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Abstract 18	  
 19	  
In the first longitudinal study of bat microbiomes, we find that unlike the pattern described 20	  
in humans and other mammals, the prominent dynamics in Egyptian fruit bats’ fur 21	  
microbiomes are those of change over time at the level of the colony as a whole. Thus, on 22	  
average, a pair of fur microbiome samples from different individuals in the same colony 23	  
collected on the same date are more similar to one another than a pair of samples from the 24	  
same individual collected at different time points. This pattern suggests that the whole 25	  
colony may be the appropriate biological unit for understanding some of the roles of the 26	  
host microbiome in social bats’ ecology and evolution. This pattern of synchronized colony 27	  
changes over time is also reflected in the profile of volatile compounds in the bats’ fur, but 28	  
differs from the more individualized pattern found in the bats’ gut microbiome. 29	  
 30	  
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Introduction 33	  
 34	  

The host-associated microbiome may play a role in the host’s fate on many timescales, 35	  

from the short-term health and behavior of the individual ((1–8)), through the life-long 36	  

ecology and life history of the animal ((9)), to the long-term evolutionary adaptation of a 37	  

species to its environment ((10–12)). However, data regarding non-human vertebrate 38	  

microbiomes, particularly those of skin or fur, are just beginning to accumulate, and our 39	  

understanding of the processes that determine their composition and function is limited. 40	  
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This is particularly true for non-model organisms: to date, few studies have collected 41	  

longitudinal samples of non-human microbiomes in ecologically-realistic settings ((13)). 42	  

In this article we report on the temporal dynamics of the fur and the gut microbiome, 43	  

assessed using 16S rRNA gene amplification, of ten Egyptian fruit bats (Rousettus 44	  

aegyptiacus) in a captive colony (henceforth, the ‘experimental colony’). The colony was 45	  

sampled weekly over a period of 13 weeks, in addition to sparser sampling of all 33 46	  

individuals in this colony and of a few additional individuals in a non-captive colony over 47	  

the same time period (henceforth the 'open colony'). We compare these data to the volatile 48	  

components found in the bats’ fur, collected weekly and analyzed using gas chromatography 49	  

(GC). 50	  

Our findings allow us to address an on-going debate regarding the conceptualization of 51	  

host-microbiome ecology and evolution: some perspectives emphasize the potential utility 52	  

of a holobiont theory, which regards the host and its associated microbial species together as 53	  

a meaningful ecological and evolutionary unit (14, 15). Others focus on a metagenomic 54	  

function-oriented account of the host and its associated microbiota (16, 17). Yet others 55	  

suggest that no such novel theory is required, and that the ecology of the host and its 56	  

associated microbiome can best be understood in terms of existing evolutionary and 57	  

ecological theory, e.g. microbe-environment interaction or generalized multi-species Lotka-58	  

Volterra dynamics (18). This debate also recalls an earlier debate in evolutionary biology 59	  

about levels of selection and ecological dynamics, with different perspectives suggesting the 60	  

gene, the individual, the kin group, or the social group as the meaningful biological unit, 61	  

whose trajectory in time is most useful and meaningful to track (19, 20). The different 62	  

perspectives are not mutually exclusive, however, and may contribute complementary 63	  

insights.  64	  

Our empirical findings in the bats’ fur microbiome suggest a perspective that to the best 65	  

of our knowledge is new, and which informs both the conceptualization of the host-66	  

associated microbiome and the question of the level at which ecological dynamics take 67	  

place. We propose that in some cases the whole colony of host organisms functions as a 68	  

collective host with which the microbiome is associated. 69	  

A range of studies in humans and a few in wild animals have suggested that at certain 70	  

body sites, such as the gut or skin, the primary determinant of the microbiome composition 71	  
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is individual identity (21–29). That is, on average, two microbiome samples from the same 72	  

individual, taken at different time points, will be more similar to one another in their 73	  

composition than two samples from different individuals, even for individuals controlled for 74	  

sex, age, and other variables. Here we report that this regularity is not seen in the 75	  

composition and dynamics of the fur microbiome of a highly social mammal that roosts in 76	  

tight colonies – Egyptian fruit bats. Instead, we find that changes over time in the fur 77	  

microbiome are best described as occurring at the colony level, with inter-individual 78	  

variation playing a secondary role. The pattern seen in the gut microbiome, however, is 79	  

different: some coordinated change in microbiome composition occurs, but this 80	  

phenomenon is secondary to the role of individual identity and sex in determining 81	  

individuals’ gut microbiomes. 82	  

Dynamics of change over time occur in the bats’ fur chemistry as well: the bats’ fur 83	  

constitutes a habitat whose conditions strongly influence the composition of the 84	  

microbiome, and are also affected by it. The idea that an animal's microbiome will shape its 85	  

odor and will thus play a role in its sociality (e.g., via olfactory recognition) has been raised 86	  

multiple times, but studied mostly with respect to the microbiome in scent glands or 87	  

specialized organs involved in olfactory communication ((30–36)). As with the composition 88	  

of the microbiome, our results suggest a colony-level change over time of the bats’ fur 89	  

chemistry. In addition, certain microbial taxa are linked to changes in the furs’ profile of 90	  

volatile compounds. 91	  

 92	  
Results 93	  
        94	  

A total of 518 samples of the fur and gut microbiota of bats, together with 36 samples of 95	  

food and environmental control samples, were analyzed in this study, yielding 7196 non-96	  

chimeric Operational Taxonomic Units (OTUs) at 99% identity. These could be assigned 97	  

(Figure 1) to 581 bacterial species, belonging mainly to the phyla Firmicutes (mean relative 98	  

abundance in fur: 46%, and in gut: 39%) and Proteobacteria (mean relative abundance in 99	  

fur: 30%, in gut: 38%). The near absence of Bacteroidetes, usually prevalent in animal guts 100	  

(37), is noteworthy and likely related to the fruit bats’ unique habits and diet. To minimize 101	  

weight during flight, bats chew the fruit, ingesting the juices and discharging much of the 102	  

remaining pulp; ingested fruit passes rapidly through the digestive tract, with a short 103	  
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retention time of ~40 minutes (38, 39). The fruit bats’ diet thus relies heavily on 104	  

consumption of simple sugars; accordingly, the intestine is relatively short, undifferentiated 105	  

and with no observed cecum. It seems quite possible that this short time, and the non-106	  

compartmental structure of the digestive tract, do not allow appropriate conditions for the 107	  

anaerobic fermentation of complex sugars that the Bacteroidetes typically carry out. Fur 108	  

samples were far more diverse than gut samples (mean Shannon index 5.15, as opposed to 109	  

5.84, p<2.2e-16), yet there was also a high degree of overlap between the communities, with 110	  

Streptococcus salivarius (mean abundance in fur: 16%, in gut: 13%) being the most 111	  

common species in both sites. The microbiome composition in samples from the 112	  

experimental colony was comparable to that of the open colony, a colony of fruit bats that 113	  

roost in our cave-like facility, but behave as wild bats, flying nightly out to forage (Figure 1, 114	  

and see below). 115	  

  116	  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2017. ; https://doi.org/10.1101/232934doi: bioRxiv preprint 

https://doi.org/10.1101/232934


	   5	  

 117	  

 118	  
Figure 1. Microbial composition of fur and gut samples. The average relative abundance 119	  

of each taxon per site is shown. All taxa with a mean relative abundance < 1% were grouped 120	  

to a single category named "Other". (a) Phylum level; (b) Order level; orders belonging to 121	  

the Proteobacteria phylum are in shades of blue; orders belonging to the Firmicutes phylum 122	  

are shown in shades of green. 123	  

 124	  

a	  

b	  
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The most striking observation, and the focus of this report, was a coordinated change in 125	  

fur microbiome composition over time across all individuals (Figure 2a)1. This pattern is 126	  

strong relative to the lack of visual clustering of the samples according to individual identity 127	  

(Figure 2b). A permutation analysis of variance supports this visual observation: the date on 128	  

which each sample was taken explains circa 35% of the fur microbiome variance in the 129	  

experiment colony, while individual identity explains only circa 8% of the variance 130	  

(PERMANOVA test using the Adonis method in R, p<0.001). To validate this finding, we 131	  

conducted a comparison of the distances between pairs of samples. We found (Figure 3a) 132	  

that samples from different individuals on the same date are, on average, more similar to 133	  

one another than samples taken on different dates but from the same individual (Kruskal-134	  

Wallis test, p-value<0.001; confirmed using a Mantel test to avoid pseudo-replication, p-135	  

value<0.001; See analogous analyses with other distance measures in Supplementary 136	  

Section 3).  137	  

This finding is supported by a number of additional analyses (see Supplementary 138	  

Sections 2 and 3): (1) Qualitatively similar results are obtained when using different 139	  

weighted and unweighted distance measures (Binary, Bray-Curtis, Jaccard, Jensen-140	  

Shannon divergence, unweighted Unifrac, and Weighted Unifrac), and considering 141	  

different bacterial taxonomic levels. (2) The pattern of coordinated change of the fur 142	  

microbiome across the whole colony was even clearer when we included samples from the 143	  

entire colony. The colony consisted of 33 individuals, each of which was sampled once at 144	  

the beginning of the experiment and again at its end. (3) Results were robust to multiple 145	  

conservative data filtering schemes, which ensured that possible bacterial contamination 146	  

had been removed from the dataset (see Methods and Supplementary Section 2). 147	  

These colony-level changes over time are not easily explained by the study of the 148	  

dynamics of particular microbial taxa (see examples of such dynamics in supplementary 149	  

Section 4). Instead, the colony-level dynamics seem to be an emergent property of the host-150	  

microbiome system as a whole. The dynamics can be observed most clearly when 151	  

considering the overall composition of the bats’ microbiomes. They are most obvious when 152	  

the microbiome composition is measured in terms of only the presence or absence of each 153	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The bacterial community in each sample was characterized using multiplexed 16S rRNA 
gene amplicon sequencing. See Methods. 
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taxon and not their relative abundances, suggesting that a prominent part of the change in 154	  

time occurs in microbial species that are generally found at low frequencies (see 155	  

Supplementary Section 2). 156	  

 157	  

 158	  

 159	  
Figure 2: The prominent pattern in the fur microbiome is that of colony-level 160	  

change over time. Samples from the fur of the ten focal bats in the experiment colony 161	  

(weekly samples, over 13 weeks), plotted using PCoA of the Jaccard distance between 162	  

samples. Each point represents a sample. In (a), each sample is colored according to its 163	  

date of sampling; dates are divided into the four time quarters of the 13-week period of 164	  

the experiment (quarters 1-4 are denoted by blue, purple, orange, and green, 165	  

respectively). The clustering is seen to correspond to the quartile of sampling. In (b), 166	  

each sample is colored according to the individual bat from which it was taken. No clear 167	  

clustering according to individual identity is visually apparent. Here and in all other 168	  

PCoA plots, each ellipse represents the region around the center of mass of the samples 169	  

in the group (see Methods).  170	  

 171	  
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 174	  
Figure 3: Similarity of pairs of samples in the experiment colony, from the same 175	  

individual or from the same date. In the fur microbiome (a), pairs of samples from 176	  

different individuals, collected on the same date, are more similar than pairs of sample 177	  

from the same individual from different dates. In the gut microbiome (b), pairs of gut 178	  

samples from different individuals, collected on the same date, are less similar than pairs 179	  

of samples from the same individual on different dates. Box plots show the median and 180	  

distribution of the Jaccard distance between all pairs of samples in each of these 181	  

categories; hinges represent distribution quartiles, and notches the 95% confidence 182	  

intervals of the medians. Differences between all distributions are highly significant 183	  

(Kruskal-Wallis test, p<0.0001). 184	  

 185	  

Fur microbiome samples from the open colony, collected on the same dates, do not share 186	  

the temporal trajectory of the experimental colony, ruling out the possibility that the inter-187	  

individual similarities result from artifacts in the collection or sequencing processes 188	  

(Supplementary Section 1). The samples from the open colony do, however, recapitulate the 189	  

pattern found in the experiment colony: they show a significant colony-level change over 190	  

time, supporting the generality of the finding and showing that it is not an artifact of 191	  

captivity (Supplementary Section 1, Figures S1.1-S1.2; sample date explains 60% of the 192	  

variance and individual identity explains 10% of the variance according to PERMANOVA; 193	  

p<0.001). The fur microbiomes of the bats in the two colonies were similar: 96% of the 194	  

species found in the open colony were also found in the experiment colony. However, 195	  
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microbial alpha diversity was somewhat higher in the experiment colony, with mean 196	  

Shannon index of 6.39 in the experimental colony, and 5.97 in the open colony (a 197	  

statistically significant difference: two-tailed t-test, p<0.001; calculated on presence/absence 198	  

data, at the OTU level, on the dataset cleaned from potential contaminants; see additional 199	  

measures and further details in supplementary Section 6). 200	  

A parallel analysis of the gut microbiomes yielded a different pattern: although sampling 201	  

date was found to be a statistically significant explanatory variable, explaining circa 10% of 202	  

the variance among samples (PERMANOVA, p<0.001), it was secondary to individual 203	  

identity, which explained approximately 30% of the variance (PERMANOVA, p<0.001). 204	  

Accordingly, in agreement with the findings reported for a range of body sites in humans 205	  

and other vertebrates (24, 25, 29, 40), pairs of gut microbiome samples from the same 206	  

individual are more similar to one another than pairs of samples from the same day but from 207	  

different individuals (Figure 2b; Kruskal-Wallis rank sum test, p-value<0.001; confirmed 208	  

using a Mantel test to avoid pseudo-replication, p-value<0.001).  209	  

 210	  

The difference between the main factors driving the dynamics in the two body sites, date 211	  

in the fur and individual in the gut, highlights the colony level dynamics as a feature not of 212	  

the bat microbiomes in general, but of the bat fur microbiome specifically. This is true 213	  

despite the fact that the diet of all individuals in the captive colony was almost identical, a 214	  

factor that should have increased the similarity of individuals’ gut environments and 215	  

therefore their microbiomes.  216	  

The fur microbiome is expected to be strongly influenced by the fur chemistry, and also 217	  

to influence that chemistry. To examine the correlation between fur microbiome and fur 218	  

volatiles, we collected fur samples from the experimental bats every two weeks and 219	  

analyzed the composition of their volatile molecules by gas chromatography (GC). We 220	  

found a pattern analogous to the one seen in the fur microbiome: the prominent factor 221	  

governing variability is a change in the volatile profile over time, which is common across 222	  

individuals (Figure 4a; Adonis PERMAONVA, variance explained: 27%, p<0.001). As in 223	  

the case of the microbiome, individual identity is less important in explaining the 224	  

composition of samples and it does not reach a significance threshold in a PERMANOVA 225	  

test (p=0.43; see also Figure 4b). 226	  
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 227	  
Figure 4: Colony and individual-level patterns in volatiles’ profiles. Samples of the 228	  

profile of volatile compounds in the fur of the ten focal bats in the experiment colony, 229	  

plotted using PCoA of the Bray-Curtis dissimilarity measure between samples. Each 230	  

point represents a sample. (a) Samples are colored according to collection date; dates are 231	  

divided into the three time trimesters of the 13-week period of the experiment 232	  

(trimesters 1-3 are colored blue, red, and yellow, respectively). Only 3 periods (vs. 4 for 233	  

the microbiome) were used for volatile analysis due to the smaller number of samples. 234	  

(b) Samples are colored according to the individual from which they were collected. 235	  

Ellipses represent the areas around centers of mass (see Methods). 236	  

 237	  

The concentrations of a number of volatile compounds were significantly correlated 238	  

with the abundance of certain bacterial taxa in the fur, which are known producers of these 239	  

volatile metabolites: Cholestane diene was significantly positively correlated with three taxa 240	  

of the order Actinomycetales (genera	   Nesterkonika,	   Arthrobacter and	   Brevibacterium). 241	  

Palmitic acid was significantly correlated with the genus	   Neisseria. Oleic acid was	  242	  

significantly correlated with the genera Alkanindiges and Neisseria. All three compounds 243	  

are known to play a role in communication among vertebrates (see supplementary section 244	  

5). This suggests that some of the change in volatiles over time might reflect the respective 245	  

colony-level changes in the fur microbiome (the volatile dynamics remained significantly 246	  

dependent on time even when the dataset is reduced to include only these bacteria-related 247	  

PC
oA

1&

PCoA2&

jsd unifrac wunifrac

binary bray jaccard

-0.2 -0.1 0.0 0.1 0.2 0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2

-0.2 0.0 0.2 -0.25 0.00 0.25 -0.2 0.0 0.2 0.4

-0.25

0.00

0.25

-0.4

-0.2

0.0

0.2

-0.4

-0.2

0.0

0.2

0.4

-0.4

-0.2

0.0

0.2

-0.25

0.00

0.25

-0.2

0.0

0.2

Axis.2

Ax
is

.1

V
avshalom

barak

boris

haily

queen latifa

shai

tom

uri

wendy

xsenia

MDS on various distance metrics for bats experiment data

1&
2&
3&&
4&&
5&&
6&&
7&&
8&&
9&
10&

(a) (b)
bray

-0.1 0.0 0.1

-0.2

0.0

0.2

Axis.2

A
x
is

.1

1.0

1.5

2.0

2.5

3.0
V

MDS on various distance metrics for bats experiment data
bray

-0.1 0.0 0.1

-0.2

0.0

0.2

Axis.2

A
x
is

.1

V
avshalom

barak

boris

haily

queen latifa

shai

tom

uri

wendy

xsenia

MDS on various distance metrics for bats experiment data

Bat&ID&

jsd unifrac wunifrac

binary bray jaccard

-0.2 -0.1 0.0 0.1 0.0 0.2 0.4 -0.1 0.0 0.1 0.2 0.3

-0.1 0.0 0.1 0.2 0.3 -0.4 -0.2 0.0 0.2 -0.1 0.0 0.1 0.2 0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.1

0.0

0.1

-0.2

0.0

0.2

-0.3

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.2

-0.1

0.0

0.1

0.2

Axis.2

Ax
is

.1

colony
old

1

2

3

4
as.numeric(rivonim)

MDS on various distance metrics for bats experiment data

PCoA2&

PC
oA

1&

PC
oA

1&
a b

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2017. ; https://doi.org/10.1101/232934doi: bioRxiv preprint 

https://doi.org/10.1101/232934


	   11	  

volatiles: Adonis PERMANOVA, variance explained: 20%, p<0.005,). It is likely that the 248	  

two modalities – fur chemistry and microbiome composition – interact with one another. 249	  

 250	  

 251	  
  252	  
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Discussion 253	  

 254	  
Unlike findings in other vertebrates, the microbiome of the fur of the Egyptian fruit-bat 255	  

changes over time in a manner that is coordinated across the whole colony; this coordination 256	  

is the prominent driver of variation in our data. Why are the temporal dynamics of the 257	  

Egyptian fruit bat fur microbiome different from those of microbiomes in other studied 258	  

mammals (e.g. (26, 29))? We propose that the frequent physical interactions between the 259	  

bats in a colony (the bats perch in very tight clusters) have a homogenizing effect on their 260	  

fur microbiomes, leading to dynamics in which the fur microbiomes of all individuals in the 261	  

colony function together as a single ecosystem or super-organism. The changes over time 262	  

may be driven by external factors, such as changes in the physiological state, in diet, or 263	  

seasonal changes (although such changes were largely controlled in our experiment; see 264	  

supplementary Section 8), but also by processes that are “internal” to the bacterial 265	  

community such as neutral drift, local adaptation, and ecological succession.  266	  

Similar dynamics to those we find have been described in datasets from individuals 267	  

along a developmental trajectory such as studies of human infant microbiomes (41–43), 268	  

suggesting an ecological succession process, driven by physiological maturation of the host. 269	  

The vast majority of individuals in our study were fully mature, so this cannot be the 270	  

underlying driver of the pattern we see. However, a physiological change of that nature may 271	  

account for some of the microbiome change over time in our experiment colony: for 272	  

example, changes in the females' reproductive state, which were correlated across most 273	  

females and that became pregnant at about the same time, accounted for 4% of the 274	  

microbiome variation (PERMANOVA, Adonis method in R, p<0.0001). 275	  

Our second main finding is that the gut microbiome is not characterized by such a 276	  

prominent change in time as seen in the fur. Why are the dynamics of the fur and the gut 277	  

microbiomes so qualitatively different? One possibility is that the difference is due to the 278	  

relative role that common environmental factors play in each of these two modalities: the fur 279	  

environment is strongly influenced by external factors, while the gut environment is 280	  

strongly affected by the individual’s physiology and immune system, which buffer it from 281	  

such environmental influences as diet, which is largely common to all individuals in our 282	  

colony. This buffering can be seen as adding a “personalizing” effect, increasing the role of 283	  
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individual identity determining gut microbiome composition. Another possibility is that the 284	  

different dynamics stem from differences in dynamics of bacterial transmission: the bats’ 285	  

behavior, which includes frequent and extensive physical contact, has a homogenizing effect 286	  

on the fur microbiomes, a process from which the gut microbiome is relatively shielded. 287	  

From the bacterial perspective, one can think of gut bacteria as facing a greater transmission 288	  

limitation than fur bacteria, creating a structured meta-population in which each individual's 289	  

gut constitutes an “island”, allowing both neutral and selectively-driven divergence between 290	  

the microbiomes in different guts. These possibilities are not mutually exclusive. 291	  

The functioning of the colony’s fur microbiome as a single, highly connected, ecosystem 292	  

might have important implications on the behavior and ecology of bats and other social 293	  

species that roost in close proximity. Analysis of the volatiles found on the bats' fur suggests 294	  

that the fur microbiome may play a role in maintaining the social structure of the colony by 295	  

facilitating olfactory-based recognition of colony members. Analysis of the volatiles in the 296	  

two colonies (experimental and wild) at a single time point revealed that the two differ (see 297	  

supplementary Section 5). 298	  

Bats’ associated microbes have recently received much attention from two specific 299	  

perspectives: the first views bats as potential reservoirs of zoonotic pathogens that may 300	  

infect humans (44–47). The second focuses on the pathogens of the bats themselves, 301	  

particularly on dynamics of the white nose syndrome (48, 49) a serious emerging bat 302	  

epidemic in bats (50, 51). The highly correlated dynamics of the colony members’ fur 303	  

microbiomes suggests that in bats, and perhaps more broadly – in social species that roost in 304	  

great proximity – the resilience to some types of disease may be largely a colony-level trait, 305	  

and less a feature of individuals. This has obvious implications, potentially influencing plans 306	  

for intervention that would mitigate the effects of the white nose syndrome or minimize the 307	  

prevalence of specific zoonotic pathogens. 308	  

From a more theoretical evolutionary standpoint, our findings suggest that selective 309	  

pressures on and through the fur microbiome, in species that are characterized by frequent 310	  

physical contact between individuals, may act most prominently at the colony level, and not 311	  

at the level of the individual, as is commonly assumed. This implies that it may be highly 312	  

informative to supplement the study of host-microbiome dynamics with a meta-community 313	  
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framework that incorporates hierarchically structured transmission dynamics and in which 314	  

colonies are the entities whose fate is studied. 315	  

 316	  
 317	  
Methods 318	  
 319	  
Data collection 320	  

 321	  
 Two major colonies of bats are held in the Tel Aviv University zoological garden facility.  322	  

The first, denoted the experimental colony, consisted of 33 bats at the time of this study. The 323	  

second, denoted the open colony, consisted of 35 free ranging bats that can fly out and come 324	  

back as they wish. From the experimental colony, the same 10 focal bats, 5 males and 5 325	  

females, were sampled once a week for their gut and fur microbiome during March to June 326	  

2016. Additionally, 4 focal bats from the open colony were sampled at 10 time points for 327	  

comparison (not all were present in all 10 time points, as happens in a free ranging bat 328	  

colony); mean number of samples from each bat is 7). 329	  

 All bats were handled with single use clean gloves and swabbed for DNA before other 330	  

measurements were taken, in order to limit contamination. The samples were taken by 331	  

sterile culture swab applicators (BD CultureSwab™) moistened with Ringer’s Solution. Fur 332	  

sampling was done by sweeping the swab, back and forth, 10 times over each of four 333	  

different sites: shoulders, arm pits, stomach and muzzle. Sampling the gut microbiome was 334	  

done by holding the bat and squeezing the anus to extract transparent discharge. This 335	  

discharge was collected by sterile culture swab applicators moistened with Ringer’s 336	  

Solution. Rousettus aegyptiacus has a relatively short intestine, not differentiated into small 337	  

and large parts and with no observed cecum or appendix (38);  the duration of the intestinal 338	  

pass is approximately 40 minutes (38, 39). As the bats were after their day-fast and the 339	  

intestine was free of content, we suggest that this discharge well represents the core gut 340	  

microbiome without using invasive or lethal techniques (see supplementary Section 6 for a 341	  

comparison of the microbiome in these samples and in those found in the bats’ feces). All 342	  

bats were sampled in the same way and in the same order. Additional environmental 343	  

samples were collected from the fresh food plates, capture nets, and air. After sampling, the 344	  

swabs were sealed in a sterile plastic container provided, and immediately taken for DNA 345	  

extraction. 346	  
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DNA extraction and pyrosequencing  347	  
 348	  
Genomic DNA was extracted from swabs using the PowerSoil© DNA isolation Kit 349	  

(MoBio Laboratories), as recommended by the manufacturer. Extracted DNA samples were 350	  

stored at −20°C. PCR amplification of the 16S rRNA gene was carried out with universal 351	  

prokaryotic primers containing 5-end common sequences  352	  

(CS1-341F 5'-ACACTGACGACATGGTTCTACANNNNCCTACGGGAGGCAGCAG 353	  

and CS2-806R  5’-TACGGTAGCAGAGACTTGGTCTGGACTACHVGGGTWTCTAAT). 354	  

Twenty eight PCR cycles (95̊C 15 sec., 53̊C sec. 15, 72̊C 15 sec.) were conducted using the 355	  

PCR mastermix KAPA2G Fast™ (KAPABiosystems); successful amplification was verified 356	  

by agarose gel electrophoresis. Sample-specific barcodes and Illumina adaptors were added 357	  

in 8 additional PCR cycles, and paired-end deep sequencing of the PCR products was 358	  

performed on an Illumina MiSeq platform at the Chicago Sequencing Center of the 359	  

University of Illinois. Sequencing depth ranged from 1589 to 30000 sequences per sample; 360	  

to ensure data evenness, data were rarefied to an equal depth of 1500 sequences per sample.   361	  

 362	  

Data analysis  363	  

Demultiplexed raw sequences were quality filtered (PHRED quality threshold <20) and 364	  

merged using PEAR (52). Sequences shorter than 380bp (after merging and trimming) were 365	  

discarded. Data were then analyzed using the Quantitative Insights Into Microbial Ecology 366	  

(QIIME, version 1.9) package (53) in combination with VSEARCH (54). Sequences were 367	  

de-replicated and ordered by size before OTU clustering at 99% threshold; to reduce 368	  

spurious formation of OTUs, singleton sequences were not allowed to form new OTUs. 369	  

Chimeric OTUs were detected and discarded using UCHIME (55) algorithm against the 370	  

gold.fa database. Taxonomy was  assigned using UCLUST (56) against the QIIME default 371	  

database (greengenes 13.8) .  372	  

 373	  
Analysis downstream from QIIME was done in R and in Matlab. Primary R packages 374	  

used were Phyloseq, Vegan and Caret. Statistical tests were conducted using their 375	  

implementation in these packages, with the following settings: PERMANOVA: 376	  

Adonis{vegan}, permutations =  10,000. Mantel Test: mantel{vegan}, method = Pearson, 377	  

permutations =  10,000. Linear Discriminant Analysis (LDA): lda{caret}. In the 378	  
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PERMANOVA tests no strata were used, and the effect of each variable, e.g. date of 379	  

sampling, individual identity, sex, and age, was assessed separately. Note that some of these 380	  

variables are co-linear. This procedure does not control for pseudo-replication, and thus a 381	  

Mantel test was conducted to support assertions regarding significance of variables 382	  

wherever possible, and PCoA clustering was used for visual demonstrations. PCoA plots 383	  

were made using ordinate{phyloseq}, with the default settings. The ellipses which describe 384	  

each group’s center of mass are used for ease of visualization of the center of the 385	  

distribution of the points in that group, and reflect the 25% confidence level around the 386	  

center of a fit of these points to a multivariate normal distribution. Mantel tests were used to 387	  

assess whether pairs of samples from the same individual and those from the same date are 388	  

more or less similar to one another; this was done by performing a Mantel test on the matrix 389	  

of Jaccard distances and the matrix obtained by assigning 1 to pairs of samples from the 390	  

same date and 2 to pairs of samples from the same individual (see also (29)).    391	  

All results in the main text from Figure 2 onwards are for the dataset composed of the 392	  

focal individuals only, following the most conservative procedure of omitting potential 393	  

contaminant taxa. This included the removal of all microbial taxa that occurred in the 394	  

negative controls or in more than one of the samples of the bats’ food at a frequency above 395	  

0.2%. The samples from the food were collected before it was introduced into the colony, 396	  

and thus any microbial taxa in them were viewed as potential contaminants. This procedure 397	  

may have omitted taxa that were not contaminants, and so the analyses were repeated with 398	  

the full dataset as well, to confirm that they yield the same qualitative results. Wherever 399	  

meaningful, analysis with the full range of samples is included in the supplementary 400	  

material. PERMANOVA tests and LDA analysis were done using the matrix of relative 401	  

abundances of microbial taxa, and PCoA plots in the main text present Jaccard distances 402	  

based on presence/absence of microbial taxa. Analogous analyses with additional distance 403	  

measures are presented in the supplementary material.  404	  

 405	  
Analysis of volatile compounds in fur using gas chromatography 406	  
 407	  

Fur samples were placed in 3ml vials containing dichloromethane, for a minimum of 7 408	  

days. The samples were sieved, extracts were transferred to new insert vials while the fur 409	  

was removed, dried and weighed for each sample. Two internal standards (udecanal and 410	  
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ergosterol) of known concentration (0.01 ng/µL) were added to each extract. Samples were 411	  

first analyzed by combined gas chromatography/mass spectrometry (GC-MS;GC 7890A, 412	  

MS 5975C; Agilent) using an HP-5MS capillary column, that was temperature programmed 413	  

from 60°C to 300°C at 10°C/min. Compounds were identified by their mass fragmentation 414	  

and retention times compared with synthetic standards when available. Compound 415	  

quantification across samples was thereafter performed by gas chromatography with flame 416	  

ionization detection (GC-FID) (CP 3800; Varian) using a DB-1 fused silica capillary 417	  

column (30 m × 0.25 mm i.d.), temperature programmed as above, using peak integration. 418	  

22 peaks in the normalized chromatograms (Supplementary Section 5) were identified 419	  

using GC-MS as biological compounds (rather than artificial contaminations). After 420	  

removal of samples that failed to produce data, this process resulted in a matrix of 22 by 421	  

41 representing 22 volatiles sampled from 10 individuals over 6 time points (19 samples 422	  

yielded no peaks probably because too little fur was collected and thus we had 41 and not 423	  

60 samples). Analysis of the resulting dataset was executed, for consistency, using the same 424	  

methods and scripts as used for the PCoA and PERMANOVA analyses of the microbiome 425	  

data. Correlations between abundance of microbial taxa and volatile compounds were 426	  

carried out at the OTU level. For each of the 22 volatiles, a 41-dimentional vector 427	  

representing the levels of this volatile across individuals and times was created. This vector 428	  

was then (Pearson) correlated with a 41-dimentional vector representing the levels of an 429	  

OTU (sampled over the same individuals and dates). Only the 30 OTUs that appeared in at 430	  

least 50% of the samples of all individuals were used. This procedure was repeated over all 431	  

22 volatiles and 30 OTUs resulting in a (30x22) correlation matrix.  Significant correlations 432	  

were chosen following an FDR correction for multiple comparisons. 433	  

 434	  
Data Accessibility 435	  
All data supporting the results reported in this study will be made available upon 436	  
publication. 437	  
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