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Abstract 

 

Chemogenetic profiling enables the identification of gene mutations that enhance or 

suppress the activity of small molecules. This knowledge provides insights into drug 

mechanism-of-action, genetic vulnerabilities, and resistance mechanisms, all of 

which may help stratify patient populations. We present drugZ, an algorithm for 

identifying both synergistic and suppressor chemogenetic interactions from highly 

sensitive CRISPR screens, available at github.com/hart-lab/drugz. In screens for 

interactions with a poly(ADP-ribose) polymerase (PARP) inhibitor, DrugZ identifies 

a greater fraction of the homologous recombination repair pathway than 

contemporary methods, and confirms KEAP1 loss as a resistance factor for ERK 

inhibitors. 

 

 

 

Introduction 

 

The ability to systematically interrogate multiple genetic backgrounds with small 

molecule “perturbagens” is known as chemogenetic profiling. While this approach 

has many applications in chemical biology, it is particularly relevant to cancer 

therapy, where clinical compounds or small molecule probes or are profiled to 

identify mutations that inform on genetic vulnerabilities or resistance mechanisms 

[1]. Systematic surveys of the fitness effects of environmental perturbagens across 

the yeast deletion collection [2] offered insight into gene function at a large scale, 

while profiling of drug sensitivity in heterozygous deletion strains identified genetic 

backgrounds that give rise to increased drug sensitivity [3]. Now, with the advent of 

CRISPR technology and its adaptation to pooled library screens in mammalian cells, 

high resolution chemogenetic screens can be carried out directly in human cell cells 

[4-6]. Major advantages to this approach include the ability to probe all human 

genes, not just orthologs of model organisms; the analysis of how drug-gene 

interactions vary across different tissue types, genetic backgrounds, and epigenetic 
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states; and the identification of suppressor as well as synergistic interactions, that 

may indicate possible mechanisms of acquired resistance or pre-existing sources of 

resistant cells in heterogeneous tumor populations. 

 

Design and analysis of CRISPR-mediated chemogenetic interaction screens in 

human cells can be problematic. Positive selection screens identifying genes 

conferring resistance to cellular perturbations typically have a high signal-to-noise 

ratio, as only mutants in resistance genes survive[5, 7-11]. On the other hand, 

negative selection CRISPR screens require growing perturbed cells over 10 or more 

doublings to allow sensitive detection of genes, whose knockout leads to moderate 

fitness defects. Adding a drug interaction necessitates dosing at low levels (~IC20) 

to balance between maintaining cell viability over a long timecourse and inducing 

drug-gene interactions beyond native drug effects. 

 

Several algorithms currently exist for the analysis of drug-gene interaction 

experiments [12, 13]. Most rely on adapting methods originally developed for the 

analysis of RNAseq differential expression data, which is typically characterized by 

relatively high read counts across genes. High read counts enable the statistically 

robust detection and ranking of differential expression of genes (in RNA-seq) or 

abundance of guide (g) RNA (in CRISPR screens) using approaches such as the 

negative binomial P-value model, a trend explored thoroughly in [13]. However, low 

read counts per gRNA are common in CRISPR data, and are a fundamental feature of 

genes with fitness defects, leading to a severe loss of sensitivity when applied to 

CRISPR screens for synthetic chemogenetic interactions. 

 

In this study, we describe drugZ, an algorithm for the analysis of CRISPR-mediated 

chemogenetic interaction screens. We apply the algorithm to identify genes that 

drive normal cellular resistance to the clinical PARP inhibitor olaparib in three cell 

lines. We demonstrate the greatly enhanced sensitivity of drugZ over contemporary 

algorithms by showing how it identifies more hits with higher enrichment for the 

expected DNA damage response pathway, and further how it identifies both 
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synergistic and suppressor interactions. We provide all software and data necessary 

to replicate the analyses presented here. 

 

 

Methods 

We created the drugZ algorithm to fill a need for a method to identify chemogenetic 

interactions in CRISPR knockout screens. In a pooled library CRISPR screen, the 

relative abundance of each gRNA in the pool is usually sampled immediately after 

infection and selection. To identify genes whose knockout results in a fitness defect 

(“essential genes”), the cells are grown for several doublings and the relative 

abundance of gRNA is again sampled by deep sequencing of a PCR product amplified 

from genomic DNA. The relative frequency of each gRNA is compared to the initial 

population and genes whose targeting gRNA show consistent dropout are 

considered essential genes. 

 

In a chemogenetic interaction screen, the readout of choice is somewhat different. 

The relative abundance of gRNA in a treated population is compared to the relative 

abundance of an untreated population at the same timepoint (Fig 1a). In this 

context, an experimental design with paired samples is particularly powerful, as it 

removes a major source of variability across replicates. 

 

We calculate the log2 fold change of each gRNA in the pool by normalizing the total 

read count of each sample at the same timepoint and taking the log ratio, after 

adding a pseudocount of 5 reads to each gRNA. We find a pseudocount of 5 to be a 

good compromise between minimizing low-readcount artifacts and suppressing 

true biological signal, though we leave this as a user-modifiable parameter in the 

software. We then calculate the mean and standard deviation of all gRNA targeting a 

set of negative control genes – the reference nonessential gene set (NEG) in [14, 15] 

– and use these values to determine a Z score for each gRNA. The guide Z score of all 

gRNA across all replicates is summed to get a gene-level sumZ score, which is then 

normalized (by dividing by the square root of the number of summed terms) to the 
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final normZ. A P-value is calculated from the normZ, and false discovery rates are 

determined using the method of Benjamini and Hochberg [16]. The analytical 

workflow is depicted in Figure 1b. The open-source Python software can be 

downloaded from github.com/hart-lab/drugz. 

 

Results and Discussion 

 

To benchmark the method, we evaluated screens to identify modifiers of the 

response to the PARP inhibitor olaparib in three cell lines, RPE1-hTERT, HeLa, and 

SUM149PT (Zimmermann et al., submitted). The screens were performed using the 

TKOv1 library of 90k gRNA targeting 17,000 genes [17]. After infection and 

selection, each cell line was split into 3 replicates, passaged at least once, and each 

replicate was further split into control and olaparib-treated populations, providing a 

paired-sample experimental design (Figure 1a). 

 

We calculated normZ scores, P-values, and false discovery rates using drugZ in 

SUM149PT cells. We also analyzed the same data with four contemporary methods, 

STARS [7], MAGeCK [13], edgeR [18], and RIGER [19]. We were surprised to note 

that while drugZ produced an increasing number of hits as FDR thresholds were 

relaxed, the other methods produced substantially lower numbers of hits at the 

same FDR thresholds (Figure 1c). We tested each statistical model’s overall 

goodness of fit by confirming the uniform distribution of null P-values (Figure 1d) 

and further observed the absence of a spike of “hits” at low P-values for the other 

methods. 

 

Having a large number of hits does not necessarily mean that the hits are 

meaningful. We evaluated the quality of the hits returned by each method by 

measuring the functional coherence of each gene set. The PARP inhibitor olaparib 

was developed specifically to exploit the observed synthetic lethal relationship 

between PARP1 and the BRCA1/BRCA2 genes [20, 21]. Subsequent studies have 

shown it to be effective against a general deficiency in homologous recombination 
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repair, known as HRD [22]. We therefore calculated the enrichment of each hit set 

for genes in the DNA damage response (DDR) pathway as annotated in the 

Reactome database [23]. Hits found with drugZ show strong enrichment for DDR 

genes across a range of FDR thresholds (Figure 1e), while the other methods show 

consistently lower enrichment.  

 

Extreme P-values can be achieved when sample sizes are large, even if the effect size 

is moderate, and DrugZ returned a larger number of hits at each FDR threshold. To 

confirm that the P-value difference was not merely a function of sample size, we 

further looked at the number of DDR-annotated genes in each hit set. Figure 1e 

shows that roughly twice as many DDR-annotated genes were discovered using 

DrugZ; moreover, the enrichment of DDR genes among total hits is also consistently 

greater with DrugZ than with other methods (Figure 1f). We repeated these 

analyses in HeLa cervical cancer cells and  hTERT-immortalized RPE1 epithelial 

cells, and found that drugZ generally finds more hits with a higher proportion of 

DDR genes (Supplementary Figure 1), resulting in greater enrichment for annotated 

genes (Figure 1g-h). The combination of larger sets of hits and greater enrichment 

for expected results clearly indicates that drugZ accurately and sensitively identifies 

chemogenetic interactions. 

 

The drugZ algorithm can also be used to identify suppressor interactions; that is, 

genes whose perturbation reduces drug efficacy. While BRCA1 mutation is synthetic 

lethal with PARP1, subsequent mutation of TP53BP1 is associated with acquired 

resistance to the PARP inhibitor [24]. Drug-gene interactions resulting in positive Z-

scores reflect such suppressor interactions. Indeed, TP53BP1 is the 11th-ranked 

suppressor interaction in BRCA1-deficient SUM149PT cells, with a normZ score of 

3.98 (FDR 0.05). 

 

The decreased sensitivity of competing methods to identify chemogenetic 

interactions under these experimental conditions is often the result the biology of 

the system under investigation, undermining the applicability of the statistical 
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approach being used. In two of the methods (MAGeCK and edgeR), the negative 

binomial model is used to determine a P-value for the differential abundance of each 

gRNA. Under this model, the P-value is strongly influenced by the number of reads 

in each sample with low read counts.  

 

Extensive studies in yeast indicate that genes with moderate fitness defects have 

synergistic genetic interactions with more partners than genes without any 

appreciable fitness phenotype [25, 26]. In CRISPR screens in mammalian cell lines, 

moderate fitness defects manifest as lower gRNA read counts at later timepoints. 

Thus, to discriminate the effects of genetic and chemogenetic interactions on these 

genes, a method which does not penalize low-readcount observations must be 

employed. The three methods, which accept low-count observations (drugZ, STARS, 

and RIGER; Supplementary Figure 2) consistently outperform the two methods that 

don’t (Figure 1c-h, Supplementary Figure 1). 

 

To ensure that the drugZ algorithm is generalizable, we applied it to a separate set 

of chemogenetic interaction screens in pancreatic cancer cell lines using the ERK1/2 

inhibitor SCH772984. Oncogenic mutations in KRAS drive constitutive signaling in 

the MAP kinase pathway and are associated with proliferation and survival signals. 

Consistent with current models of RAS pathway activation, knockout of inhibitor 

target MAPK1 and its downstream target RPS6KA3 have strong synthetic 

interactions with ERK inhibitor in two of the cell lines (FDR < 0.01; Figure 2). In a 

third cell line, HPAF-II, the top synthetic interactor was drug transporter ABCG2. 

Activity of this drug resistance gene may account for this cell line’s resistance to ERK 

inhibition and the lack of other synthetic effectors in this screen. Epoxide hydrolase 

EPHX2 and ubiquitin ligase adapter KEAP1 are the top two suppressors of ERK 

inhibitor activity in three cell lines, suggesting these genes are required for normal 

function of the inhibitor. KEAP1 loss of function was identified as a modulator of 

MAP kinase pathway inhibitors in a panel of positive selection screens in multiple 

cell lines[11], but EPHX2 is a novel candidate resistance gene and may be specific to 

MAPK1 inhibition, to the pancreatic cancer cell lines screened, or simply to the 
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metabolism of the specific inhibitor used. Notably, the ERK inhibitor screens yielded 

individual synthetic and suppressor hits, in contrast with the PARP inhibitor 

screens, which showed broad interaction across the HR pathway, confirming the 

general applicability of drugZ in detecting drug-gene interactions.   

 

Conclusions 

 

Identifying the genetic drivers of drug effectiveness and resistance is critical to 

realize the promise of personalized medicine. Chemogenetic interaction screens in 

mammalian cells using CRISPR knockout libraries have so far been primarily used in 

a positive selection format to identify the genes, pathways and mechanisms of 

acquired resistance to chemotherapeutic drugs. However, negative selection screens 

to identify the underlying architecture of drug-gene interactions have been difficult 

to carry out and to analyze in large part due to the lack of robust analytical tools. 

 

We describe the drugZ algorithm, which calculates a moderated Z-score for pooled 

library CRISPR drug-gene interaction screens. By exploiting a paired-sample 

experimental design and by taking into account the moderate single mutant fitness 

defects associated with many genes involved in drug-gene interactions, the drugZ 

algorithm offers significantly improved sensitivity over contemporary analysis 

platforms. We demonstrate the validity of our hits by showing the strong 

enrichment for genes involved in the DNA damage response in a screen for 

interactions with the PARP inhibitor olaparib and the precise detection of MAPK 

pathway effectors in an ERK inhibitor screen.  

 

We further show that both synergistic and suppressor interactions can be identified 

in the same screen, as previously identified PARP resistance gene TP53BP1 is a 

suppressor hit in BRCA1-mutant SUM149PT cells. Moreover, both synthetic target 

MAPK1 and suppressor genes EPHX2 and KEAP1 are identified in ERK inhibition 

screens. KEAP1 deletion or mutation is frequently found in KRAS-driven lung 
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adenocarcenomas and may present an obstacle to ERK inhibitor therapy in these 

tumors. 

 

With the ability to perform saturating genetic perturbation screens across a wide 

range of cells, CRISPR pooled library screens are transforming mammalian 

functional genetics and holds the promise of identifying new cancer drug targets. 

Chemogenetic interaction screens extend this capability by enabling the systematic 

surveying of the landscape of drug-gene interactions across cancer-relevant genetic 

backgrounds. Understanding this variation may lead to more precise therapies for 

patients as well as the development of synergistic drug combinations for genotype-

specific treatments. 
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Figures 

 

 

Figure 1. Workflow.  (A) In a drug-gene interaction screen, a population of cells is 

infected with a pooled library of virus-encoded CRISPR guide RNAs. After selection, 

proliferating cells are split into drug treated and untreated control samples.  After 
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several doublings, genomic DNA is collected and the relative abundance of CRISPR 

gRNA sequences in the treated and control populations is compared.  (B) DrugZ 

processing steps include normalizing read counts, calculating the log2 fold change of 

treated samples relative to control, transforming to a Z-score based on the 

distribution of fold changes of a defined set of negative controls, and collapsing 

guide-level Z-scores into a gene-level Z-score. (C) In a screen of SUM149PT cells +/- 

PARP inhibitor olaparib, the number of hits called by each method is plotted vs. FDR 

threshold, as reported by each software package. (D) Distribution of P-values across 

all genes is uniform for most methods. (E) Number of annotated DNA damage 

response genes in hits reported in SUM149PT olaparib screen, plotted vs. FDR 

threshold.  (F) Enrichment (hypergeometric test) for DDR genes in SUM149PT 

screen. (G) Enrichment for DDR genes in HeLa olaparib screen. (H) Enrichment for 

DDR genes in RPE1 olaparib screen. 
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Figure 2.  Synergistic and suppressor interactions in ERK inhibitor screen in 

four pancreatic cancer cell lines. Oncogenic KRAS induces proliferation signal 

through the MAP kinase pathway. SCH772984 target MAPK1 and effector gene 

RPS6KA3 are synthetic lethal in two cell lines, and multidrug transporter ABCG2 is 

synthetic lethal in a third. KEAP1 and EPHX2 knockout suppresses inhibitor activity 

in three cell lines. 
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Supplementary Figures 

 

 

 

Supplementary Figure 1.  Olaparib screens in other cells. Total hits (left) and 

annotated DDR genes (right) plotted against FDR threshold for the five methods 

compared here. Top panels are HeLa cells, bottom are RPE1-hTERT. 
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Supplementary Figure 2. Relative abundance of hits by each method. The 

distribution of read counts for all genes in the top 5% of hits by each method at the 

endpoint of the screen (TOP). Three methods (drugZ, STARS, RIGER) detect hits at 

low read count, and sensitively detect drug interactions with genes that have 

knockout fitness defects. (Bottom) Hits show no bias in abundance at the beginning 

of the screen. 
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