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Abstract. We consider the problem of interpreting negative maximum likelihood es-
timates of heritability that sometimes arise from popular statistical models of additive
genetic variation. These may result from random noise acting on estimates of genuinely
positive heritability, but we argue that they may also arise from misspecification of the
standard additive mechanism that is supposed to justify the statistical procedure. Re-
searchers should be open to the possibility that negative heritability estimates could reflect
a real physical feature of the biological process from which the data were sampled.

1. Introduction: The meaning of heritability

1.1. Operational definitions of heritability. As Albert Jacquard [9] pointed out decades
ago, narrow-sense heritability — commonly denoted h2 — has conventionally two distinct
meanings:

1. The proportion of total variance attributable to additive genetic effects;
2. The slope of the linear regression of children’s phenotypes on the mean parental

phenotypes.

Both meanings appear in the earliest works to give a quantitative operational definition to
heritability, in particular [12]. (For more about the history of the notion of heritability see
[2].)

The correspondence between these two meanings depends on an additive model, where
genetic and non-genetic effects are independent and sum together to produce the pheno-
type. When we have general genetic relatedness (rather than parental relations with fixed
50% relatedness) heritability is analogous to a regression coefficient relating phenotypic
similarity to genotypic similarity.

We are particularly concerned here with the interpretation of negative estimates of heri-
tability. The appearance of negative estimates for a parameter of crucial scientific interest
that is prima facie positive is unusual, as has often been noted. Negative estimates of
the heritability parameter are often dismissed as a mathematical abstraction, values in
a range that arises purely formally and that may only be reported for formal purposes,
as part of an ensemble of estimates that collectively are unbiased. Several recent studies
[19, 3, 5, 21] have reported individual negative heritability estimates in this way, including
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them in averages that themselves came out positive. In [10] a point estimate of −0.109 is
obtained for heritability of horn length in Soay sheep. It is immediately dismissed with the
statement that “it is impossible to have negative heritability” and the inference is drawn
that the true heritability must actually be a small positive number toward the upper end
of the confidence interval.

We wish to argue that negative heritability estimates need to be taken more seriously.
The confusion, we contend, comes from the overlap between the statistical models that op-
erationalise the two different interpretations of heritability described above. The argument
for rejecting negative estimates appears compelling just so long as the focus is only on the
random-effects probability model 1. Variance is nonnegative, hence the ratio of two vari-
ances cannot be negative. The denominator represents total variance and the numerator
represents one component of variance, implying a ratio in [0, 1] if the two components are
independent (as the model presumes).

While “variance attributable to additive genetic effects” is a basic element of the genetic
model, it has no place in the statistical algorithms such as GREML derived from this
model that is widely used to estimate heritability from experimental data. The GREML
algorithm is actually (as we will explain in section 2.1) the realization of a multivariate
normal model that is naturally constrained to have the parameter h2 ≥ −1/(max{s2i }−1),
where (si)

n
i=1 are the singular values of the genotype matrix. If the phenotypes were

derived from summing independent additive genetic effects then the true h2 must indeed
be nonnegative, but that must be recognized as an additional assumption that must be
scientifically warranted, as it is not compelled on any formal grounds.

1.2. The meaning of negative heritability. Once we have accepted the GREML mul-
tivariate normal framework–which we will define precisely–we must admit the possibility
that the joint distribution of phenotypes and genotypes in a given dataset may be best
described by an h2 value that is negative. The question this raises is, can such a negative
heritability estimate be biologically sensible? As described in Section 2, the parameter
for heritability may be identified, in a precise way, with a correlation between genotype
similarity and phenotype similarity. The model invites us to select an estimate of h2 that
will best match the genetic covariance between individuals to the similarity in their traits.
Even if we want heritability to be interpreted in the first sense, as a partition of variance,
this will not, in general, be correct. All we have access to from the data is an estimate of
something like heritability in sense 2. High heritability means that individuals with similar
genotype are likely to have similar trait values. Zero heritability means that genotypes tell
us nothing about similarities in trait values. Negative heritability, then, could be perfectly
sensible as a description of the data: It means that individuals with similar genotypes are
likely to have more divergent trait values than those with highly disparate genotypes.

Saying that a given set of data might be best described by a negative heritability estimate
goes only part of the way toward answering the question of the biological plausibility of the
concept. Suppose you were estimating the weight of water droplets by successively adding
them to a small container, and estimating the slope from the sequence of weights. If the
scale is sufficiently imprecise it is hardly unlikely that we could estimate a negative slope,
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NEGATIVE HERITABILITY 3

yet common sense tells us that negative estimates should be dismissed as unrealistic, and
truncated at 0. Statistical theory tells us that this system should produce slope estimates
that may be positive or negative, but that the probability of a negative estimate goes
to 0 as the number of measurements goes to infinity, and the estimate converges to its
true (positive) value. The essential question is, is there a plausible mechanism that could
produce genuine negative heritability, so that as the amount of data generated by the model
goes to infinity, the estimate converges to a negative quantity.

The term “negative heritability” appeared for the first time, so far as we are aware, in
a paper [8] by J. B. S. Haldane, written around 1960, but first published posthumously
in 1996. Haldane described how the maternal-effect trait of neonatal jaundice could be
said to display negative heritability: Because the disease results from maternal antibodies
against a fetal antigen, it will not arise in a fetus whose mother herself experienced neonatal
jaundice.1 Haldane then calculates a negative heritability from a model that is specialized
to the peculiar structure of neonatal jaundice.

We will suggest one such mechanism in Section 4. As with Haldane’s model (which may
be understood as a special case), this mechanism has implications which may be implausible
or even obviously false in a given experimental setting. It involves interactions between
individuals that are not primarily genetic, and so may be dismissed as irrelevant to the
study of genetic heritability. The point we want to suggest, though, is that as an abstract
physical mechanism that could be producing our data it is as mathematically plausible as
the linear random-effects model that undergirds GREML. This is only one example of such
a mechanism, and the conclusion we wish to suggest is that negative heritability must be
acknowledged as a genuine phenomenon for genotype-phenotype data, even if it may be
reasonably excluded by the context of some particular studies. Thinking about what sorts
of biological settings could yield negative heritability can also prove an effective guide to
understanding when negative heritability estimates may be reliably truncated or ignored.

This is very much like the advice on “interpretation of negative components of variance”
propounded in a very different context by the statistician J. A. Nelder [13] in 1954. Nelder
considered the problem of ANOVA testing on split-plot experiments, where error for main
plots was found to be smaller than the error for subplots, producing a negative estimate for
the residual subplot error. As we have done here, Nelder showed how the apparently nega-
tive “variance component” could arise either from sampling error from a positive variance
component, or from a misspecification of the model, where correlations between measure-
ments have been neglected. “In any particular situation,” Nelder concludes, “it is the
statistician’s responsibility to decide which model is more appropriate.”

2. The GREML model as linear regression

2.1. The random-effects model. For the remainder of this paper we follow [14] in using
the letter ψ to represent heritability, to avoid the confusing implication built in to the
nomenclature h2 that this parameter cannot be negative.

1We thank Jonathan Marchini for pointing out this reference to us.
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Underlying GREML, but also alternative approaches to heritability estimation such as
LD-score and Haseman-Elston regression, is a basic random-effects model. Following the
notation of [14], our basic object is a data set consisting of an n × p matrix Z, taken to
represent the genotypes of n individuals, measured at p different loci. There is a vector y,
representing a scalar observation for each of the n individuals. The underlying observations
are counts of alleles taking the values 0, 1, or 2, but the genotype matrix is centered to
have mean zero in each column and normalized to have mean square over the whole matrix
equal to 1 (often, columns are further standardized to variance 1). The model posits the
existence of a random vector u ∈ Rp of genetic influences from the individual SNPs such
that

(1) y = Zu + ε.

The vectors u and ε are assumed to be independent and to have zero means and i.i.d.
normal components. The variances are determined by two parameters, which are to be
estimated: θ represents the precision (reciprocal variance) of the non-genetic noise and
ψ represents the heritability, entering the model as the ratio of genetic variance to total
variance. We will also use the notation φ = ψ/(1− ψ) in some places for concision.

The GREML model has been formulated as a random-effects model, but it is equivalent
to a multivariate normal model corresponding to the covariance matrix

(2) C2 := θ−10

(
(ψ/(1− ψ))A+ In

)
.

In this section we describe how the model may also be understood as a linear regression
model. In their original paper [18], Yang and coauthors spell out an analogy between
GCTA and a different form of linear regression. They regress squared trait differences
between pairs of individuals on corresponding elements of the Genetic Relatedness Matrix,
with n(n−1)/2 points and correlated errors (this is Haseman–Elston regression, which has
recently become a popular heritability estimation method due to its speed and robustness to
some degree of model misspecification [7, 4]). Instead, we draw an approximate comparison
between GREML and regression with n points and independent errors.

Let Z = Udiag(si)V
∗ be the singular-value decomposition of Z/

√
p, and rotate the

observations to diagonalize the covariance matrix, obtaining

z := U∗y.

The elements of z are independent centered normal random variables, and zi has variance
(1− ψ + ψs2i )/(θ(1− ψ)). Define

wi(ψ) :=
1− ψ

1− ψ + ψs2i

and

vi(ψ) :=
(1− ψ)z2i

1− ψ + ψs2i
,

We also define τ2(ψ) = ψ−2Var(w(ψ)), and omit the dependence on ψ when helpful.
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It was shown in [14] that the maximum-likelihood estimator of ψ may be written as the
solution to the equation

0 = Cov
(
w(ψ̂),v(ψ̂)

)
,

where Cov is to be understood as an operation on vectors, so Cov(x,y) := n−1
∑

(xi −
x̄)(yi − ȳ). Under the GREML model, the θ0vi(ψ0) are i.i.d. chi-squared random variables
with one degree of freedom.

When ψ(s2i − 1) are uniformly small we may write this model as

log z2i = − log θ̂ + log

(
1 +

ψ

1− ψ
s2i

)
+ log vi

≈ −
(

log θ̂ + ψ + log(1− ψ))
)

+ ψs2i + log vi.

(3)

If we compare this to a standard linear regression problem (with log z2i as the dependent
variable, s2i as the independent variable, and log vi as the noise), we would expect to have
variance of the slope estimate inversely proportional to the variance of the independent
variables. That is, when the s2i are tightly clustered, there will be large errors in the
estimate of the slope, which is the parameter that gives information about ψ.

In addition, we would have to cope with the fact that the noise term is not normal, but
log chi-square. This is highly left-skewed, with a very short tail on the positive side, and
a long tail (asymptotically exponential) on the negative side.

2.2. Simulations. We plot in Figure 1 an example based on dimensions similar to those
for the genotype matrix in the celebrated paper [18], but drawing singular values from the
independent setting, not from the (unreported) empirical distribution of singular values
underlying that study. For n = 4000 and p = 100, 000, we show a scatterplot of the pairs
(z2i , s

2
i ) obtained from the singular-value decomposition of a genotype matrix. Note that

the lines corresponding to disparate ψ estimates are very similar, and have little leverage
relative to the huge scatter in the values of z2i .

In the independent setting, the known limiting measure for the singular values, the
Marcenko–Pastur distribution (see section 5 of [14]), simplifies the task of exploring the
GREML model through simulations. Instead of performing matrix multiplications and
diagonalizations on a random n × p matrix, where n and p may be on the order of 105

or 106, we may instead start with the singular values. These are n equally spaced values
from the singular value distribution, to which we contribute n normally distributed random

variables zi with mean zero and variance 1 +
ψ0s2i
1−ψ0

. We solve for ψ̂ that makes the vector

(zi) and the vector (wi) uncorrelated. That is, Cov(zi(ψ), wi(ψ)) is a univariate function of
ψ that is easy to compute, and will typically cross zero exactly once. (The exceptions are
when the covariance is strictly negative for all ψ, meaning that the likelihood is increasing,
so that the MLE is ψ̂ = 1; and when there are multiple solutions.)

This is essentially equivalent to simulating a random genotype matrix with i.i.d. entries
and a random trait vector. (Furthermore, we could simulate a different model for the GRM
simply by choosing a different distribution for the singular values.)

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/232843doi: bioRxiv preprint 

https://doi.org/10.1101/232843
http://creativecommons.org/licenses/by-nd/4.0/


6 DAVID STEINSALTZ, ANDY DAHL, AND KENNETH W. WACHTER

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
● ●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●●

●
●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
● ●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

● ●

●

●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

0.8 0.9 1.0 1.1 1.2

−
10

−
5

0

si
2

lo
g(

z i2 )

Figure 1. Linear-regression approxi-
mation of the estimation problem for
ψ. The solid red line shows the correct
line, corresponding to ψ = 0.5, while
the dashed green line corresponds to
ψ = 0.25.
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Figure 2. Blow-up of the linear-
regression approximation, showing just
the range z2i ∈ [0, 1]. The dashed
green lines correspond to ψ =
0, 0.33, 0.67, 0.84.

3. Bias from rejecting negative heritability estimates

The common practice of truncating the maximum likelihood calculation to non-negative
values introduces bias that is well-known and may be serious for samples of moderate size,
both when estimates are truncated at zero and when negatives are ignored. It is thus worth
looking beyond the original motivation to the actual structure of the GREML model and
considering what meaning negative parameter values might turn out to have.

The problem of estimating the probability of negative heritability estimates was studied
fifty years ago by [6]. We add here a few comments about how the framework described in
[14] may contribute to understanding the magnitude of the negative heritability estimate
problem that arises from sampling noise in settings where the true heritability is understood
to be nonnegative, hence where truncation at 0 (or rejection of negative estimates) is
warranted and guarantees improved estimates in, say, MSE. We gain a rough idea of the
impact of rejecting negative estimates from a normal approximation

ψ̂ − ψ0 ≈
√

2
√
n τ2

ψ0(1− ψ0)X,
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NEGATIVE HERITABILITY 7

where X has standard normal distribution (see [14] for derivation). Rejecting estimates

where ψ̂ < 0, we have the conditioning bias

(4) E[ψ̂]− ψ0 ≈
(1− ψ0)√

nτ2
z0

e−z
2
0/2

√
πΦ(z0)

,

where z0 =
√
nτ2/
√

2(1 − ψ0) and Φ is the standard normal c.d.f. If we instead truncate

the estimates — raising all negative ψ̂ to 0 — we get the truncation bias

(5) E[ψ̂]− ψ0 ≈
(1− ψ0)√

nτ2
z0
e−z

2
0/2

√
π
− ψ0

(
1− Φ(z0)

)
.

4. The phenotypic repulsion model

The notion that new species force their way into phenotypic gaps in the existing ecological
community was termed by Darwin the “principle of divergence” and has been further
developed by ecologists under the name “phenotypic repulsion” or “phylogenetic repulsion”
[16]. Species living in close proximity — which are often closely related phylogenetically
— coexist by separating from each other phenotypically. A similar kind of competitive
exclusion has been proposed [15] on the individual level to explain observed pattern of
developmental variation within human families. Social niche-formation within families has
also been proposed by [1] — without an explicit mathematical model — as the basis for an
evaluation of gene-environment interaction based on misclassified twin types. While we are
not aware of mathematical models of this phenomenon, one could certainly imagine local
competition for sunlight, combined with range-limited seed dispersion, yielding an effective
phenotypic repulsion between related plants in a forest setting, or monozygotic twins who
seek to distinguish themselves from their sibling.

We propose a model of phenotypic repulsion where individuals that are most closely
related genetically strive to avoid each other phenotypically. We begin with a model like
that described in Section 2.1, where individuals have phenotypes determined by normally
distributed effect sizes acting on their individual genotypes. We introduce a penalty term
to the probability, of the form

exp
{
−αθ0

∑
1≤i<j≤n

aijyiyj

}
where aij = 1

p

∑p
k=1 ZikZjk is the (i, j) entry of the GRM, and α ≤ 1 is a parameter

measuring the extent to which genetically similar individuals are pushed to have differing
phenotypes. Of course, this could be generalized to higher-dimensional phenotypes, with
yiyj replaced by an arbitrary inner product. The penalty term is inspired by the sta-
tistical mechanics models that have been applied to geographically-structured population
dynamics, such as the Contact Process [11], used to model the spread of epidemics.

Combining this with (2) we see that the phenotypes will now be multivariate normal
with mean 0 and covariance matrix

(6) θ−10

[
(φ0A+ In)−1 + α (A− In)

]−1
.
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It follows that the transformed phenotypes z = U∗y are independent normal with mean 0
and variance

Var(zi) = θ−10

1 + φ0s
2
i

1− α+ αs2i (1− φ0) + αφ0s4i
.

Suppose the data have come from this phenotypic–repulsion model, and we analyze them
using the random-effects model. While it is always possible to get ψ̂ < 0 because of random
fluctuations, we would like to show that the heritability implied by this model is “really”
negative, in the sense that the distribution of ψ̂ converges to a strictly negative value as
the number of subjects goes to ∞. This will follow from Proposition 4.1 (below) with

f(t) =
1 + φ0t

1− α+ α(1− φ0)t+ αφ0t2
,

as long as φ0 < α, since

f ′(t) =
φ0 − α(1 + φ0t)

2

(1− α+ α(1− φ0)t+ αφ0t2)2
,

which is less than 0 for all t ≥ 0.
In other words, to the extent that we say that heritability is defined by the linear model,

heritability can be negative if genotypes and phenotypes interact through the environment
in a manner like the phenotypic repulsion model. This will be true even if the phenotypic
interactions are limited to small family groups. We prove that this is the case — that the
heritability to which the estimates converge with increasing population size is negative —
in the following Proposition.

Proposition 4.1. Suppose we have a family of n × n GRMs An for n → ∞, with eigen-
values s2n,i. We suppose that the distributions of eigenvalues converge to a nontrivial dis-

tribution dσ(s2).

Let U (n) be the corresponding eigenvector matrix. For each n we have a multivariate nor-
mal random vector y(n) with covariance matrix U (n) diag

(
f(s2n,i)

)
U (n)∗, where f : R+ → R+

is a strictly decreasing, continuously differentiable function. We assume that the singular
values sn,i are bounded above by smax, and that the following conditions hold:

C1 := inf
0≤t≤s2max

(−f ′(t)),(7)

C2 := inf
n

n−1 n∑
i=1

s4n,i − 1

 > 0.(8)

(We maintain the normalization assumption that
∑

i s
2
n,i = n.)

Let ψ̂n be the MLE for an observation y(n), calculated from the random-effects model
with GRM An. Then ψ̂ is bounded above in probability by a strictly negative quantity −δ,
depending on C1 and σ, as n → ∞. That is, the probability of ψ̂n > −δ goes to 0 as
n→∞.
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Proof. We follow the general principle, enunciated by [17], that the MLE for the misspeci-
fied model will converge to the closest fit in the Kullback–Leibler sense. In other words, the
parameter estimate converges in probability to the location of the maximum expected value
of the log-likelihood function. The arguments of [17] do not apply directly here, because
we are not sampling i.i.d. random variables; however, the score function may be written

(9)
1

v̄(ψ)
· gn(ψ; x) :=

1

n(1− ψ)v̄(ψ)

n∑
i=1

ai(ψ)xi,

for −1/(s2max − 1) < ψ ≤ 1, where (xi) are i.i.d. χ2
1 random variables and

(10) ai(ψ) :=
f(s2n,i)

1− ψ + ψs2n,i

 s2n,i
1− ψ + ψs2n,i

− n−1
n∑
j=1

s2n,j
1− ψ + ψs2n,j

 .

We note that the maximum likelihood occurs either at a zero of gn, or at ψ = 1 if
gn is everywhere positive. (It goes to +∞ at the left boundary.) The coefficients ai(ψ)
are uniformly bounded and uniformly Lipschitz, so, by the main theorem of [20], gn(ψ; x)
converges uniformly in ψ to the function that is the limit of the expected values

G(ψ) = lim
n→∞

gn(ψ; 1) =
1

1− ψ
Covσ

(
f(S2)

1− ψ + ψS2
,

S2

1− ψ + ψS2

)
.

(The covariance is understood here to be with respect to S2 having distribution σ.) We
need to show that G is negative for all ψ above the bound given in (11).

Near ψ = 0 the function gn(ψ; 1) is well-behaved, and takes on the value Cov(f(s2n,i), s
2
n,i)

at ψ = 0. Since f(t) + C1t is a decreasing function of t, for t ∈ [0, s2max], we have by the
FKG inequality

G(0) = Cov
(
f(S2) + C1S

2, S2
)
− C1 Var

(
S2
)

≤ −C1C2

< 0.

We also have

(1− ψ)G′(ψ) = −Cov

(
f(S2)

1− ψ + ψS2
,

S2(S2 − 1)

(1− ψ + ψS2)2

)

− Cov

(
(S2 − 1)f(S2)

(1− ψ + ψS2)2
,

S2

1− ψ + ψS2

)

+ (1− ψ)−1 Cov

(
f(S2)

1− ψ + ψS2
,

S2

1− ψ + ψS2

)
Since f is decreasing, we have for 0 > ψ > − 1

2s2max−1
the bound∣∣G′(ψ)

∣∣ ≤ 20s2max(s2max − 1)f(0).
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Thus G(ψ) < 0 for all

(11) ψ ∈
(
− C1C2

20s2max(s2max − 1)f(0)
, 0

)
.

It follows that gn(ψ; 1) is negative for all ψ between 0 and the bound given in (11), with
probability tending to 1 as n→∞.

We note now that for ψ ∈ [0, 1] f(t)/(1 − ψ + ψt) is a decreasing function of t, and
t/((1−ψ+ψt) is increasing, so (again by the FKG inequality) G(ψ) < 0, which completes
the proof.

�
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Working Group Psychiatric Genomics C, Shaun Purcell, Eli Stahl, Mark Daly, Teresa R de Candia,
Kenneth S Kendler, Michael C O’Donovan, Sang Hong Lee, Naomi R Wray, Benjamin M Neale,
Matthew C Keller, Noah A Zaitlen, Bogdan Pasaniuc, Jian Yang, and Alkes L Price. Haplotypes of
common SNPs can explain missing heritability of complex diseases. BioRxiv, pages 1–25, July 2015.

[4] Guo-Bo Chen. Estimating heritability of complex traits from genome-wide association studies using
IBS-based Haseman–Elston regression. Frontiers in Genetics, 5:107, 2014.

[5] Hilary K Finucane, Brendan Bulik-Sullivan, Alexander Gusev, Gosia Trynka, Yakir Reshef, Po-Ru
Loh, Verneri Anttila, Han Xu, Chongzhi Zang, Kyle Farh, Stephan Ripke, Felix R Day, Shaun Purcell,
Eli Stahl, Sara Lindström, John R B Perry, Yukinori Okada, Soumya Raychaudhuri, Mark J Daly, Nick
Patterson, Benjamin M Neale, and Alkes L Price. Partitioning heritability by functional annotation
using genome-wide association summary statistics. Nature Genetics, September 2015.

[6] JL Gill and EL Jensen. Probability of obtaining negative estimates of heritability. Biometrics, pages
517–526, 1968.

[7] David Golan, Eric S Lander, and Saharon Rosset. Measuring missing heritability: inferring the contri-
bution of common variants. Proceedings of the National Academy of Sciences of the United States of
America, 111(49):E5272–81, December 2014.

[8] J. B. S. Haldane. The negative heritability of neonatal jaundice. Annals of Human Genetics, 60:3–5,
1996.

[9] Albert Jacquard. Heritability: one word, three concepts. Biometrics, pages 465–477, 1983.
[10] S. E. Johnston, D. Beraldi, A. F. McRae, J. M. Pemberton, and J. Slate. Horn type and horn length

genes map to the same chromosomal region in Soay sheep. Heredity, 104:196–205, 2010.
[11] Thomas Liggett. Stochastic Interacting Systems : Contact, Voter, and Exclusion Processes. Springer

Verlag, New York, 1999.
[12] Jay L Lush. Intra-sire correlations or regressions of offspring on dam as a method of estimating heri-

tability of characteristics. Proceedings of the American Society of Animal Nutrition, 1940(1):293–301,
1940.

[13] JA Nelder. The interpretation of negative components of variance. Biometrika, 41(3/4):544–548, 1954.
[14] David Steinsaltz, Andrew Dahl, and Kenneth W Wachter. Statistical properties of simple random-

effects models for genetic heritability. bioRxiv: 087304, November 2016.
[15] Frank J Sulloway. Why siblings are like darwin’s finches: Birth order, sibling competition, and adaptive

divergence within the family. The evolution of personality and individual differences, pages 87–119,
2010.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/232843doi: bioRxiv preprint 

https://doi.org/10.1101/232843
http://creativecommons.org/licenses/by-nd/4.0/


NEGATIVE HERITABILITY 11

[16] Campbell O Webb, David D Ackerly, Mark A McPeek, and Michael J Donoghue. Phylogenies and
community ecology. Annual review of ecology and systematics, 33(1):475–505, 2002.

[17] Halbert White. Maximum likelihood estimation of misspecified models. Econometrica: Journal of the
Econometric Society, pages 1–25, 1982.

[18] Jian Yang, Beben Benyamin, Brian P McEvoy, Scott Gordon, Anjali K Henders, Dale R Nyholt,
Pamela A Madden, Andrew C Heath, Nicholas G Martin, Grant W Montgomery, et al. Common SNPs
explain a large proportion of the heritability for human height. Nature Genetics, 42(7):565–569, 2010.

[19] Jian Yang, Taeheon Lee, Jaemin Kim, Myeong-Chan Cho, Bok-Ghee Han, Jong-Young Lee, Hyun-
Jeong Lee, Seoae Cho, and Heebal Kim. Ubiquitous polygenicity of human complex traits: genome-wide
analysis of 49 traits in Koreans. PLoS Genetics, 9(3):e1003355, 2013.

[20] Ke-Hai Yuan. A theorem on uniform convergence of stochastic functions with applications. journal of
multivariate analysis, 62(1):100–109, 1997.

[21] Zhihong Zhu, Andrew Bakshi, Anna A E Vinkhuyzen, Gibran Hemani, Sang Hong Lee, Ilja M Nolte,
Jana V Van Vliet-Ostaptchouk, Harold Snieder, LifeLines Cohort Study, Tõnu Esko, Lili Milani,
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