“m”)	is	compared	along	with	the	four	variants	of	bystander	species	(denoted	in	the	panel	
titles	as	“*”,	and	shown	by	the	different	colored	symbols).	
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Figure	S17.	Detailed	comparisons	of	the	standard	three-way	interaction	versus	the	related	non-
standard	tests	that	incorporate	w111	and	w000	for	mean	lifespan	data.	Interactions	on	the	total	bacterial	
load	in	flies	between	sets	of	three	species	(equations	g=square,	i=circle,	k=triangle,	m=plus,	n=ex	(‘x’),	
and	u111=diamond)	in	Math	Supplement)	are	compared	to	determine	(i)	whether	additive	non-standard	
tests	can	describe	cases	of	non-additive	standard	tests	and	(ii)	whether	context	of	other	species	changes	
interactions.	Each	of	the	10	combinations	of	three	species	(denoted	in	panel	titles	as	“k”,	“l”,	and	“m”)	is	
compared	along	with	the	four	variants	of	bystander	species	(denoted	in	the	panel	titles	as	“*”,	and	
shown	by	the	different	colored	symbols).	
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Figure	S18.	Standard	curves	used	to	calculate	total	CFUs	from	colony	counts	(Fig	S1,	S7).		A	standard	
curve	was	constructed	by	plating	known	concentrations	of	bacteria	on	selective	media	with	a	96-pin	
replicator	as	in	Bacterial	load	counts	(Methods).	Counts	were	fit	to	a	power	law	curve	using	custom	
scripts	in	MATLAB.	
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1 Pairwise Species Interactions (Figure 1)

Data Collection For each of the 32 fully combinatorial experiments in which flies are constantly fed
defined bacteria on their food, we collect the mean CFU abundance for each of the 24 individual fly samples
by averaging the three technical replicates for each sample. For each experiment, the median of these sample
CFU counts may be taken to obtain median CFU counts (we use the median rather than the mean because
the CFU count data is quite variable). The raw data are displayed in Figure S1.
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Pairwise correlations (Figure 1b) The diversity of an experiment is the number of bacterial species
that are provided on the food. For the set of experiments that have a given diversity N , we compute the
pairwise correlation between bacteria i and j in the following way. For the subset of experiments of diversity
N with microbes i and j, the sample CFU counts for i and j for each experiment are aggregated. Then,
we calculate the Spearman’s rank correlation coe�cient of these pairs of data, and arrive at a pairwise
correlation value between species i and j that is between -1 (ordinal CFU counts between the species are
perfectly anticorrelated) and 1 (perfectly correlated). This process is repeated for each species pairing to
build a pairwise correlation matrix for each diversity.

Pairwise interactions (Figure 1c) We infer the species interactions by assuming that the system obeys
the generalized Lotka-Volterra equations,

d

dt
xi = xi

0

@
µi +

NX

j=1

Mijxj

1

A
,

and by assuming that the median CFU counts of each experiment are at equilibrium. At equilibrium, the
time derivative on the left hand side vanishes, and we assume that the steady state is non-trivial (i.e. xi 6= 0);
if we call the steady state of each microbe for a given experiment x̃i, then an experiment of diversity N will
correspond to N algebraic equations of the form

0 = µi +
NX

j=1

Mij x̃j .

If there are M experiments of diversity N , then there are MN equations that must be simultaneously
satisfied. We consider a “low-diversity” group that groups diversities 1 and 2 together (which consists of
1 ⇤ 5 + 2 ⇤ 10 = 25 equations), and a “high-diversity” group that groups diversities 3, 4, and 5 together
(which consists of 3 ⇤ 10+ 4 ⇤ 5+ 5 ⇤ 1 = 55 equations). For each of these groups, we can rewrite these linear
equations in matrix form as 0 = A~x, where A is made up of the x̃i and ~x = [M11,M12, . . . ,M55, µ1, . . . , µ5]T .
We assume µi = 1 to obtain a nonzero result for M , which e↵ectively absorbs the growth rates µi into the
interaction values Mij . We solve this system of equations for ~x with linear least-squares, since the linear
system using the high-diversity group is overdetermined. The solution to this least-squares problem is the
interaction matrix M , which we plot as a food web in Figure 1c.

Pairwise interactions (Figure S2a,b) Paine [2] presented a direct calculation of interaction strength,
which we used to validate the overall trends we observed as a function of diversity. To measure the e↵ect of a
single species on the other species in a community, Paine removed the single species of interest and measured
the resulting changes in abundance of the remaining species. The interaction strength is calculated as

treatmentCFUs � controlCFUs

controlCFUs
,

where treatmentCFUs is the median species abundance with the species of interest absent and controlCFUs

is the median abundance when it is present [2]. To be clear, the CFU abundances in the equation are
both (treatment and control) for the same species, while the removal is for a second species. Thus, an
asymmetric matrix of interactions is calculated. Using the combinatorial experiments where each species has
been removed and, in each removal, each remaining species has been quantified, allows us to measure the
complete set of pairwise interactions for the cases where diversity goes from two to one species (Figure S2a)
and from five to four species (Figure S2b) by removing one species at a time. We display the asymmetric
matrices for the N=1,2 and N=4,5 cases as directed graphs.

Determining statistical trends For the four correlation matrices and the two interaction matrices, we
show that both the correlations and the interactions become more negative at higher diversities. To achieve
this, we compare the same matrix element across di↵erent diversities using the non-parametric Kendall
rank correlation coe�cient. Each matrix element is ranked according to its size over increasing diversities,

2
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resulting in an ordinal vector of length 4 for the correlation matrix and of length 2 for the interaction matrix.
Through the Kendall rank correlation coe�cient, the ranking for each matrix element is compared to a strictly
increasing vector ([1, 2, 3, 4] or [1, 2] for the two respective cases), resulting in a ⌧ coe�cient that is between
-1 and 1. For the correlation matrices there are 10 such ⌧ coe�cients with a mean of -0.4 (corresponding
to all possible pairings of 5 bacteria), and for the interaction matrices there are 25 ⌧ coe�cients with a
mean of -0.44 (since interactions need not be symmetric, and self-interactions occur as well). The matrices
becoming more negative at higher diversities would correspond to negative ⌧ coe�cients. To determine
whether the distribution of ⌧ coe�cients is significantly more negative than a distribution centered at 0,
we apply the Wilcoxon signed-rank test. The resulting one-sided p-values for the correlation matrices and
interaction matrices are 0.0323 and 0.0139, indicating that there is a significant trend in the values of both
the correlation and interaction matrices to decrease. When we assume that undetected species have an
abundance of 1000 CFUs, corresponding to the limit of detection, the resulting one-sided p-values were
0.0323 (unchanged) for correlation matrices and 0.0359 for interaction matrices, indicating the results are
robust to changes in CFUs below the limit of detection.

2 Introduction to Geometric Interactions (Figure 3)

For an n-genotype system, higher order genetic interactions are commonly described in terms of interaction
coordinates and related forms see [5]. For example, marginal and conditional epistasis are formulas obtained
with this approach, where we test the e↵ect of one set of loci on the interactions between other sets of loci.
Interaction might also include circuits, see [5] for details. Besides a graspable biological interpretation, circuits
also have a geometric interpretation, as these are formulas whose terms can be parametrized by certain sets
of vertices on an n-cube and where n is the number of loci considered. This geometric interpretation is
particularly useful, as it facilitates the parametrization of these types of formulas. Di↵erent sets of vertices
in an n-cube then yield di↵erent circuits. In general, however, it is an open problem to determine all circuits
in an n-cube, resp. in an n-genotype system, as the number increases dramatically with n, see [7] where
the 4-dimensional case has been considered. Moreover, there is not a clear biological interpretation of all
possible circuits of the n-cube.

In this work, we exploit the geometry of the 5-cube in terms of lower dimensional cubes and lift well
known lower rank interactions to the higher dimensional space. For instance, we test whether the positive
interaction between Ap and Lp stays positive when At is introduced. Clearly, with this approach we only
examine a subset of all possible interactions, but the ones we find are interpretable and comparable with
other studies (e.g. Newell and Douglas 2014 [3]). Moreover, we believe that our approach is simple enough to
be scalable to higher dimensions. In the following, we explain how this approach generalizes to n-dimensional
systems and to all lower rank interactions inside this system, and we give examples of how the mathematical
approach applies to other biological systems specifically to bacterial interactions in the gut microbiome.

3 Glossary for interactions - Mathematical Terminology

The terminology we use in this work is an adaptation of the wording used in genetics to the study of inter-
actions among bacterial species in fruit flies. For convenience we include the following intuitive definitions
of terms we will repeatedly use later on:

• n-species system: a system of n types of bacterial species in the microbiome (present or absent).

• n-cube (n dimensional unit hypercube): is an n-dimensional generalization of a square (2-cube)
and three dimensional cube whose sides have unit lengths. When n=5 the 5-cube has 32 vertices, 80
edges, 80 square faces, 40 3-cubes and 10 4-cubes, see [1].

• Interaction coordinates: are basis elements for the interaction spaces associated to a system con-
sisting of n-bacterial species (or an n-cube). Interaction coordinates are given by linear combinations
of phenotypes associated to all combinations of species in the n-species system.

• Circuits: are certain linear combinations of interaction coordinates.

3
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• Triangulation: is the local shape of the fitness landscape imposed by the phenotypes of neighboring
genotypes (see Box 1a for an example).

• Standard interactions (or standard tests): are 2, 3, 4 and 5-way interactions on all pairs, triples,
quadruples and five tuples of species leaving the remaining species absent.

• Non-standard interaction (or non-standard tests): higher-order interactions arising as a gener-
alization of the standard test, interaction coordinates for the 3 and 4 and 5 species systems as well as
circuits for the 3 species case, and by allowing the species not present to be occupied by bystanders,
whose presence/absence is constant across the species considered in the standard test.

In this work, we will focus on a 5 species system consisting of 32 bacterial combinations. We encode the
di↵erent bacterial combinations by a binary string S of lengths 5. Each entry of such a string S represents
a bacterial species isolated inside a number of flies guts. For instance, S=00000 describes the germ-free fly,
S=11111 describes the fly colonized with all 5 species of bacteria. With this binary notion, each bacterial
combination also defines a vertex of a 5-dimensional cube G. Together with the 5-cube G, we also consider the
following four phenotypes associated with the bacterial combinations: bacterial load (CFUs), development
rate, fecundity, and time to death. These phenotypes associated with each bacterial combination in binary
notation are denoted simply by wS . The order of the bacterial species and the specific bacterial loads are
summarized in Table 1.

Table 1: The 32 di↵erent bacterial loads.

4 Interaction space

In this section, we recall the notion of interaction coordinates and circuits (for the three cube) first defined
in [5]. We first describe these spaces abstractly for arbitrary values of n. In a second part, we describe how
one can recursively extend these formulas to define new interaction formulas in higher dimensional settings.

4.1 Interaction coordinates

Let i = i1, i2, . . . , in be a vertex of an n-dimensional cube with at least two coordinates ij , ik being 1. The
interaction coordinates ui can be defined (up to a scalar) in the following way:

ui1,i2,...,in :=
1

2n � 1

1X

j1=0

1X

j2=0

· · ·

1X

jn=0

(�1)i1j1+i2j2+···+injn
wj1j2...jn (1)

where w� are values of a corresponding phenotypes and indexed by the vertices of the n-dimensional cube.
It then follows, that there are 2n � n � 1 interaction coordinates. Moreover, these coordinates are linearly
independent and form a vector space basis of the interaction space.

In genetics, interaction coordinates are also called marginal epistasis in [5].

4.2 Circuits

Linear combinations of interaction coordinates might give rise to circuits. In the following, the only circuits
we will consider are the ones previously presented in the 3-dimensional setting in [5]. In formulas, these

4
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circuits can be presented as follows:

a := u110 + u111 = w000 � w010 � w100 + w110

b := u110 � u111 = w001 � w011 � w101 + w111

c := u101 + u111 = w000 � w001 � w100 + w101

d := u101 � u111 = w010 � w011 � w110 + w111

e := u011 + u111 = w000 � w001 � w010 + w011

f := u011 � u111 = w100 � w101 � w110 + w111

g := u110 + u101 = w000 � w011 � w100 + w111

h := u110 � u101 = w001 � w010 � w101 + w110

i := u110 + u011 = w000 � w010 � w101 + w111

j := u110 � u011 = w001 � w011 � w100 + w110

k := u101 + u011 = w000 � w001 � w110 + w111

l := u101 � u011 = w010 � w011 � w100 + w101

m := �u011 � u101 � u110 � u111 = w001 + w010 + w100 � w111 � 2w000

n := �u011 � u101 � u110 + u111 = w011 + w101 + w110 � w000 � 2w111

o := u011 + u101 � u110 � u111 = w010 + w100 + w111 � w001 � 2w110

p := u011 + u101 � u110 + u111 = w000 + w011 + w101 � w110 � 2w001

q := u011 � u101 + u110 � u111 = w001 + w100 + w111 � w010 � 2w101

r := u011 � u101 + u110 + u111 = w000 + w011 + w110 � w101 � 2w010

s := �u011 + u101 + u110 + u111 = w000 + w101 + w110 � w011 � 2w100

t := �u011 + u101 + u110 � u111 = w001 + w010 + w111 � w100 � 2w011.

Biological and geometric interpretations of these circuits follow from the descriptions given in [5, §.3] for the
genetic setting.

4.3 Recursively constructing higher order interactions

We now describe how interaction coordinates in lower dimensional cubes and the circuits a-t extend to
interaction formulas in higher dimensional cubes.

For instance, the two-way interaction

u11 = w00 + w11 � w01 � w10

extends to the following 80 = 10 · 23 di↵erent interaction formulas in a five species system:

↵⇤⇤klm = w00klm + w11klm � w01klm � w10klm

↵⇤k⇤lm = w0k0lm + w1k1lm � w0k1lm � w1k0lm

↵⇤kl⇤m = w0kl0m + w1kl1m � w0kl1m � w1kl0m

↵⇤klm⇤ = w0klm0 + w1klm1 � w0klm1 � w1klm0

↵k⇤⇤lm = wk00lm + wk11lm � wk01lm � wk10lm

↵k⇤l⇤m = wk0l0m + wk1l1m � wk0l1m � wk1l0m

↵k⇤lm⇤ = wk0lm0 + wk1lm1 � wl0lm1 � wk1lm0

↵kl⇤⇤m = wkl00m + wkl11m � wkl01m � wkl10m

↵kl⇤m⇤ = wkl0m0 + wkl1m1 � wkl0m1 � wkl1m0

↵klm⇤⇤ = wklm00 + wklm11 � wklm01 � wklm10,

(2)

where ⇤⇤ indicates two out of five loci. The remaining loci k, l,m are then either wild or 1, and all possible
23 combinations are allowed. Interactions of this type where considered for the five locus case in [5, §.7].

5
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Similarly, one extends to the five species system the four interaction coordinates u111, u110, u011, u101

defined by (1) above in the following fashion:

�⇤⇤⇤kl =
1X

j1=0

1X

j2=0

1X

j3=0

(�1)⇤j1+⇤j2+⇤j3
wj1j2j3kl

�⇤⇤k⇤l =
1X

j1=0

1X

j2=0

1X

j4=0

(�1)⇤j1+⇤j2+⇤j4
wj1j2kj4l

�⇤⇤kl⇤ =
1X

j1=0

1X

j2=0

1X

j5=0

(�1)⇤j1+⇤j2+⇤j5
wj1j2klj5

�⇤k⇤l⇤ =
1X

j1=0

1X

j3=0

1X

j5=0

(�1)⇤j1+⇤j3+⇤j5
wj1kj3lj5

�⇤kl⇤⇤ =
1X

j1=0

1X

j4=0

1X

j5=0

(�1)⇤j1+⇤j4+⇤j5
wj1klj4j5

�k⇤l⇤⇤ =
1X

j2=0

1X

j4=0

1X

j5=0

(�1)⇤j2+⇤j4+⇤j5
wkj2lj4j5

�kl⇤⇤⇤ =
1X

j3=0

1X

j4=0

1X

j5=0

(�1)⇤j3+⇤j4+⇤j5
wklj3j4j5

�⇤k⇤⇤l =
1X

j1=0

1X

j3=0

1X

j4=0

(�1)⇤j1+⇤j3+⇤j4
wj1kj3j4l

�k⇤⇤l⇤ =
1X

j2=0

1X

j3=0

1X

j5=0

(�1)⇤j2+⇤j3+⇤j5
wkj2j3lj5

�k⇤⇤⇤l =
1X

j2=0

1X

j3=0

1X

j4=0

(�1)⇤j2+⇤j3+⇤j4
wkj2j3j4l.

As before, the notation ⇤ ⇤ ⇤ indicates three loci out of five. The remaining loci k, l are assumed to be fixed
and either kl = 00, kl = 01, kl = 11 or kl = 10. Moreover, the sums are taken over integer numbers between
0 and 1.

Given these extended interaction coordinates also allows us to extend the circuits a-t to the five species
setting. To do this, it is enough to consider the circuit formulas a-t given above, and replace the ui1,i2,i3 with
the corresponding extended interaction coordinates. The biological and geometric interpretation of these
interaction formulas can easily be deduced from the lower dimensional ones (given in [5] for the three species
case).

Similarly one also extends the 24 � 5 = 11 interaction coordinates ui1,...,i4 defined by equation (1) and
n = 4.

5 Two disjoint families of interactions

In the following, we are interested in comparing the outcomes of two disjoint families of interaction formulas in
the five bacterial species setting. The first family is smaller in size and consists of the standard interactions.
These involve a variety of di↵erent combinations of bacterial species, without involving excessively many
computations per test.

The second family (non-standard interactions) consists of a large number of di↵erent interaction formulas
recursively defined. These interactions are more accurate in describing the interaction of the bacterial
combinations under inspections and depend on the presence of the bystanders [5].

6
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These two families of interactions we consider in this work are new and inspired by [6] and [4] (the second
reference for standard tests).

5.1 Standard interactions

Consider the two species interaction formula, given by:

u11 = w00 + w11 � w01 � w10

where w00 indicates a phenotype, such as daily fecundity, time to death, CFU or development rate, associated
to the (empty) bacterial combination 00, and similarly for w11, w01 and w10. Biologically, the meaning of
this interaction formula is well understood: it compares the phenotype contributions of the wild and double
mutant with the phenotype contributions of the single mutants. Geometrically, the summands of u11,
w00, w11, w01 and w10, are indexed by the four vertices of a unital square.

We then consider the following generalizations of u11 for the 3-, 4- and 5-species system:

u111 = w000 + w011 + w101 + w110 � w100 � w010 � w001 � w111

u1111 = w0000 + w1100 + w0110 + w0011 + w1010 + w0101 + w1001 + w1111

� w1000 � w0100 � w0010 � w0001 � w1011 � w1101 � w0111 � w1110

u11111 = w00000 � w00001 � w00010 � w00100 � w01000 � w10000 + w11000

+ w10100 + w10010 + w10001 + w01100 + w01010 + w01001 + w00110

+ w00101 + w00011 � w11100 � w11010 � w11001 � w10110 � w10101

� w10011 � w01110 � w01101 � w01011 � w00111 + w11110 + w11101

+ w11011 + w10111 + w01111 � w11111.

In the following, we simply call u11 the 2-way interaction, u111 the 3-way interaction, u1111 the 4-way
interaction, and u11111 the 5-way interaction. From the given formulas it is clear that these interactions are
defined by 4, 8, 16, and 32 terms, respectively. The signs change according to the definition of the interaction
coordinate function given in equation (1). Biologically, one can say that each such 3, 4 and 5-way interaction
compares the contribution of phenotypes when an even number of bacterial combinations (equivalent to
mutations) were inserted versus contributions of phenotypes measured when an odd numbers of bacterial
combinations have been inserted (e.g. w00 and w11 vs w01 and w10).

From the 2-way interaction above one deduces a further 10 two-way interactions in a five species system
by considering two loci and leaving the remaining three loci not mutated (i.e. the remaining bacterial species
are not present). The three-way interaction gives rise to 10 further three-way interactions of this type, arising
by considering three loci and letting the remaining ones not mutated. Similarly, the four-way interaction
yields 5 similar four-way interactions by letting the remaining species absent. Together, this approach gives:

✓
5

2

◆
+

✓
5

3

◆
+

✓
5

4

◆
+

✓
5

5

◆
= 26 (3)

di↵erent higher order interactions in a five species system, which we call standard interactions. All of these
standard interactions compare certain phenotype contributions indexed by an even number of bacteria species
present, versus an odd number of bacteria species present. The number of standard interactions we found
in Equation (3) matches the results of [4].
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To summarize, the standard interactions involving two loci in a five species system are:

u00⇤⇤0 = w00000 + w00110 � w00010 � w00100

u⇤⇤000 = w00000 + w11000 � w01000 � w10000

u⇤0⇤00 = w00000 + w10100 � w00100 � w10000

u0⇤⇤00 = w00000 + w01100 � w00100 � w01000

u⇤00⇤0 = w00000 + w10010 � w00010 � w10000

u0⇤0⇤0 = w00000 + w01010 � w00010 � w01000

u00⇤0⇤ = w00000 + w00101 � w00001 � w00100

u⇤000⇤ = w00000 + w10001 � w00001 � w10000

u0⇤00⇤ = w00000 + w01001 � w00001 � w01000

u000⇤⇤ = w00000 + w00011 � w00001 � w00010

These u-interactions arise from the 2-way interaction and always involve two species (indicated with ⇤)
out of five leaving the other three species absent. Geometrically, these u-interactions involve the four vertices
of certain square faces inside a 5-dimensional cube G.

The standard interactions, which involve three species out of five, will be denoted by u and are obtained
from the 3-way interaction. These u-interactions involve the eight vertices of the specified cubes inside G:

u00⇤⇤⇤ = w00000 + w00011 + w00101 + w00110 � w00100 � w00010 � w00001 � w00111

u⇤⇤⇤00 = w00000 + w01100 + w10100 + w11000 � w10000 � w01000 � w00100 � w11100

u⇤⇤0⇤0 = w00000 + w01010 + w10010 + w11000 � w10000 � w01000 � w00010 � w11010

u⇤0⇤⇤0 = w00000 + w00110 + w10010 + w10100 � w10000 � w00100 � w00010 � w10110

u0⇤⇤⇤0 = w00000 + w00110 + w01010 + w01100 � w01000 � w00100 � w00010 � w01110

u⇤⇤00⇤ = w00000 + w01001 + w10001 + w11000 � w10000 � w01000 � w00001 � w11001

u⇤00⇤⇤ = w00000 + w00011 + w10001 + w10010 � w10000 � w00010 � w00001 � w10011

u⇤0⇤0⇤ = w00000 + w00101 + w10001 + w10100 � w10000 � w00100 � w00001 � w10101

u0⇤⇤0⇤ = w00000 + w00101 + w01001 + w01100 � w01000 � w00100 � w00001 � w01101

u0⇤0⇤⇤ = w00000 + w00011 + w01001 + w01010 � w01000 � w00010 � w00001 � w01011

The following five standard interactions arise from the 4-way interaction described by u1111 above and involve
four species out of the five, leaving out the remaining bacterial community:

u⇤⇤⇤⇤0 = w00000 + w11000 + w01100 + w00110 + w10100 + w01010 + w10010 + w11110

� w10000 � w01000 � w00100 � w00010 � w10110 � w11010 � w01110 � w11100

u⇤⇤⇤0⇤ = w00000 + w11000 + w01100 + w00101 + w10100 + w01001 + w10001 + w11101

� w10000 � w01000 � w00100 � w00001 � w10101 � w11001 � w01101 � w11100

u⇤⇤0⇤⇤ = w00000 + w11000 + w01010 + w00011 + w10010 + w01001 + w10001 + w11011

� w10000 � w01000 � w00010 � w00001 � w10011 � w11001 � w01011 � w11010

u⇤0⇤⇤⇤ = w00000 + w10100 + w00110 + w00011 + w10010 + w00101 + w10001 + w10111

� w10000 � w00100 � w00010 � w00001 � w10011 � w10101 � w00111 � w10110

u0⇤⇤⇤⇤ = w00000 + w01100 + w00110 + w00011 + w01010 + w00101 + w01001 + w01111

� w01000 � w00100 � w00010 � w00001 � w01011 � w01101 � w00111 � w01110

Geometrically, these interactions involve the 16 vertices of the specified 4-cubes inside G. The last standard
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interaction is simply given by the following expression involving all five species and all 32 fitness values:

u⇤⇤⇤⇤⇤ = u11111

= w00000 � w00001 � w00010 � w00100 � w01000 � w10000 + w11000

+ w10100 + w10010 + w10001 + w01100 + w01010 + w01001 + w00110

+ w00101 + w00011 � w11100 � w11010 � w11001 � w10110 � w10101

� w10011 � w01110 � w01101 � w01011 � w00111 + w11110 + w11101

+ w11011 + w10111 + w01111 � w11111.

Geometrically, this interaction involves all vertices of G. In Figure 1 below we highlight the regions
delimited by the vertices defining the 26 standard interactions described above inside a projection of a five
cube G. In all cases, the sign (+ or �) of the summand (i.e. the phenotype being added) is defined by the
the number of bacterial species involved.

For example, in a three bacterial system consisting of the following 8 bacterial combinations G =
{000, 001, 010, 100, 110, 011, 101, 11} there are three standard interactions involving two out of three species:

u⇤⇤0 = w000 + w110 � w100 � w010

u⇤0⇤ = w000 + w101 � w100 � w001

u0⇤⇤ = w000 + w011 � w010 � w001

together with the 3-way interaction u111, described above.

5.2 Non-standard interactions

In the following, we compare the results of these standard tests with the corresponding non-standard tests
in a five species system. By this we mean all the interactions we described in Section 4 which are di↵erent
from the standard interaction formulas described in Section 5.1. Thus, non-standard tests are higher-order
interactions arising by allowing the species not present under the standard test, circuits and interaction
coordinates to be occupied by bystanders, whose presence/absence is constant across the species considered
in the standard test. It follows that non-standard tests measure how the context of additional species change
the interaction e↵ects.

The standard tests and non-standard tests we consider in this work are examples of the more generally
defined marginal and conditional interactions in genetics context. To specify the species we condition on
and to di↵erentiate among types of conditional interactions, we refrain from using this terminology.

We computed 910 di↵erent non-standard interactions and 26 di↵erent standard interactions. From Section
4 and the recursive nature of the five dimensional cube, it follows that the non-standard interactions we
inquire have a well understood biological and geometric interpretation.

Finally, we note that despite the formulas describing non-standard and standard interactions all being
di↵erent, the two sets of interactions are not statistically independent as they use the same underlying data
sets.

5.3 Significance testing of interactions

In order to decide whether an interaction is non-zero, we took the uncertainty in the phenotype measurements
into account and devised a statistical test as follows. Since the phenotype measurements come with their
standard errors, we computed the corresponding propagation of error for each interaction (standard and
non). This error was determined by taking the square root of the sum of squares of the standard errors
involved in each interaction formula. For example, for u11, the propagated standard error s(u11) is

s(u11) =
q
s

2
00 + s

2
11 + s

2
01 + s

2
10

where s00 denotes the standard error of w00, etc.
Moreover, if di↵erent formulas give rise to the same interaction term, we considered only the formula

yielding the smallest propagation error, that is, the formula involving the least number of operations. For
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instance, each interaction term a, . . . , t can be defined in two ways, one involving a di↵erence between
interaction coordinates and a direct way. The direct way involves less operations, and therefore a smaller
propagation error.

We then determined significant interactions in the following way. We assumed that each interaction
formula comes from a Gaussian distribution with mean 0 and standard deviation given by the computed
propagation error. For each interaction u, we performed a two-sided null hypothesis test. The null hypothesis
states that the true value of the interaction is u = 0, versus the alternative hypothesis that u 6= 0. We then
considered an interaction statistically significant if the p-value was below 0.05. This means, that if the null
hypothesis was true, the probability of obtaining the result of the interaction u we computed would be 5%.

In total, we tested 936 interactions (26 standard tests plus 910 non-standard tests). To account for the
multiple comparisons, we corrected all p-values using the Benjamini-Hochberg procedure in order to control
the false discovery rate at 5%; that is, we eventually considered an interaction statistically significant if the
corrected p-value was below 0.05.

6 Supplemental Results of Interaction Testing

In this section we summarize the main findings we obtained through the computations described above. In
the first part, we focus on the smaller family of higher-order interactions and on the second part we compare
the outcomes of these interactions with non-standard interactions. In the last part, we focus on specific
standard and non-standard interactions which compare the wild type and the triple mutants in di↵erent
ways.

6.1 Results for standard interactions

To summarize the results of the standard interactions presented above we average the results of the standard
2-, 3-, 4- and 5-way tests. Thus, we let a2 be the sum of all standard 2-way interactions u⇤⇤ divided by the
number of 2-way standard interactions (which is 10). Similarly, for a3, a4 and a5.

Term CFU dev fd td

a2 -117000 -0.235 -0.0524 4.09
a3 8920 -0.472 0.175 5.44
a4 141000 -0.552 0.274 8.95
a5 400000 -0.990 0.948 13.4

Table 2: The terms a2, . . . , a5 for the four phenotypes of fecundity per day (fd), CFU, time to death (td)
and development rate (dev).

From Table 2 we deduce that in average the interaction tends to increase with the number of terms in the
standard formulas. We also note that the sign of the interaction (positive or negative) is already determined
by the sign of the average 2- and 3-way interaction. This means that when the average contribution of the two
(or three) species combinations is higher than the average contribution of the single species combinations,
also the average contribution of an even number of species is higher than the average contribution of an
odd number of species (regardless of how many even or odd species are considered 2,4,8,16) as determined
by the standard tests for interactions. Together with the results of Table 2, we also consider the average
interactions of the standard 2-,3-, 4- and 5-way interactions normalized by the number of present bacterial
species. That is n2 = a2/2,n3 = a3/3, n4 = a4/4 and n5 = a5/5, see Table 3 for the corresponding results.

10

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2017. ; https://doi.org/10.1101/232959doi: bioRxiv preprint 

https://doi.org/10.1101/232959


Term CFU dev fd td

n2 -58531 -0.117 -0.026 2.043
n3 18288.333 -0.169 0.034 2.035
n4 35312.5 -0.138 0.069 2.236
n5 80094 -0.198 0.190 2.671

Table 3: The terms n2, . . . , n5 for the four phenotypes of fecundity per day (fd), CFU, time to death (time
d) and development rate (dev).

It is clear from examining the average interaction values (i.e. the terms a2, . . . , a5 ) that the total con-
tribution increases as the number of species increases. However, when we normalize these average values to
the number of species, we see a more constant contribution for each individual species, see Table 3.

Thus, if interactions quantify the degree to which we can predict the phenotype of the microbiome when
a new species is added, overall the microbiome is less predictable as we add additional species. However,
on a per-species basis, the degree of unpredictability stays constant. And if we consider the number of
combinations, the unpredictability decreases. Thus, while our analysis indicates that the microbiome problem
increases in complexity as more species are added, there is reason for hope. For instance, if we discover a
rule that determines a priori which non-standard test will be additive (versus showing interaction), the
predictability of the microbiome will increase as we add species. However, our fundamental conclusion
is that the relationships between species rather than the species themselves produce increasingly complex
interactions. Therefore, our e↵orts at building a predictable framework should focus on the interactions
between species as much as on the interactions between the individual species themselves.

To this point, when we compare the distributions of the raw data with the results of the standard
interactions, we see that linear trends in the raw data do not necessary translate to the same trends in the
standard interaction data (Figure S6). For example, consider time to death: the raw data indicates that
increasing the number of bacterial species results in a decrease in the time to death. However, the standard
tests indicate that interaction tends to increase with the number of loci involved (see Table 2), and hence
with the numbers of terms in the standard interaction formulas. Finally, from the data in the Fig. S13, we
deduce that the above observations remain valid by considering the (fewer) significant standard interactions
rather than all standard interactions (Figure S6). For completeness, we also computed Pearson’s correlation
coe�cients on all 26 standard interactions, and on the raw CFUs, development rate, daily fecundity, time
to death data. See Table 4. The tests in bold in Table 4 which reached significance level (p < 0.05) are time
to death versus CFUs with a p-value of 0.0011. We also see that the correlation might change sign when
passing from the raw data to the computed standard interactions (as it is, for example, for time to death vs
development rate).

CFU Development rate Daily fecundity Time to death

CFU - -0.46 (p=0.0082) 0.14 (p=0.4516) -0.55 (p=0.0011)
Development rate -0.38 (p=0.0523) - -0.34 (p=0.0558) 0.35 (p=0.0502)
Daily fecundity 0.13 (p=0.5403) -0.46 (p=0.0178) - -0.45 (p=0.0103)
Time to death 0.10 (p=0.6222) -0.49 (p=0.0120) 0.43 (p=0.0290) -

Table 4: Pearson’s correlation coe�cients and significance level for all 26 standard interactions

and raw data. Below the diagonal, we indicate Pearson’s correlation coe�cients and the corresponding
p-values for all standard tested interactions (26 samples), similarly above the diagonal for the raw data (32
data points).

6.2 Results for all computed interactions

In this section, we describe the results contained in Fig. 3 and Fig. S6 in the main text, obtained while
computing the 910 non-standard interactions together with 26 standard interactions for the phenotypes of
CFU, development rate, daily fecundity, time to death. As main findings we showed that there are many
significant positive and negative interactions among bacterial species in fruit flies. Moreover, among all
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Figure 1: Geometric description of the 26 standard interactions. The highlighted regions inside the
projections of the 5-dimensional cube indicate the vertices involved in the corresponding interaction. The
interaction u11111 is defined by all 32 vertices and therefore omitted.
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intricate ways bacterial species interact with each other we found that for some phenotypes (CFUs and daily
fecundity) the standard interactions essentially fully capture interaction trends measured also by the non-
standard interactions. However, for development rate and time to death we found that many new significant
interactions arise under mixing procedures which cannot be quantified by the standard tests alone. Moreover,
comparing the correlation Table 4 with Table 6 we found correlated interactions between phenotypes where
neither the raw measurements nor the standard tests were correlated. More results, on all the computed
correlations are in Figure S6 (main text).

The coe�cients ai and nj for all non-standard interactions are then as indicated in the following Table
5. The average contributions of the circuit interactions vanish and are hence omitted in the table.

Term CFU dev fd td

a2 -49672.063 0.050 -0.023 0.211
a3 -92665.250 0.158 -0.210 0.763
a4 -176164.545 0.170 -0.376 1.492
a5 -250353.846 0.147 -0.400 3.252
n2 -12418.016 0.025 -0.011 0.053
n3 -11583.156 0.012 -0.006 0.095
n4 -11010.284 0.011 -0.024 0.093
n5 –8075.931 0.005 - 0.013 0.105

Table 5: The columns dev indicates the coe�cients for development rate, daily fecundity for daily fecundity
and timed for time to death.

Finally, we underpin the above findings by testing if the two probability distributions corresponding
to standard and non-standard interactions come from the same continuous distributions. Since standard
tested and non-standard tests are computed from the same underlying data, and are therefore statisti-
cally dependent, to test the di↵erence between the distributions we performed a two-sample and two-sided
Kolmogorov-Smirnov (KS) test. The results of the KS test for the phenotypes of CFU (D = 0.2011, p-value
= 0.2583) and daily fecundity (D = 0.13407, p-value = 0.7539) indicate that there is little evidence to reject
the null-hypothesis of STD tests and non-STD tests coming from the same distributions. On the other hand,
the results of the KS test for the phenotypes of development rate (D = 0.45934, p-value = 4.661 · 10�05)
and time to death (D = 0.50769, p-value = 4.384 · 10�06) suggest that it is unlikely that the STD tests and
non-STD tests come from the same distributions.

CFU Development Daily fecundity Time to death

CFU - -0.18 (p < 0.0005) 0.16 (p < 0.0005) -0.32 (p < 0.0005)
Development -0.67 (p < 0.0005) - -0.35 (p < 0.0005) -0.14 (p < 0.0005)

Daily fecundity 0.52 (p < 0.0005) -0.85 (p < 0.0005) - -0.24 (p < 0.0005)
Time to death -0.70 (p < 0.0670) -0.34 (p= 0.0104) -0.75 (p < 0.0005) -

Table 6: Pearson’s correlation coe�cients and significance level for all tested interactions. Below
the diagonal, we indicate Pearson’s correlation coe�cients and the corresponding p-values for statistically
significant interactions (p < 0.05 after multiple testing correction, between 27 and 78 pairwise complete
comparisons). Similarly, above the diagonal we compute correlations for all non-standard tested interactions
regardless of statistical significance (910 data points).

6.3 Comparisons for the triple mutants

In this section, we explain how interactions involving all 10 three-species combinations in a five species
system behave under mixing, see Fig. S14-S17 in the main text. More specifically, to obtain these figures
we consider the circuits g, i, k, m, n and the interaction coordinate u111. We then lifted these interactions
to the five species system, as described in Section 4.3. In particular, in this way, we obtained that each
such interaction yields 40 interactions in the five species system (as

�5
3

�
= 10 and there are 4 choices for the

bystanders). In each figure (Fig. S14-S17 in the main text) we focused on one phenotype (CFU, development
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rate, daily fecundity or time to death). In each plot we represented with the same color the six interactions
corresponding to g, i, k, m, n and u111. The di↵erent colors then reflect the state of the bystanders: black
if the bystanders are both 00, red if the bystanders are both mutated, and blue (resp. green) if only one
bystander is mutated.

7 Discussion of Interaction Coordinates

Consistently, we see that the same interaction coordinates have correlated values across the di↵erent phe-
notypes that we measured. A simple explanation is that the rich microbial interactions underlying these
phenotypes a↵ect some central aspect of fly physiology that is reflected in multiple life history traits.

With the goal of quantifying higher order interactions we computed various interaction formulas. We
also extracted a set of 26 interaction formulas (which we called standard interactions) and compared them
with the results of 910 (di↵erent) interaction formulas. We found that for certain phenotypes the standard
interactions approximate well the distribution of the other more involved computations. Since the number
of all possible interactions is large, and unknown in general, it is important to find a more parsimonious
approach based on fewer interactions that still capture the main interaction signals. This is particularly
advisable since the number of all possible interactions increases with the number of loci and the relative
contributions coming from each test are mainly small. Moreover, analyzing smaller sets of particularly
expressive and biologically interpretable interactions would not only be computationally more e�cient, but
also facilitate the comparisons of higher order genetic interactions arising in di↵erent biological context (for
example infected fruit flies, or fruit flies treated with antibiotics). Moreover, the recursive approach we
proposed here to define higher order interaction coordinates, as well as the computations we carried out,
easily extends to settings with more loci. Thus, our methodology provides a way to reduce the experimental
burden of examining combinatorial interactions in the microbiome. We also observe that our computations
are based on discrete data points. But since the nature of the phenotypes we analyzed is continuous, it would
be interesting to extend our studies and consider a fitting continuous setting. Finally, our computations and
conclusion consider the propagation of uncertainty in phenotype measurements, but it would be interesting
to develop a quantitative statistical framework accounting for possible sensible noise in the data set.

8 Supplements

8.1 Data transformation

All the interactions we compute are based on and generalize the additive genetic epistasis formula u11 =
w00 + w11 � w01 � w10. This additive formula relates to the multiplicative formula m11 = w00w11 � w01w10

up to a logarithmic transformation. That is, composing the phenotype with a log transformation, we have:

log(w00) + log(w11)� log(w01)� log(w10) = log(w00w11)� log(w01w10).

To highlight that the interactions we find do not depend on the additive approach we choose, we computed the
same interactions as above also for the logarithmic (in base 2) transformation of the data. With no surprise,
the interactions might dependent on the choice of the data transformation. More generally, we conclude by
observing that transformations (possibly) depend on the true distribution of the observed (measured) data.
Since the true distribution of our measurement remains unknown, we find it more reasonable to present our
findings based on the actual measured data.
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Figure 2: Density plot of all tested interactions (standard in red and non standard in blue) for

the log2 transformed data.
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