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Abstract 18	
  
 19	
  
In the first longitudinal study of bat microbiomes, we find that unlike the pattern described 20	
  
in humans and other mammals, the prominent dynamics in Egyptian fruit bats’ fur 21	
  
microbiomes are those of change over time at the level of the colony as a whole. Thus, on 22	
  
average, a pair of fur microbiome samples from different individuals in the same colony 23	
  
collected on the same date are more similar to one another than a pair of samples from the 24	
  
same individual collected at different time points. This pattern suggests that the whole 25	
  
colony may be the appropriate biological unit for understanding some of the roles of the 26	
  
host microbiome in social bats’ ecology and evolution. This pattern of synchronized colony 27	
  
changes over time is also reflected in the profile of volatile compounds in the bats’ fur, but 28	
  
differs from the more individualized pattern found in the bats’ gut microbiome. 29	
  
 30	
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 32	
  
Introduction 33	
  
 34	
  

The host-associated microbiome may play a role in the host’s fate on many timescales, 35	
  

from the short-term health and behavior of the individual ((1–8)), through the life-long 36	
  

ecology and life history of the animal ((9)), to the long-term evolutionary adaptation of a 37	
  

species to its environment ((10–12)). However, data regarding non-human vertebrate 38	
  

microbiomes, particularly those of skin or fur, are just beginning to accumulate, and our 39	
  

understanding of the processes that determine their composition and function is limited. 40	
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This is particularly true for non-model organisms: to date, few studies have collected 41	
  

longitudinal samples of non-human microbiomes in ecologically-realistic settings ((13)). 42	
  

In this article we report on the temporal dynamics of the fur and the gut microbiome, 43	
  

assessed using 16S rRNA gene amplification, of ten Egyptian fruit bats (Rousettus 44	
  

aegyptiacus) in a captive colony (henceforth, the ‘experimental colony’). The colony was 45	
  

sampled weekly over a period of 13 weeks, in addition to sparser sampling of all 33 46	
  

individuals in this colony and of a few additional individuals in a non-captive colony over 47	
  

the same time period (henceforth the 'open colony'). We compare these data to the volatile 48	
  

components found in the bats’ fur, collected weekly and analyzed using gas chromatography 49	
  

(GC). 50	
  

Our findings allow us to address an on-going debate regarding the conceptualization of 51	
  

host-microbiome ecology and evolution: some perspectives emphasize the potential utility 52	
  

of a holobiont theory, which regards the host and its associated microbial species together as 53	
  

a meaningful ecological and evolutionary unit (14, 15). Others focus on a metagenomic 54	
  

function-oriented account of the host and its associated microbiota (16, 17). Yet others 55	
  

suggest that no such novel theory is required, and that the ecology of the host and its 56	
  

associated microbiome can best be understood in terms of existing evolutionary and 57	
  

ecological theory, e.g. microbe-environment interaction or generalized multi-species Lotka-58	
  

Volterra dynamics (18). This debate also recalls an earlier debate in evolutionary biology 59	
  

about levels of selection and ecological dynamics, with different perspectives suggesting the 60	
  

gene, the individual, the kin group, or the social group as the meaningful biological unit, 61	
  

whose trajectory in time is most useful and meaningful to track (19, 20). The different 62	
  

perspectives are not mutually exclusive, however, and may contribute complementary 63	
  

insights.  64	
  

Our empirical findings in the bats’ fur microbiome suggest a perspective that to the best 65	
  

of our knowledge is new, and which informs both the conceptualization of the host-66	
  

associated microbiome and the question of the level at which ecological dynamics take 67	
  

place. We propose that in some cases the whole colony of host organisms functions as a 68	
  

collective host with which the microbiome is associated. 69	
  

A range of studies in humans and a few in wild animals have suggested that at certain 70	
  

body sites, such as the gut or skin, the primary determinant of the microbiome composition 71	
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is individual identity (21–29). That is, on average, two microbiome samples from the same 72	
  

individual, taken at different time points, will be more similar to one another in their 73	
  

composition than two samples from different individuals, even for individuals controlled for 74	
  

sex, age, and other variables. Here we report that this regularity is not seen in the 75	
  

composition and dynamics of the fur microbiome of a highly social mammal that roosts in 76	
  

tight colonies – Egyptian fruit bats. Instead, we find that changes over time in the fur 77	
  

microbiome are best described as occurring at the colony level, with inter-individual 78	
  

variation playing a secondary role. The pattern seen in the gut microbiome, however, is 79	
  

different: some coordinated change in microbiome composition occurs, but this 80	
  

phenomenon is secondary to the role of individual identity and sex in determining 81	
  

individuals’ gut microbiomes. 82	
  

Dynamics of change over time occur in the bats’ fur chemistry as well: the bats’ fur 83	
  

constitutes a habitat whose conditions strongly influence the composition of the 84	
  

microbiome, and are also affected by it. The idea that an animal's microbiome will shape its 85	
  

odor and will thus play a role in its sociality (e.g., via olfactory recognition) has been raised 86	
  

multiple times, but studied mostly with respect to the microbiome in scent glands or 87	
  

specialized organs involved in olfactory communication ((30–36)). As with the composition 88	
  

of the microbiome, our results suggest a colony-level change over time of the bats’ fur 89	
  

chemistry. In addition, certain microbial taxa are linked to changes in the furs’ profile of 90	
  

volatile compounds. 91	
  

 92	
  
Results 93	
  
        94	
  

A total of 518 samples of the fur and gut microbiota of bats, together with 36 samples of 95	
  

food and environmental control samples, were analyzed in this study, yielding 7196 non-96	
  

chimeric Operational Taxonomic Units (OTUs) at 99% identity. These could be assigned 97	
  

(Figure 1) to 581 bacterial species, belonging mainly to the phyla Firmicutes (mean relative 98	
  

abundance in fur: 46%, and in gut: 39%) and Proteobacteria (mean relative abundance in 99	
  

fur: 30%, in gut: 38%). The near absence of Bacteroidetes, usually prevalent in animal guts 100	
  

(37), is noteworthy and likely related to the fruit bats’ unique habits and diet. To minimize 101	
  

weight during flight, bats chew the fruit, ingesting the juices and discharging much of the 102	
  

remaining pulp; ingested fruit passes rapidly through the digestive tract, with a short 103	
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retention time of ~40 minutes (38, 39). The fruit bats’ diet thus relies heavily on 104	
  

consumption of simple sugars; accordingly, the intestine is relatively short, undifferentiated 105	
  

and with no observed cecum. It seems quite possible that this short time, and the non-106	
  

compartmental structure of the digestive tract, do not allow appropriate conditions for the 107	
  

anaerobic fermentation of complex sugars that the Bacteroidetes typically carry out. Fur 108	
  

samples were far more diverse than gut samples (mean Shannon index 5.15, as opposed to 109	
  

5.84, p<2.2e-16), yet there was also a high degree of overlap between the communities, with 110	
  

Streptococcus salivarius (mean abundance in fur: 16%, in gut: 13%) being the most 111	
  

common species in both sites. The microbiome composition in samples from the 112	
  

experimental colony was comparable to that of the open colony, a colony of fruit bats that 113	
  

roost in our cave-like facility, but behave as wild bats, flying nightly out to forage (Figure 1, 114	
  

and see below). 115	
  

  116	
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 117	
  

 118	
  
Figure 1. Microbial composition of fur and gut samples. The average relative abundance 119	
  

of each taxon per site is shown. All taxa with a mean relative abundance < 1% were grouped 120	
  

to a single category named "Other". (a) Phylum level; (b) Order level; orders belonging to 121	
  

the Proteobacteria phylum are in shades of blue; orders belonging to the Firmicutes phylum 122	
  

are shown in shades of green. 123	
  

 124	
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The most striking observation, and the focus of this report, was a coordinated change in 125	
  

fur microbiome composition over time across all individuals (Figure 2a)1. This pattern is 126	
  

strong relative to the lack of visual clustering of the samples according to individual identity 127	
  

(Figure 2b). A permutation analysis of variance supports this visual observation: the date on 128	
  

which each sample was taken explains circa 35% of the fur microbiome variance in the 129	
  

experiment colony, while individual identity explains only circa 8% of the variance 130	
  

(PERMANOVA test using the Adonis method in R, p<0.001). To validate this finding, we 131	
  

conducted a comparison of the distances between pairs of samples. We found (Figure 3a) 132	
  

that samples from different individuals on the same date are, on average, more similar to 133	
  

one another than samples taken on different dates but from the same individual (Kruskal-134	
  

Wallis test, p-value<0.001; confirmed using a Mantel test to avoid pseudo-replication, p-135	
  

value<0.001; See analogous analyses with other distance measures in Supplementary 136	
  

Section 3).  137	
  

This finding is supported by a number of additional analyses (see Supplementary 138	
  

Sections 2 and 3): (1) Qualitatively similar results are obtained when using different 139	
  

weighted and unweighted distance measures (Binary, Bray-Curtis, Jaccard, Jensen-140	
  

Shannon divergence, unweighted Unifrac, and Weighted Unifrac), and considering 141	
  

different bacterial taxonomic levels. (2) The pattern of coordinated change of the fur 142	
  

microbiome across the whole colony was even clearer when we included samples from the 143	
  

entire colony. The colony consisted of 33 individuals, each of which was sampled once at 144	
  

the beginning of the experiment and again at its end. (3) Results were robust to multiple 145	
  

conservative data filtering schemes, which ensured that possible bacterial contamination 146	
  

had been removed from the dataset (see Methods and Supplementary Section 2). 147	
  

These colony-level changes over time are not easily explained by the study of the 148	
  

dynamics of particular microbial taxa (see examples of such dynamics in supplementary 149	
  

Section 4). Instead, the colony-level dynamics seem to be an emergent property of the host-150	
  

microbiome system as a whole. The dynamics can be observed most clearly when 151	
  

considering the overall composition of the bats’ microbiomes. They are most obvious when 152	
  

the microbiome composition is measured in terms of only the presence or absence of each 153	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 The bacterial community in each sample was characterized using multiplexed 16S rRNA 
gene amplicon sequencing. See Methods. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 12, 2017. ; https://doi.org/10.1101/232934doi: bioRxiv preprint 

https://doi.org/10.1101/232934


	
   7	
  

taxon and not their relative abundances, suggesting that a prominent part of the change in 154	
  

time occurs in microbial species that are generally found at low frequencies (see 155	
  

Supplementary Section 2). 156	
  

 157	
  

 158	
  

 159	
  
Figure 2: The prominent pattern in the fur microbiome is that of colony-level 160	
  

change over time. Samples from the fur of the ten focal bats in the experiment colony 161	
  

(weekly samples, over 13 weeks), plotted using PCoA of the Jaccard distance between 162	
  

samples. Each point represents a sample. In (a), each sample is colored according to its 163	
  

date of sampling; dates are divided into the four time quarters of the 13-week period of 164	
  

the experiment (quarters 1-4 are denoted by blue, purple, orange, and green, 165	
  

respectively). The clustering is seen to correspond to the quartile of sampling. In (b), 166	
  

each sample is colored according to the individual bat from which it was taken. No clear 167	
  

clustering according to individual identity is visually apparent. Here and in all other 168	
  

PCoA plots, each ellipse represents the region around the center of mass of the samples 169	
  

in the group (see Methods).  170	
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 174	
  
Figure 3: Similarity of pairs of samples in the experiment colony, from the same 175	
  

individual or from the same date. In the fur microbiome (a), pairs of samples from 176	
  

different individuals, collected on the same date, are more similar than pairs of sample 177	
  

from the same individual from different dates. In the gut microbiome (b), pairs of gut 178	
  

samples from different individuals, collected on the same date, are less similar than pairs 179	
  

of samples from the same individual on different dates. Box plots show the median and 180	
  

distribution of the Jaccard distance between all pairs of samples in each of these 181	
  

categories; hinges represent distribution quartiles, and notches the 95% confidence 182	
  

intervals of the medians. Differences between all distributions are highly significant 183	
  

(Kruskal-Wallis test, p<0.0001). 184	
  

 185	
  

Fur microbiome samples from the open colony, collected on the same dates, do not share 186	
  

the temporal trajectory of the experimental colony, ruling out the possibility that the inter-187	
  

individual similarities result from artifacts in the collection or sequencing processes 188	
  

(Supplementary Section 1). The samples from the open colony do, however, recapitulate the 189	
  

pattern found in the experiment colony: they show a significant colony-level change over 190	
  

time, supporting the generality of the finding and showing that it is not an artifact of 191	
  

captivity (Supplementary Section 1, Figures S1.1-S1.2; sample date explains 60% of the 192	
  

variance and individual identity explains 10% of the variance according to PERMANOVA; 193	
  

p<0.001). The fur microbiomes of the bats in the two colonies were similar: 96% of the 194	
  

species found in the open colony were also found in the experiment colony. However, 195	
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microbial alpha diversity was somewhat higher in the experiment colony, with mean 196	
  

Shannon index of 6.39 in the experimental colony, and 5.97 in the open colony (a 197	
  

statistically significant difference: two-tailed t-test, p<0.001; calculated on presence/absence 198	
  

data, at the OTU level, on the dataset cleaned from potential contaminants; see additional 199	
  

measures and further details in supplementary Section 6). 200	
  

A parallel analysis of the gut microbiomes yielded a different pattern: although sampling 201	
  

date was found to be a statistically significant explanatory variable, explaining circa 10% of 202	
  

the variance among samples (PERMANOVA, p<0.001), it was secondary to individual 203	
  

identity, which explained approximately 30% of the variance (PERMANOVA, p<0.001). 204	
  

Accordingly, in agreement with the findings reported for a range of body sites in humans 205	
  

and other vertebrates (24, 25, 29, 40), pairs of gut microbiome samples from the same 206	
  

individual are more similar to one another than pairs of samples from the same day but from 207	
  

different individuals (Figure 2b; Kruskal-Wallis rank sum test, p-value<0.001; confirmed 208	
  

using a Mantel test to avoid pseudo-replication, p-value<0.001).  209	
  

 210	
  

The difference between the main factors driving the dynamics in the two body sites, date 211	
  

in the fur and individual in the gut, highlights the colony level dynamics as a feature not of 212	
  

the bat microbiomes in general, but of the bat fur microbiome specifically. This is true 213	
  

despite the fact that the diet of all individuals in the captive colony was almost identical, a 214	
  

factor that should have increased the similarity of individuals’ gut environments and 215	
  

therefore their microbiomes.  216	
  

The fur microbiome is expected to be strongly influenced by the fur chemistry, and also 217	
  

to influence that chemistry. To examine the correlation between fur microbiome and fur 218	
  

volatiles, we collected fur samples from the experimental bats every two weeks and 219	
  

analyzed the composition of their volatile molecules by gas chromatography (GC). We 220	
  

found a pattern analogous to the one seen in the fur microbiome: the prominent factor 221	
  

governing variability is a change in the volatile profile over time, which is common across 222	
  

individuals (Figure 4a; Adonis PERMAONVA, variance explained: 27%, p<0.001). As in 223	
  

the case of the microbiome, individual identity is less important in explaining the 224	
  

composition of samples and it does not reach a significance threshold in a PERMANOVA 225	
  

test (p=0.43; see also Figure 4b). 226	
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 227	
  
Figure 4: Colony and individual-level patterns in volatiles’ profiles. Samples of the 228	
  

profile of volatile compounds in the fur of the ten focal bats in the experiment colony, 229	
  

plotted using PCoA of the Bray-Curtis dissimilarity measure between samples. Each 230	
  

point represents a sample. (a) Samples are colored according to collection date; dates are 231	
  

divided into the three time trimesters of the 13-week period of the experiment 232	
  

(trimesters 1-3 are colored blue, red, and yellow, respectively). Only 3 periods (vs. 4 for 233	
  

the microbiome) were used for volatile analysis due to the smaller number of samples. 234	
  

(b) Samples are colored according to the individual from which they were collected. 235	
  

Ellipses represent the areas around centers of mass (see Methods). 236	
  

 237	
  

The concentrations of a number of volatile compounds were significantly correlated 238	
  

with the abundance of certain bacterial taxa in the fur, which are known producers of these 239	
  

volatile metabolites: Cholestane diene was significantly positively correlated with three taxa 240	
  

of the order Actinomycetales (genera	
   Nesterkonika,	
   Arthrobacter and	
   Brevibacterium). 241	
  

Palmitic acid was significantly correlated with the genus	
   Neisseria. Oleic acid was	
  242	
  

significantly correlated with the genera Alkanindiges and Neisseria. All three compounds 243	
  

are known to play a role in communication among vertebrates (see supplementary section 244	
  

5). This suggests that some of the change in volatiles over time might reflect the respective 245	
  

colony-level changes in the fur microbiome (the volatile dynamics remained significantly 246	
  

dependent on time even when the dataset is reduced to include only these bacteria-related 247	
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volatiles: Adonis PERMANOVA, variance explained: 20%, p<0.005,). It is likely that the 248	
  

two modalities – fur chemistry and microbiome composition – interact with one another. 249	
  

 250	
  

 251	
  
  252	
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Discussion 253	
  

 254	
  
Unlike findings in other vertebrates, the microbiome of the fur of the Egyptian fruit-bat 255	
  

changes over time in a manner that is coordinated across the whole colony; this coordination 256	
  

is the prominent driver of variation in our data. Why are the temporal dynamics of the 257	
  

Egyptian fruit bat fur microbiome different from those of microbiomes in other studied 258	
  

mammals (e.g. (26, 29))? We propose that the frequent physical interactions between the 259	
  

bats in a colony (the bats perch in very tight clusters) have a homogenizing effect on their 260	
  

fur microbiomes, leading to dynamics in which the fur microbiomes of all individuals in the 261	
  

colony function together as a single ecosystem or super-organism. The changes over time 262	
  

may be driven by external factors, such as changes in the physiological state, in diet, or 263	
  

seasonal changes (although such changes were largely controlled in our experiment; see 264	
  

supplementary Section 8), but also by processes that are “internal” to the bacterial 265	
  

community such as neutral drift, local adaptation, and ecological succession.  266	
  

Similar dynamics to those we find have been described in datasets from individuals 267	
  

along a developmental trajectory such as studies of human infant microbiomes (41–43), 268	
  

suggesting an ecological succession process, driven by physiological maturation of the host. 269	
  

The vast majority of individuals in our study were fully mature, so this cannot be the 270	
  

underlying driver of the pattern we see. However, a physiological change of that nature may 271	
  

account for some of the microbiome change over time in our experiment colony: for 272	
  

example, changes in the females' reproductive state, which were correlated across most 273	
  

females and that became pregnant at about the same time, accounted for 4% of the 274	
  

microbiome variation (PERMANOVA, Adonis method in R, p<0.0001). 275	
  

Our second main finding is that the gut microbiome is not characterized by such a 276	
  

prominent change in time as seen in the fur. Why are the dynamics of the fur and the gut 277	
  

microbiomes so qualitatively different? One possibility is that the difference is due to the 278	
  

relative role that common environmental factors play in each of these two modalities: the fur 279	
  

environment is strongly influenced by external factors, while the gut environment is 280	
  

strongly affected by the individual’s physiology and immune system, which buffer it from 281	
  

such environmental influences as diet, which is largely common to all individuals in our 282	
  

colony. This buffering can be seen as adding a “personalizing” effect, increasing the role of 283	
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individual identity determining gut microbiome composition. Another possibility is that the 284	
  

different dynamics stem from differences in dynamics of bacterial transmission: the bats’ 285	
  

behavior, which includes frequent and extensive physical contact, has a homogenizing effect 286	
  

on the fur microbiomes, a process from which the gut microbiome is relatively shielded. 287	
  

From the bacterial perspective, one can think of gut bacteria as facing a greater transmission 288	
  

limitation than fur bacteria, creating a structured meta-population in which each individual's 289	
  

gut constitutes an “island”, allowing both neutral and selectively-driven divergence between 290	
  

the microbiomes in different guts. These possibilities are not mutually exclusive. 291	
  

The functioning of the colony’s fur microbiome as a single, highly connected, ecosystem 292	
  

might have important implications on the behavior and ecology of bats and other social 293	
  

species that roost in close proximity. Analysis of the volatiles found on the bats' fur suggests 294	
  

that the fur microbiome may play a role in maintaining the social structure of the colony by 295	
  

facilitating olfactory-based recognition of colony members. Analysis of the volatiles in the 296	
  

two colonies (experimental and wild) at a single time point revealed that the two differ (see 297	
  

supplementary Section 5). 298	
  

Bats’ associated microbes have recently received much attention from two specific 299	
  

perspectives: the first views bats as potential reservoirs of zoonotic pathogens that may 300	
  

infect humans (44–47). The second focuses on the pathogens of the bats themselves, 301	
  

particularly on dynamics of the white nose syndrome (48, 49) a serious emerging bat 302	
  

epidemic in bats (50, 51). The highly correlated dynamics of the colony members’ fur 303	
  

microbiomes suggests that in bats, and perhaps more broadly – in social species that roost in 304	
  

great proximity – the resilience to some types of disease may be largely a colony-level trait, 305	
  

and less a feature of individuals. This has obvious implications, potentially influencing plans 306	
  

for intervention that would mitigate the effects of the white nose syndrome or minimize the 307	
  

prevalence of specific zoonotic pathogens. 308	
  

From a more theoretical evolutionary standpoint, our findings suggest that selective 309	
  

pressures on and through the fur microbiome, in species that are characterized by frequent 310	
  

physical contact between individuals, may act most prominently at the colony level, and not 311	
  

at the level of the individual, as is commonly assumed. This implies that it may be highly 312	
  

informative to supplement the study of host-microbiome dynamics with a meta-community 313	
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framework that incorporates hierarchically structured transmission dynamics and in which 314	
  

colonies are the entities whose fate is studied. 315	
  

 316	
  
 317	
  
Methods 318	
  
 319	
  
Data collection 320	
  

 321	
  
 Two major colonies of bats are held in the Tel Aviv University zoological garden facility.  322	
  

The first, denoted the experimental colony, consisted of 33 bats at the time of this study. The 323	
  

second, denoted the open colony, consisted of 35 free ranging bats that can fly out and come 324	
  

back as they wish. From the experimental colony, the same 10 focal bats, 5 males and 5 325	
  

females, were sampled once a week for their gut and fur microbiome during March to June 326	
  

2016. Additionally, 4 focal bats from the open colony were sampled at 10 time points for 327	
  

comparison (not all were present in all 10 time points, as happens in a free ranging bat 328	
  

colony); mean number of samples from each bat is 7). 329	
  

 All bats were handled with single use clean gloves and swabbed for DNA before other 330	
  

measurements were taken, in order to limit contamination. The samples were taken by 331	
  

sterile culture swab applicators (BD CultureSwab™) moistened with Ringer’s Solution. Fur 332	
  

sampling was done by sweeping the swab, back and forth, 10 times over each of four 333	
  

different sites: shoulders, arm pits, stomach and muzzle. Sampling the gut microbiome was 334	
  

done by holding the bat and squeezing the anus to extract transparent discharge. This 335	
  

discharge was collected by sterile culture swab applicators moistened with Ringer’s 336	
  

Solution. Rousettus aegyptiacus has a relatively short intestine, not differentiated into small 337	
  

and large parts and with no observed cecum or appendix (38);  the duration of the intestinal 338	
  

pass is approximately 40 minutes (38, 39). As the bats were after their day-fast and the 339	
  

intestine was free of content, we suggest that this discharge well represents the core gut 340	
  

microbiome without using invasive or lethal techniques (see supplementary Section 6 for a 341	
  

comparison of the microbiome in these samples and in those found in the bats’ feces). All 342	
  

bats were sampled in the same way and in the same order. Additional environmental 343	
  

samples were collected from the fresh food plates, capture nets, and air. After sampling, the 344	
  

swabs were sealed in a sterile plastic container provided, and immediately taken for DNA 345	
  

extraction. 346	
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DNA extraction and pyrosequencing  347	
  
 348	
  
Genomic DNA was extracted from swabs using the PowerSoil© DNA isolation Kit 349	
  

(MoBio Laboratories), as recommended by the manufacturer. Extracted DNA samples were 350	
  

stored at −20°C. PCR amplification of the 16S rRNA gene was carried out with universal 351	
  

prokaryotic primers containing 5-end common sequences  352	
  

(CS1-341F 5'-ACACTGACGACATGGTTCTACANNNNCCTACGGGAGGCAGCAG 353	
  

and CS2-806R  5’-TACGGTAGCAGAGACTTGGTCTGGACTACHVGGGTWTCTAAT). 354	
  

Twenty eight PCR cycles (95̊C 15 sec., 53̊C sec. 15, 72̊C 15 sec.) were conducted using the 355	
  

PCR mastermix KAPA2G Fast™ (KAPABiosystems); successful amplification was verified 356	
  

by agarose gel electrophoresis. Sample-specific barcodes and Illumina adaptors were added 357	
  

in 8 additional PCR cycles, and paired-end deep sequencing of the PCR products was 358	
  

performed on an Illumina MiSeq platform at the Chicago Sequencing Center of the 359	
  

University of Illinois. Sequencing depth ranged from 1589 to 30000 sequences per sample; 360	
  

to ensure data evenness, data were rarefied to an equal depth of 1500 sequences per sample.   361	
  

 362	
  

Data analysis  363	
  

Demultiplexed raw sequences were quality filtered (PHRED quality threshold <20) and 364	
  

merged using PEAR (52). Sequences shorter than 380bp (after merging and trimming) were 365	
  

discarded. Data were then analyzed using the Quantitative Insights Into Microbial Ecology 366	
  

(QIIME, version 1.9) package (53) in combination with VSEARCH (54). Sequences were 367	
  

de-replicated and ordered by size before OTU clustering at 99% threshold; to reduce 368	
  

spurious formation of OTUs, singleton sequences were not allowed to form new OTUs. 369	
  

Chimeric OTUs were detected and discarded using UCHIME (55) algorithm against the 370	
  

gold.fa database. Taxonomy was  assigned using UCLUST (56) against the QIIME default 371	
  

database (greengenes 13.8) .  372	
  

 373	
  
Analysis downstream from QIIME was done in R and in Matlab. Primary R packages 374	
  

used were Phyloseq, Vegan and Caret. Statistical tests were conducted using their 375	
  

implementation in these packages, with the following settings: PERMANOVA: 376	
  

Adonis{vegan}, permutations =  10,000. Mantel Test: mantel{vegan}, method = Pearson, 377	
  

permutations =  10,000. Linear Discriminant Analysis (LDA): lda{caret}. In the 378	
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PERMANOVA tests no strata were used, and the effect of each variable, e.g. date of 379	
  

sampling, individual identity, sex, and age, was assessed separately. Note that some of these 380	
  

variables are co-linear. This procedure does not control for pseudo-replication, and thus a 381	
  

Mantel test was conducted to support assertions regarding significance of variables 382	
  

wherever possible, and PCoA clustering was used for visual demonstrations. PCoA plots 383	
  

were made using ordinate{phyloseq}, with the default settings. The ellipses which describe 384	
  

each group’s center of mass are used for ease of visualization of the center of the 385	
  

distribution of the points in that group, and reflect the 25% confidence level around the 386	
  

center of a fit of these points to a multivariate normal distribution. Mantel tests were used to 387	
  

assess whether pairs of samples from the same individual and those from the same date are 388	
  

more or less similar to one another; this was done by performing a Mantel test on the matrix 389	
  

of Jaccard distances and the matrix obtained by assigning 1 to pairs of samples from the 390	
  

same date and 2 to pairs of samples from the same individual (see also (29)).    391	
  

All results in the main text from Figure 2 onwards are for the dataset composed of the 392	
  

focal individuals only, following the most conservative procedure of omitting potential 393	
  

contaminant taxa. This included the removal of all microbial taxa that occurred in the 394	
  

negative controls or in more than one of the samples of the bats’ food at a frequency above 395	
  

0.2%. The samples from the food were collected before it was introduced into the colony, 396	
  

and thus any microbial taxa in them were viewed as potential contaminants. This procedure 397	
  

may have omitted taxa that were not contaminants, and so the analyses were repeated with 398	
  

the full dataset as well, to confirm that they yield the same qualitative results. Wherever 399	
  

meaningful, analysis with the full range of samples is included in the supplementary 400	
  

material. PERMANOVA tests and LDA analysis were done using the matrix of relative 401	
  

abundances of microbial taxa, and PCoA plots in the main text present Jaccard distances 402	
  

based on presence/absence of microbial taxa. Analogous analyses with additional distance 403	
  

measures are presented in the supplementary material.  404	
  

 405	
  
Analysis of volatile compounds in fur using gas chromatography 406	
  
 407	
  

Fur samples were placed in 3ml vials containing dichloromethane, for a minimum of 7 408	
  

days. The samples were sieved, extracts were transferred to new insert vials while the fur 409	
  

was removed, dried and weighed for each sample. Two internal standards (udecanal and 410	
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ergosterol) of known concentration (0.01 ng/µL) were added to each extract. Samples were 411	
  

first analyzed by combined gas chromatography/mass spectrometry (GC-MS;GC 7890A, 412	
  

MS 5975C; Agilent) using an HP-5MS capillary column, that was temperature programmed 413	
  

from 60°C to 300°C at 10°C/min. Compounds were identified by their mass fragmentation 414	
  

and retention times compared with synthetic standards when available. Compound 415	
  

quantification across samples was thereafter performed by gas chromatography with flame 416	
  

ionization detection (GC-FID) (CP 3800; Varian) using a DB-1 fused silica capillary 417	
  

column (30 m × 0.25 mm i.d.), temperature programmed as above, using peak integration. 418	
  

22 peaks in the normalized chromatograms (Supplementary Section 5) were identified 419	
  

using GC-MS as biological compounds (rather than artificial contaminations). After 420	
  

removal of samples that failed to produce data, this process resulted in a matrix of 22 by 421	
  

41 representing 22 volatiles sampled from 10 individuals over 6 time points (19 samples 422	
  

yielded no peaks probably because too little fur was collected and thus we had 41 and not 423	
  

60 samples). Analysis of the resulting dataset was executed, for consistency, using the same 424	
  

methods and scripts as used for the PCoA and PERMANOVA analyses of the microbiome 425	
  

data. Correlations between abundance of microbial taxa and volatile compounds were 426	
  

carried out at the OTU level. For each of the 22 volatiles, a 41-dimentional vector 427	
  

representing the levels of this volatile across individuals and times was created. This vector 428	
  

was then (Pearson) correlated with a 41-dimentional vector representing the levels of an 429	
  

OTU (sampled over the same individuals and dates). Only the 30 OTUs that appeared in at 430	
  

least 50% of the samples of all individuals were used. This procedure was repeated over all 431	
  

22 volatiles and 30 OTUs resulting in a (30x22) correlation matrix.  Significant correlations 432	
  

were chosen following an FDR correction for multiple comparisons. 433	
  

 434	
  
Data Accessibility 435	
  
All data supporting the results reported in this study will be made available upon 436	
  
publication. 437	
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