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Abstract 
 
S2 cells are one of the most widely used Drosophila melanogaster cell lines for 

molecular dissection of mitosis using RNA interference (RNAi). However, a detailed 

and complete description of S2 cell mitosis at the ultrastructural level is still missing. 

Here, we analyzed by transmission electron microscopy (TEM) a random sample of 

144 cells undergoing mitosis, focusing on intracellular membrane and microtubule 

(MT) behavior. This unbiased approach allowed us to discover that S2 cells exhibit a 

characteristic behavior of intracellular membranes, involving the formation of a 

quadruple nuclear membrane in early prometaphase and its disassembly during late 

prometaphase. After nuclear envelope disassembly, the mitotic apparatus becomes 

encased by a discontinuous network of ER membranes that associate with 

mitochondria preventing their diffusion into the spindle area. We also observed a 

peculiar metaphase spindle organization. We found that kinetochores with attached k-

fibers are almost invariably associated with lateral MT bundles that can be either 

interpolar bundles or k-fibers connected to a different kinetochore. This spindle 

organization is likely to favor chromosome alignment at metaphase and subsequent 

segregation during anaphase. In summary, we describe several previously unknown 

features of membrane and microtubule organization during S2 cell mitosis. The 

genetic determinants of these mitotic features of can now be investigated using an 

RNAi-based approach, which is particularly easy and efficient in S2 cells  

 

List of abbreviations: 

DNM, double nuclear membrane; ER, endoplasmic reticulum; MT, microtubule; 

NEBD, nuclear envelope breakdown; NPC, nuclear pore complex; QNM, quadruple 

nuclear membrane; RDM, residual double membrane; SE, spindle envelope; TEM, 

transmission electron microscopy; 
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Introduction 

 

Schneider 2 cells, commonly called S2 cells, are one of the most widely used 

Drosophila melanogaster cell lines. S2 cells were established from a primary culture 

of late stage embryos and are likely to be derived from a phagocytic hematopoietic 

cell lineage (Schneider, 1972; Echalier, 1997). Extensive work carried out in the past 

15 years has shown that Drosophila S2 cells are an excellent system for molecular 

dissection of mitosis using RNA interference (RNAi). There are multiple advantages 

for using S2 cells in RNAi-based studies of mitosis. First, they have a very favorable 

cytology for spindle and chromosome visualization in both fixed and living cells 

(Goshima and Vale, 2003; Somma et al., 2008). Second, performing RNAi in S2 cells 

is very easy as it can be carried out by treating cultures with large dsRNAs (of 400-

800 bp), which are incorporated by the cells and processed in small interfering RNAs 

(siRNAs) that efficiently degrade the target mRNA (Clemens et al, 2000; Meister and 

Tuschl, 2004). Additionally, simultaneous RNAi against multiple genes can be 

performed, allowing pathway dissection. Third, the Drosophila genome is fully 

sequenced and well-annotated and mitotic genes are highly evolutionary conserved 

among metazoans (Bier, 2005; see also FlyBase at http://flybase.org), allowing RNAi 

data on S2 cells to be extrapolated to human cells.  

 
Over the past 15 years, hundreds of papers have been published exploiting RNAi to 

study the roles of individual Drosophila genes in S2 cell mitosis. RNAi in S2 cells 

was also used to analyze the functions of specific groups of genes such as those 

encoding for proteins involved in cytokinesis (Somma et al, 2002), microtubule-based 

motor proteins (Goshima and Vale, 2003), protein kinases (Bettencourt-Dias et al., 

2004), and protein phosphatases (Chen et al., 2007). In addition, S2 cells were used to 

perform RNAi-based genome-wide screens for identification of genes involved in 

different aspects of cell division (Goshima et al., 2007; Somma et al., 2008) or in 

specific aspects of the process such as cytokinesis (Echard et al., 2004), centrosome 

assembly and behavior (Dobbelaere et al., 2008) or centrosome-independent spindle 

assembly (Moutinho-Pereira et al, 2013). Collectively, these studies identified many 

new mitotic genes and provided fundamental insight into the molecular mechanisms 

of cell division.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 11, 2017. ; https://doi.org/10.1101/232199doi: bioRxiv preprint 

https://doi.org/10.1101/232199


	
   4	
  

 Despite the enormous work carried out on S2 cells mitosis, a detailed and 

complete description of the process at the ultrastructural level is still missing. Here, 

we analyzed S2 cell mitosis by transmission electron microscopy (TEM). We 

examined sections from a random sample of 144 cells undergoing mitotic division. 

This unbiased approach, allowed us to discover that S2 cells exhibit a peculiar 

intracellular membrane behavior, which allowed subdivision of prometaphase into 

four stages. Our observations also indicate that in late S2 cell prometaphase and 

metaphase, the spindle microtubules are mostly organized in bundles, which are either 

end-on attached to the kinetochores (k-fibers) or run from pole to pole (interpolar 

MTs). In addition, kinetochores with attached k-fibers almost invariably exhibit 

lateral associations with either k-fibers connected to different kinetochores or 

interpolar MT bundles, forming multi-bundle MT assemblies that are likely to aid 

chromosome alignment at metaphase and poleward movement in anaphase.  

 

Results and Discussion 

 

To describe Drosophila mitosis at the ultrastructural level, actively proliferating 

Drosophila S2 cells were pelleted, fixed, embedded in resin and sectioned. Because 

cells within the pellet are randomly oriented, this procedure yielded sections along 

different planes of the mitotic apparatus. We examined only cells cut longitudinally or 

slightly obliquely with respect to the spindle axis (henceforth longitudinal sections), 

or cut transversally through the mitotic chromosomes (henceforth transverse 

sections); oblique cuts showing only part of the mitotic cell were discarded. For 67% 

of the cells, we analyzed single ultrathin sections (of approximately 70 nm). For the 

remaining cells, we performed serial sectioning and examined up to 15 sections per 

cell, mainly to obtain precise information on the intracellular membranes and 

kinetochore-MT relationships. For measuring cell structures we analyzed longitudinal 

and transverse 70 nm sections; in the case of serial sections, we considered only the 

central section of the cell. 

 Most of the cells in the pellet were in interphase, characterized by a rather 

homogeneous nucleoplasm and the presence of a prominent nucleolus; in the sections 

of these cells the nucleus was usually circular and surrounded by a double membrane 

(Figure S1A). We also observed cells that in addition to the nucleolus displayed 

several dense aggregations of chromatin and had the nucleus surrounded by an 
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undulated double membrane; these cells might be in prophase or in a pre-prophase 

stage (Figure S1B, C). 

 We focused on 144 cells undergoing mitotic division: 71 prometaphases 

(49%), 37 metaphases (26%), 21 anaphases (15%) and 15 telophases (10%). In fixed 

S2 cells stained for tubulin and DNA and examined under a light microscope (n = 

369), we found 40% prometaphases, 20% metaphases, 11% anaphases, and 29% 

telophases. Clearly, telophases are in excess compared to the TEM preparations. 

However, this is easily explainable, considering the difficulty in obtaining TEM 

sections with complete telophase figures including both presumptive daughter cells 

versus those that contain a single daughter cell, which were excluded from our 

analysis. If we do not consider telophases, the relative frequencies of prometaphases, 

metaphases and anaphases observed in TEM preparations (55%, 29% and 16%, 

respectively) and in light microscopy specimens (56%, 28% and 16%, respectively) 

are almost identical. Thus, at least for prometaphases, metaphases and anaphases, the 

TEM sample of mitotic cells we examined is representative of a population of actively 

proliferating S2 cells. We focused on intracellular membrane and microtubule 

behavior; centriole ultrastructure has been described previously (see, for example, 

Bettencourt-Dias et al., 2005; Rogers et al., 2008; Cunha-Ferreira et al., 2009).  

 Drosophila mitosis is semi-closed; prometaphase is not preceded by nuclear 

envelope breakdown (NEBD) but begins when nuclear envelope fenestrations at the 

cell poles allow penetration of astral MTs into the nucleus (Stafstrom and Staehelin, 

1984; Debec and Marcaillou, 1997). Consistent with this notion, we found that 

approximately one-half of prometaphases were surrounded by nuclear membranes. 

These cells were real prometaphases, as they exhibited both compact chromatin 

patches and microtubules within the nucleoplasm. According to their morphology, we 

subdivided prometaphases into 4 classes: PM1 through PM4. To determine the 

temporal sequence of these classes we considered several parameters: the chromatin 

compaction, the MT arrangement, the structure of kinetochores and the intracellular 

membrane organization. In addition, we considered perinuclear lamin behavior, which 

is described below. Metaphases, were recognized based on the same parameters and, 

in many cases, on the examination of serial sections, and were included in a single 

class. Anaphases were distinguished into early and mid-late, and telophases were 

subdivided into early-mid and late. 
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Prometaphase 

We assigned 12 prometaphases to the PM1 class. To define the characteristic features 

of this class, we examined serial transverse sections through the chromosomes of one 

cell, and 11 longitudinal or slightly oblique sections with respect to the spindle axis; 

for 2 of these 11 cells we generated serial sections (an example of these serial sections 

is shown in Figure S2A). Cells in the PM1 class are characterized by the presence of a 

continuous membrane envelope (except at nuclear fenestrations) around the nucleus, 

mainly made by a typical double nuclear membrane (DNM) but also by patches of 

quadruple membrane (QNM) formed by two closely apposed double membranes 

connected by a layer of electron-dense material of unknown nature. In all cases, the 

QNM did not represent more than 18% of the total nuclear envelope length. In cells 

where fenestrations in the nuclear envelope were visible (in 6 out of 11 longitudinally 

cut cells), the QNM was always located in these regions and exhibited ribosomes on 

both the outer and inner surface of the membrane (Figures 1A, 2A and S2A). In the 

remaining 5 cells, patches of QNM were clearly present but could not be associated 

with nuclear fenestrations, as these membrane openings could not be seen due to the 

sectioning plane. In 10 out of 12 PM1 cells, we observed patches of endoplasmic 

reticulum (ER) membranes all over the cytoplasm; their average length per cell 

section was 11.7 ± 1.6 µm, while the length of the membranes forming the nuclear 

envelope, (DNM plus 2 x QNM) was 23.7 ± 2.8 µm (Figure 2B). Analysis of MTs in 

the transversally cut cell indicated that at this stage of mitosis MTs are rather sparse 

and are not organized in bundles as in later stages (Figure S3A). In addition, in 2 out 

of 11 longitudinally cut cells we were able to see immature kinetochores (Figure S4). 

 The prometaphases of the PM2 and PM3 classes show similar features and a 

continuum of morphological variations. They both exhibit a higher chromatin 

compaction compared to PM1 cells, and have a mostly continuous nuclear envelope 

that contains regions of QNM varying in length from 20% to 80% of the nuclear 

envelope. In some of the regions made of QNM, the inner membrane showed 

unevenly swollen traits and some discontinuities, suggesting that it is undergoing 

some form of decay (Figures 1B, 1C, 2A and S2B, C). In other nuclear envelope 

regions of variable length the inner membrane of the QNM had completely 

disappeared (Figures 1B, 1C, 2A and S2B, C), leaving a residual double membrane 

(henceforth RDM). We observed ribosomes associated with both the outer and inner 
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surface of the QNM as well as with both surfaces of the RDM (Figures 1B and S2B, 

C). 

 We arbitrarily assigned to the PM2 class 17 cells based on the fact that their 

nuclear envelopes are formed by at least 60% of QNM. This class includes 1 cell 

represented by serial transversal sections through the chromosomes, and 16 

longitudinally sectioned cells, 3 of which are represented by serial sections. In 13 out 

of these 17 PM2 cells, we observed patches of ER membranes; their average length 

per cell section was 10.0 ± 1.2 µm, while the length of the membranes forming the 

nuclear envelope, (2 x QNM plus RDM) was 23.8 ± 1.3 µm (Figure 2B). An analysis 

of the transverse section indicated that also in this stage of mitosis MTs are rather 

sparse, although some loose MT bundles were apparent (Figure S3B). In 4 out of the 

15 cells examined we were able to see immature kinetochores (Figure S4). 

 We assigned to PM3 stage 18 cells with nuclear envelope containing less than 

60% of QNM. This class includes 2 cells cut transversally through the chromosomes, 

one of which was serially sectioned; and 16 longitudinally cut cells, 9 of which are 

represented by serial sections. In these PM3 cells, the inner membrane of the QNM 

was usually more swollen (80 ± 5 nm against 40 ± 1 nm, post hoc comparison using 

Tukey HSD test: p < 0.01) and discontinuous that in PM2 cells, suggesting that it was 

undergoing a degradation process through vesiculation (Figures 1C, 2A and S2C). 16 

out of the 18 cells in the PM3 class showed layers of ER membranes surrounding 

more or less extensive regions of the nuclear envelope (formed by QNM and RDM). 

In these 16 cells, the average length of the ER membranes per cell section was 14.8 ± 

1.4 µm, while the length of the membranes forming the nuclear envelope, (2 x QNM 

plus RDM) was 17.8 ± 1.8 µm (Figure 2B). When the ER membrane layers were 

sufficiently long, their curvatures tended to conform to that of the nuclear envelope 

(Figures S2B and S3C). However, in contrast with the typical QNM appearance, ER 

membranes rarely showed close apposition to either the QNM or the RDM. We 

observed only a few cells where this type of adhesion appeared to occur in a limited 

portion of the nuclear envelope (Figure S5). An analysis of MTs in transverse sections 

indicated that in this stage of mitosis there is a diminution of isolated MTs compared 

to the PM2 class (Figure S3C). Some MT bundles were visible, but these bundles 

were fewer compared with the bundles observed in the following stage of 

prometaphase (PM4) and in metaphase cells. In 11 out of the 18 cells examined we 

were able to see immature kinetochores (Figure S4). 
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 We included 24 cells in the PM4 class, which includes transverse sections 

from 3 cells (1 serial), and longitudinal sections from 21 cells (6 serial) . These cells 

are characterized by compact chromatin and the disappearance of almost all QNM 

and RDM. However, most spindles of the PM4 cells (19 out of 24) were partly 

enveloped by one or more irregular layers of ER membranes comprising from 1 to 3 

layers running alongside with little or no overlapping (Figures 1D). In the 19 cells 

with ER membranes, the average length of these membranes was 27.2 ± 1.4 µm per 

cell section, while the length of the remaining 2x QNM plus RDM was 5.8 ± 1.6 µm 

(Figure 2B). An analysis of MTs in transverse sections indicated that in PM4 cells 

most MTs are organized in bundles containing from 4 to 45 MTs (Figure S3D). In 

addition, in a substantial fraction of longitudinal sections (8 out of 16) we were able 

to see mature kinetochores, most of them showing end-on MT attachment (Figure S4).  

 

Metaphase 

The 37 cells assigned to this class include 7 cells cut transversally through the 

chromosomes (4 which are represented by serial sections), and by 30 longitudinally 

cut cells (11 of which were serially sectioned). These cells are characterized by the 

alignment of highly compacted chromosomes at the cell equator and by the presence 

of robust MT bundles often ending at the kinetochores (Figures 3 and S6). In 26 of the 

30 longitudinal sections examined, the spindles and chromosomes were surrounded 

by one or more discontinuous layers of ER membranes located near the cell poles, at 

the cell equator or at both the poles and the equator. Most of these metaphases 

showed 2-3 parallel ER membrane layers but some of them displayed from 4 to 7 

membrane layers (Figures 2, 3 and S6A; the cell shown in Figure 3 exhibits 7 parallel 

layers of ER membranes). In sections showing multiple ER membrane layers, these 

membranes run alongside the spindle with little or no overlapping, and never formed 

a quadruple membrane comparable to that observed in prometaphase cells. 

Examination of multiple sections of the same cell showed that the ER membrane 

layers that surround the metaphase spindles are organized in discontinuous and 

irregular stacks, which contain a variable number of membranes (see Figure S2D as 

an example). Thus, the metaphase spindle is not isolated by a “spindle envelope” but 

has many regions that are directly in contact with the mitotic cytoplasm. In the 26 

cells showing ER membranes, the average membrane length per section was 43.0 ± 

3.7 µm (Figure 2B).  
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 Examination of the transverse sections showed that metaphase MTs are 

mainly organized in bundles; some of these bundles end directly on the kinetochores 

while others appear to run alongside the kinetochores (Figure S6).  

 

Anaphase 

We examined only longitudinal or slightly oblique sections of anaphases. We 

sectioned 12 early anaphases and 9 mid-late anaphases B cells; we made serial 

sections of 7 and 5 of these cells, respectively. We classified as early anaphases cells 

in which the sister chromatids are separated and have started moving towards the 

poles, although the cell has still an oval shape comparable to that of metaphase cells 

(Figure 4A and S7). The MTs of early anaphase cells were still arranged in bundles; 

in 6 out of the 11 cells examined we observed clear kinetochore structures (Figure 

4A). 

 In the mid-late anaphase cells, the two sets of separating chromatids have 

reached the spindle poles or are located very close to them, and the cells exhibit an 

elongated shape compared to metaphase cells (Figure 4B and S7). In 8 out of the 9 

mid-late anaphase cells, we observed large but discontinuous patches of double 

membrane surrounding the chromosomes; only 4 out of the 11 early anaphase cells 

examined showed very small patches of chromosome-associated membranes (Figures 

4B and S7). Kinetochores and MT bundles connecting the chromosomes with the 

spindle poles were never observed in mid-late anaphase cells. However, longitudinal 

sections of these cells showed bundles of MTs traversing the sets of migrating 

chromosomes and/or placed between these sets in the center of the cell (Figures 4B 

and S7). The latter MT bundles will probably give rise to the telophase central spindle.  

 In both early and mid-late anaphase cells, the ER membrane were mostly 

confined in the polar regions of the cell but also formed single layers alongside the 

central part of the spindle; these ER membranes were shorter and often undulated 

compared to those seen in metaphase cells (Figure 4 and S7). We measured the ER 

membranes also in sections of anaphase cells (early and mid-late) and found that their 

average length was 37.2 ± 4.8 µm per section (Figure 2B). In mid-late anaphase cells, 

the average length of DNM forming around the chromosomes was 6.7 ± 1.2 µm 

(Figure 2B). The polar regions of anaphase cells also displayed many membrane 

vesicles (Figures 4 and S7) that are likely to be intermediates in the Golgi reassembly 

process. In S2 cells, like in mammalian cells, the Golgi apparatus disassembles upon 
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entry of the cells into mitosis, giving rise to large number of fragments that disperse 

into the cytoplasm; these fragments progressively reaggregate during anaphase and 

telophase to eventually reassemble the Golgi stacks in the daughter cells (Stanley et 

al., 1997; Kondylis et al., 2007; Shima et al., 1997).  

 

Telophase 

As for anaphases, we examined only longitudinal or slightly oblique sections 

containing both presumptive daughter cells. We sectioned 7 early-mid telophases and 

8 late telophases; we made 3 serial sections for each of these stages. Early-mid 

telophase figures were characterized by the decondensation of the chromosomes, 

which are almost completely surrounded by a DNM. These cells, in addition to an 

initial cleavage furrow, showed deformations of the surface with frequent bulges 

protruding from both the equatorial region and the cell poles (Figures 5A and S8B). 

These cell protrusions were not observed in prometaphase, metaphase and anaphase 

cells. Early-mid telophases also exhibited separate MT bundles between the cell poles, 

in the region where the central spindle is forming (Figure S8A). 

 Late telophases are characterized by fully reformed nuclei containing 

uncondensed chromatin surrounded by a continuous DNM. The two presumptive 

daughter cells were connected through an intercellular bridge that contained bundled 

MTs. In some cells, the plus ends of the MT bundles coming from the opposite 

daughter cells were clearly overlapping at the center of the intercellular bridge (Figure 

S8C, D). One interesting feature of the late telophase cells was the presence of many 

protrusions emanating from the cell surface. Some of these protuberances were rather 

large but others were small and often exhibited a tube-like appearance; the small 

protrusions were mostly emanating from the intercellular bridge (Figures 5B and S8C, 

D). Large membrane bulges have been also observed with a light microscope in 

telophase of normal S2 cells fixed with formaldehyde/PBS and stained for actin, 

tubulin and DNA, and their frequency and size were greatly enhanced in anillin-

depleted cells (Somma et al., 2002). It is likely that both the pole- and the intercellular 

bridge-associated protrusions are dependent on changes in the cell cortex contractility 

and the extensive membrane remodeling that occurs during cytokinesis (Sedzinski et 

al, 2011; Cabernard, 2012; Schiel and Prekeris, 2013). 

 

Membrane behavior during S2 cell mitosis  
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Extensive literature supports the notion that the double membrane that forms the 

nuclear envelope in interphase cells is continuous to the endoplasmic reticulum (ER). 

The outer nuclear membrane is connected to the ER through tubules or sheets and 

shares with the ER many proteins and lipids. In contrast, the inner nuclear membrane 

is biochemically distinct from the outer and contains hundreds of unique components, 

many of which are thought to interact with the nuclear lamina and the chromatin 

(Schirmer and Gerace, 2005; Crisp and Burke, 2008; Guttinger et al., 2009; Korfali et 

al., 2012). We found that interphase and prophase cells exhibit a DNM that surrounds 

the nucleus and a few patches of ER membranes that do not appear to be closely 

associated to the DNM. However, starting from early prometaphase, the membrane 

systems of S2 cells exhibit a series of dramatic transformations, which are 

schematically summarized in Figure 2A. 

 Our results clearly show that at the beginning of prometaphase the nuclear 

envelope exhibits small regions made of quadruple membrane (QNM); the nuclear 

fenestration areas were always characterized by the presence of QNM. Following this 

initial appearance, the QNM forms along the entire nuclear envelope. Our data do not 

allow us to envisage a precise mechanism for QNM formation. Clearly, QNM 

assembly requires the formation of an additional double membrane along the DNM. 

In principle, this additional membrane could be synthesized de novo either at the 

inside or the outside of the DNM. Alternatively, it could be a pre-existing ER 

membrane, which would first become closely apposed and then attach to the DNM. 

We favor this second possibility for several reasons. First, as mentioned earlier, there 

is continuity between the nuclear membrane and the ER, which are connected by 

tubules or sheets, a condition that would facilitate conjoining of the two double 

membranes. Second, we observed several early prometaphase cells showing ER 

membrane running alongside to the DNM, and a few examples of close apposition 

(Figures S2B, C and S5) of the ER membranes to the DNM, two findings in line with 

the second alternative. Third, there are several examples of apposition of ER 

membranes reported in the literature. The most pertinent one concerns Drosophila 

syncytial embryos, where during prometaphase a second ER membrane forms around 

the double nuclear membrane (Stafstrom and Staehelin, 1984). In another example, 

downregulation of the lipin homologue of C. elegans led to the formation of an extra 

ER layer in close association with the nuclear membrane and interfered with nuclear 

envelope disassembly (Bahmanyar et al., 2014). Stacked layers of ER membranes 
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have been also observed in vertebrate cells overexpressing certain ER membrane 

proteins (Wright et al., 1988; Snapp et al., 2003) or infected with the African swine 

fever virus (Windsor et al., 2012). However, in all these systems the ER sheets were 

not attached and did not show the type of adhesion observed in the QNM of S2 cells. 

Patches of QNM similar to those seen in S2 cells have been observed only in 

mammalian tumor cells undergoing mitosis but not in normal dividing cells (see for 

example Chang and Gibley, 1968; Parmley et al., 1976 and references therein). It has 

been also suggested that the QNM observed in these tumor cells is generated by the 

attachment of ER segments to the nuclear envelope (Parmley et al., 1976). 

 We have shown that at the fenestration sites the nuclear membrane exhibits 

multiple folds and invaginations that are mostly comprised of QNM. This dramatic 

deformation of the nuclear membrane is likely to be caused by the astral MTs that 

come into contact with the nucleus. Deep microtubule-dependent invaginations in the 

nuclear envelope have been also observed in vertebrate cells before nuclear envelope 

breakdown (NEBD), and it has been suggested that MT-nuclear envelope interactions 

trigger NEBD. However, NEBD can also occur in the absence of MTs suggesting the 

existence of a MT-independent pathway for NEBD (reviewed by Güttinger et al., 

2009; Fernández-Álvarez and Cooper, 2017). These findings prompted us to 

investigate whether QNM formation requires an interaction with the astral MTs. To 

answer this question we performed RNAi against the cnn gene that encodes a 

centrosome component essential for MT nucleation (Li et al., 1998). Consistent with 

previous studies (Somma et al., 2008) we found that RNAi-mediated Cnn depletion 

completely inhibits aster formation in S2 cells. TEM analysis of Cnn-depleted cells 

revealed that several prometaphase cells exhibit a QNM (Figure S9), indicating that 

formation of this peculiar membrane structure does not depend on interactions 

between the DNM and the astral MTs. 

 With progression through prometaphase, the inner double membrane of the 

QNM becomes swollen and progressively disassembles through the apparent 

formation of cisternae that detach from the outer membrane of the QNM. 

Interestingly, nuclear envelope-derived cisternae have been also observed in 

mammalian cells undergoing NEBD (Waterman-Storer et al., 1993; Salina et al., 

2002; Cotter et al., 2007). The finding that both the inner component of the QNM and 

the mammalian nuclear envelope disassemble through vesicle formation supports the 

hypothesis that the inner membrane of the QNM corresponds to the DNM of 
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interphase and PM1 cells. Disassembly of the inner membrane of the QNM is 

followed by the appearance of several openings in the nuclear envelope and the 

progressive transition from a closed to an open form of mitosis. 

 The measure of the length of the different membrane types (ER membranes, 

DNM, QNM, and RDM) in 70 nm sections showed that total membrane length 

(counting twice the length of the QNM) in interphase, PM1, PM2, PM3 and PM4 

cells is comparable. In contrast, total membrane length in metaphases and anaphases 

is approximately 1.5-fold greater than in interphase or prometaphase cells (Post hoc 

comparisons using the Tukey HSD test, p < 0.05) (Figure 2B). This finding suggests 

that during prophase and prometaphase there is an extensive membrane remodeling 

with respect to interphase, but no biosynthesis of new membrane. In contrast, during 

the short period that elapses between late prometaphase and metaphase (~ 5 minutes; 

based on our movies of S2 cell division; see Renda et al., 2017), additional membrane 

is synthesized, a process that is probably related with the need of membrane for the 

generation of the daughter cells during cytokinesis.  

 An analysis of nuclear pore complex (NPC) distribution in 70 nm sections 

showed that the interphase nuclei contains 21.8 ± 1.4 NPCs, with an average of one 

NPC per 0.98 µm of DNM. In the PM1 stage, the average number on NPCs in the 

DNM was drastically reduced (4.7 ± 0.9), with an average of one NPC per 4.4 µm of 

DNM. The QNM was consistently devoid of NPCs crossing both double membranes. 

However, NPC-like structures were rarely observed in the external double membrane 

of the QNM (Figure S10A) and the RDM of PM3 and PM4 cells, and even in the ER 

membranes approaching the nuclear envelope (Figure S10B). NPCs have been 

previously observed in ER membranes that form the annulate lamellae in Drosophila 

syncytial embryos (Stafstrom and Staehelin, 1984). The ER membrane layers 

alongside metaphase and anaphase spindles of S2 cells did not exhibit any NPC-like 

structures. NPCs reassembled concomitant with membrane formation around late 

anaphase B and telophase nuclei (Figure S10C, D). Thus, as occurs in mammalian 

cells (Güttinger et al., 2009; Fernández-Álvarez and Cooper, 2017), and consistent 

with previous work on Drosophila syncytial embryos (Kiseleva et al., 2001), NPCs of 

S2 cells disassemble at the onset of mitosis and reassemble during telophase. 

 

Lamin behavior and the role of the QNM during S2 cell mitosis  

To integrate TEM observations, we stained with anti-lamin and anti-GFP antibodies 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 11, 2017. ; https://doi.org/10.1101/232199doi: bioRxiv preprint 

https://doi.org/10.1101/232199


	
   14	
  

dividing S2 cells that express tubulin-GFP, and examined them by confocal 

microscopy (Figure 6). Remarkably, the analysis of optical sections of these cells 

permitted visualization of the different stages of prometaphase identified by TEM 

analysis. We analyzed 160 prometaphase cells; 16% displayed a continuous lamin 

envelope except at fenestrations penetrated by MTs (Figure 6B). These cells most 

likely correspond to the PM1 and PM2 stages. 37% of the prometaphases showed an 

incomplete lamin envelope (Figure 6C, D) and are likely to correspond to the PM3 

stage. The remaining 49% of the prometaphases examined displayed some remnants 

of the lamin envelope and small patches of lamin dispersed throughout the cytoplasm 

(Figure 6E, F); these cells are most likely in the PM4 stage. In metaphase cells, 

chromosomes were not surrounded by any clear lamin-enriched structure, suggesting 

that in S2 cells the lamin envelope disassembles in late prometaphase. Thus, it 

appears that lamin envelope disintegration occurs in the PM4 stage at the transition 

between prometaphase and metaphase. 

 Interestingly, after prometaphase, lamin-enriched speckles persisted through 

metaphase, anaphase and telophase (Figure 6 G-J). These lamin speckles have been 

observed previously in S2 cells (Schweizer et al., 2015) but not in Drosophila 

embryonic or brains mitoses and in male meiosis (Harel et al., 1989; Paddy et al., 

1996; Katsani et al, 2008; Fabbretti et al., 2016). We do not know the composition 

and the function of these speckles, which were not detected by TEM analysis. They 

might be aggregations of lamin, other nuclear envelope proteins and membrane that 

did not completely disassemble to facilitate reformation of the nuclear envelope at 

telophase. Indeed, starting from late anaphase and throughout telophase, we observed 

a lamin envelope surrounding the two daughter nuclei (Figure 6I, J). However, the 

lamin speckles persisted also after initial reformation of this nuclear envelope raising 

the possibility that they could be used for nuclear envelope expansion in late 

telophase or during the ensuing G1. 

 Collectively, our results suggest the hypothesis that Drosophila S2 cells 

evolved a QNM to maintain a closed mitosis up to mid-late prometaphase, to facilitate 

MT-kinetochore interactions during early prometaphase. Our observations suggest 

that the inner double membrane component of the QNM corresponds to the vertebrate 

nuclear membrane, which disintegrates at the beginning of prometaphase 

concomitantly with its associated lamin meshwork (NEBD). The formation of a QNM 

would maintain the continuity of the nuclear envelope even when the inner double 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 11, 2017. ; https://doi.org/10.1101/232199doi: bioRxiv preprint 

https://doi.org/10.1101/232199


	
   15	
  

membrane component of the QNM disassembles, thus postponing NEBD from the 

beginning of prometaphase to mid-late prometaphase (stage PM4). The lamin 

behavior during prometaphase (Figure 6) raises the question of whether the stability 

of the perinuclear lamin meshwork requires an interaction with the inner component 

of the QNM or can also be stabilized by its outer component (the RDM). Our light 

microcopy observations (Figure 6) appear to support the first alternative. However, 

further studies will be required to define the properties of the two double membranes 

of the QNM. 

   

Relationships between mitochondria and ER membranes  

 Studies carried out in both Drosophila and human cells have shown that 

membranous organelles (e.g., mitochondria) are excluded from the spindle region 

through a microtubule independent mechanism (McIntosh and Landis, 1971; 

Schweizer et al., 2015, and references therein). It has also been shown that soluble 

tubulin and proteins such as Megator and Mad-2 accumulate in the nucleoplasm soon 

after nuclear fenestration at the beginning of prometaphase, and remain within the 

nucleus for approximately 10 minutes before spreading into the cytoplasm (Schweizer 

et al., 2015). To explain this finding, it has been suggested that during early mitosis 

these proteins are confined into the nucleoplasm by "spindle envelope" membranes 

that still surround the nucleus.  

 Our analyses showed the presence of a complex membranous system encasing 

the chromosomes during the early stages of prometaphase, and that this system 

becomes discontinuous after the PM3 stage. Nevertheless, our TEM photographs 

revealed that mitochondria are mostly excluded from the spindle/nuclear area not only 

in the PM1, PM2 and PM3 prometaphase stages but also in during the PM4 stage and 

the subsequent mitotic stages. We found that mitochondria are mostly associated with 

ER membranes that discontinuously surround the spindle during late prometaphase 

(PM4), metaphase, anaphase and early telophase. These organelles were often found 

in close proximity or attached to the ER membranes on both their inner and outer 

sides with respect to spindle (Figures 3, 4, S2D, S6, S7, S8B); sometimes they were 

anchored to these membrane like bulbs on a garland (Figure S8B). An intimate 

interconnection between mitochondria and ER has been observed in yeast and shown 

to be crucial for proper mitochondria distribution during mitosis. However, it is 

unclear whether an ER and mitochondria also associate during animal cell mitosis 
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(reviewed in Rowland and Voeltz, 2012). Our results strongly suggest that the 

mitochondria and the ER physically interact during S2 cell mitosis, and confirm the 

exclusion of these organelles from the spindle area (Schweizer et al., 2015). However, 

our observations indicate that ER membranes do not form a barrier against the 

invasion of the spindle region by mitochondria as suggested previously (Schweizer et 

al., 2015), but instead constitute a trap that captures these organelles, preventing their 

free diffusion within the dividing cells.  

   

Membrane behavior during mitosis in different Drosophila tissues  

The most studied Drosophila mitotic system is the syncytial embryo, characterized by 

a series of extremely rapid and synchronous mitotic divisions. Membrane behavior in 

this system is similar but not identical to the one just described for S2 cells. Also in 

embryonic divisions a second membrane is added just outside the nuclear membrane; 

this process begins in prometaphase near the fenestrated areas at the spindle poles and 

is completed at metaphase with the formation of two membrane layers that surround 

the entire spindle with the exception of the poles. These double membrane layers, 

often designated as spindle envelope, persist during metaphase and anaphase, contain 

ER markers, exhibit numerous irregular fenestrae but are never as closely apposed as 

the two double membranes that comprise the S2 cell QNM (Stafstrom and Staehelin, 

1984; Bobinnec et al., 2003; Frescas et al., 2006). The regions of single nuclear 

membrane around the embryonic prometaphase nuclei exhibit disassembling NPCs 

but the two membrane layers of metaphase nuclei are virtually devoid of NPCs, which 

reassemble only in the membrane that surrounds telophase nuclei (Stafstrom and 

Staehelin, 1984; Kiseleva et al., 2001). Finally, in contrast with S2 cells where the 

nuclear lamina disintegrates during prometaphase, in embryos the lamina surrounds 

spindles till late metaphase and dissolves just before anaphase (Paddy et al., 1996; 

Katsani et al., 2008). Thus, it appears that embryonic mitosis is more “closed” than S2 

cells mitosis, consistent with the fact that embryonic nuclei are not surrounded by a 

plasma membrane.  

 A spindle envelope similar to that seen in embryonic mitoses has been also 

observed in dividing neuroblasts of Drosophila larval brains; like in embryos this 

membranous structure persists till late anaphase (TEM observations by A.T.C. 

Carpenter, personal communication). In addition, it has been shown that from 

metaphase to late anaphase of brain neuroblasts the phosphatidylinositol transfer 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 11, 2017. ; https://doi.org/10.1101/232199doi: bioRxiv preprint 

https://doi.org/10.1101/232199


	
   17	
  

protein (PITP) Giotto is enriched at an intracellular structure that for location and 

shape corresponds to the spindle envelope (Giansanti et al., 2006). PITPs are enriched 

at cell membranes where they bind lipid monomers, facilitating their transfer between 

different membrane compartments (Allen-Baume et al., 2002). Consistent with these 

results, in vivo studies have shown that GFP-lamin marks the nuclear envelope from 

prophase till anaphase, although the anaphase GFP signal is weaker than those 

observed in prometaphase and metaphase cells (Katsani et al., 2008). These 

observations suggest that neuroblast mitosis has a similar membrane behavior as 

mitosis in syncytial embryos. Thus, S2 cell mitosis appears to be more “open” than 

both neuroblast and syncytial embryo mitosis. 

 The few studies performed in S2 cells have not provided details on the 

intracellular membrane behavior during mitosis; it has been only reported that a 

membrane-based nuclear envelope disappears just prior to metaphase plate formation 

(Maiato et al., 2006). A study on the heat shock effects in Kc cells, another 

Drosophila cell line of embryonic origin, showed that the spindles of cells not treated 

with heat are surrounded by two membrane layers that run adjacent to each other but 

do not exhibit areas of close apposition (Debec and Marcaillou, 1997). Thus, they are 

somewhat similar to the paired double membranes that encase embryonic divisions. 

“Spindle envelopes” containing a variable number of membrane layers have been 

described in Drosophila spermatocytes (Tates, 1971; Fuller, 1993) and in mitotic and 

meiotic spindles of several Diptera and Lepidoptera (Wolf, 1990; Wolf, 1995). 

However, the complex intracellular membrane behavior we observed in S2 cell 

mitosis has not been described in any of these systems. Moreover, published images 

did not show closely apposed membrane layers comparable to QNM we observed in 

S2 cells (Tates, 1971; Wolf, 1990; Wolf, 1995, Debec and Marcaillou, 1997).  

 

MT behavior and MT-kinetochore interactions in S2 cells 

To analyze MT behavior and MT-kinetochore relationships we examined both single 

and serial sections of mitotic cells cut either alongside or transversely with respect to 

the spindle axis. We first considered transverse sections through prometaphase and 

metaphase chromosomes. The PM1, PM2, PM3, PM4 and metaphase stages were 

recognized for the degree of chromatin compaction and for the intracellular 

membrane pattern. In early stages of prometaphase, MTs are rather sparse but tend to 

aggregate into bundles as prometaphase proceeds (see Figures S3 for overall 
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examples of MT distribution in transverse sections; detailed examples are shown in 

Figures 7A and 8B). To characterize the MT bundles at different mitotic stages, we 

measured the average distance between the MT centers within each bundle (see 

Material and Methods for the measuring procedures). We considered as MT bundles 

geographically isolated MT aggregates in which the average distance between the 

MTs is between 35 and 50 nm; aggregates of 2 or 3 MTs were not considered as 

bundles. This analysis showed that the distance between bundled MTs decreases from 

early prometaphase to metaphase (Figure 7B). The average inter-MT distances 

observed in the PM1, PM2 and PM3 bundles are significantly different (post hoc 

comparisons using the Tukey HSD test, p < 0.01), whereas the inter-MT distances 

within the PM3, PM4 and metaphase bundles are not significantly different. In 

addition, with progression from early prometaphase to metaphase there is an increase 

in the frequencies of large bundles containing 10-15, 16-21, and >21 MTs (Figure 

7C). The largest MT bundles (34-39 and 40-45 MTs) were found only in PM3, PM4 

and metaphase cells (Figure 7D).  

 We were not able to visualize mature kinetochore structures before the PM4 

stage, in the PM1-PM3 stages the kinetochores are oblong and never show end-on-

attached MTs. In PM4 cells, kinetochores have an arched shape similar to that of their 

metaphase counterparts and often display end-on attached MTs (Figure S4). These 

observations are consistent with the finding that at mitotic entry human kinetochores 

appear as large crescents and compact into discrete kinetochore structure only after 

the attachment to MTs in an end-on fashion (Magidson et al., 2015). Consistent with 

previous findings (Maiato et al., 2006), longitudinal sections of S2 cell metaphases 

and early anaphases showed that kinetochores with attached MTs are arched 

structures that show only an electron dense layer (Figure 3B, 4A, S4, S6A) and fail to 

exhibit the two typical layers that characterize vertebrate kinetochores. However, after 

MT depolymerization with colchicine, S2 cell kinetochores exhibit an inner and an 

outer layer, suggesting that the presence of MTs distorts kinetochore structure 

(Maiato et al., 2006).  

 In some transverse sections through metaphase chromosomes, we observed 

bundles of 9-15 MTs end-on attached to the kinetochores (k-fibers) (Figure 8). 

Analysis of longitudinal and transverse serial sections (Figure 8A, B) showed that k-

fibers contain in average 12 ± 1 MTs, consistent with previous ultrastructural studies 

on S2 cells (Maiato et al., 2006). We also observed MT bundles running laterally to 
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kinetochores (lateral bundles). In sections including the kinetochore, most lateral 

bundles contained either 10-14 or 20-30 MTs; in serial sections not including the 

kinetochores the lateral bundles and the k-bundles formed a single large MT bundle of 

30-45 MTs (Figure 8B). 

 These observations raise the question of the nature of the lateral MT bundles. 

Are they comprised of antiparallel MTs running from pole to pole with a region of 

overlap at the cell equator, or are instead MTs that terminate in another kinetochore 

located proximally or distally with respect to the sectioning plane? Our TEM analyses 

clearly showed the existence of long pole-to-pole MT bundles (Figure S11) but did 

not provide sufficient information on the behavior of all lateral MT bundles. To 

address this question we made mitotic preparation stained for tubulin, Cid and DNA 

and examined them by a confocal microscope. Cid, the Drosophila homologue of 

CENP-A, is a specific component of centromeric heterochromatin routinely used as a 

kinetochore marker (Henikoff et al., 2000). Examination of optical sections and three-

dimensional computer-reconstructed images of late prometaphases and metaphases 

confirmed the presence of pole-to-pole bundles of approximately the same size as the 

k-bundles. Examination of particularly favorable preparations revealed that some 

bundles running adjacent to a kinetochore attach end-on to another kinetochore, while 

others run till the spindle pole without encountering another kinetochore (Figure 9A, 

B). We also observed multiple kinetochore/lateral MT bundles converging into larger 

MT assemblies (Figure 9A, B). Collectively, our confocal and TEM observations are 

summarized in the 3D model of MT organization during late prometaphase and 

metaphase (Figure 9 C). This model provides an explanation for the different numbers 

of MTs in the bundles. Bundles of 9-15 MT are either kinetochore or pole-to-pole 

bundles, while bundles of 20-30 and 30-45 MTs are likely to comprise different 

combinations of these two bundle types. The finding that PM3 and PM4 cells exhibit 

particularly large MT bundles (comprising up to 45 MTs) might reflect the presence 

of nonaligned prometaphase chromosomes with tandemly arranged kinetochores 

along the spindle axis.  

 The presence of associations between k-fibers of 9-15 MTs and large lateral 

MT bundles (comprising 9-34 MTs) seems to be peculiar to Drosophila S2 cells. MT 

bundles running laterally to kinetochores have been previously observed by TEM in 

both longitudinal and cross-sections of several spindle types including those of rat 

kangaroo PTK cells (Brinkley and Cartwright, 1971; McDonald et al. 1992) and HeLa 
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cells (Wendell et al., 1993; Booth et al., 2011; Nixon et al. 2017), as well as in 

spindles assembled from Xenopus egg extracts (Ohi et al., 2003). However, in all 

cases, in contrast to S2 cells, the lateral MT bundles appeared to contain much fewer 

MTs than the kinetochore fibers.  

 There is evidence that the lateral MT bundles play important roles in 

chromosome segregation. The most extreme case has been described in the 

acentrosomal meiotic spindles of C. elegans females, where kinetochores are not 

required for chromosome segregation and chromosomes segregate due to motor 

protein-mediated interactions with lateral MT bundles (Wignall and Villeneuve, 2009; 

Dumont et al., 2010; Muscat et al., 2015). In Drosophila female meiosis, lateral 

kinetochore-MT attachments are sufficient for prometaphase chromosome movements 

but end-on kinetochore-MT attachments are required for homolog bi-orientation, 

indicating that both lateral and end-on kinetochore-MT interactions cooperate to 

ensure accurate chromosome segregation (Radford et al., 2015). Also in centrosome-

containing spindles of mammalian cells lateral kinetochore-MT interactions have 

relevant roles in mitotic division. For example, k-fibers of mammalian cells that have 

lost direct connection to the pole can nonetheless promote chromosome segregation 

through dynein-mediated lateral interactions with the k-fibers of adjacent 

chromosomes and/or other non-kinetochore MTs (Sikirzhytski et al., 2014). 

Consistent with these results, it has been shown that interpolar MT bundles can 

physically associate with k-fibers forming a bridge between the two sister 

kinetochores. These bridging MT bundles (called bridging fibers) are thought to 

balance the forces acting at kinetochores and to contribute to both spindle shaping and 

chromosome movement (Kajtez et al 2016; reviewed by Tolic, 2017). Based on these 

studies, we suggest that the peculiar organization of MTs observed in S2 cell 

metaphase spindle (Figure 9) reflects lateral interactions between kinetochores and 

both k-fibers and interpolar MTs; these interactions are likely to be functionally 

important to ensure accurate chromosome segregation  

 

Concluding remarks 

 

We have shown that S2 cell spindles comprise multiple discrete MT bundles that are 

likely to interact with each other to ensure proper spindle function. This spindle 

organization appears to be slightly different from that observed in vertebrate cells. 
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However, we do not know whether it is different from the structure of Drosophila 

embryonic or neuroblast spindles, which are currently incompletely characterized at 

the ultrastructural level. We have also shown that dividing S2 cells exhibit a peculiar 

intracellular membrane behavior, which was not previously seen during mitosis of 

vertebrate cell, Drosophila embryonic nuclei, or Drosophila larval brain cells. 

Overall, our observations clearly show that besides their characteristic membrane 

behavior, S2 cell mitoses are more “open” than their embryonic or neuroblast 

counterparts. This finding raises the interesting question of whether this feature of S2 

cell mitosis is also present in the late (cellularized) embryonic cells from which the S2 

lineage derives, or was instead acquired during the process of S2 cell immortalization. 

Distinguishing between these alternatives and defining whether different Drosophila 

cell types exhibit variations in their mitotic structures will require further 

ultrastructural studies in additional fly tissues and their derivative cell lines (Lee et al., 

2014). 

 

Materials and methods 

 

Cell culture and RNA interference 

The origin of the Drosophila S2 cell line used here has been described previously 

(Strunov et al., 2016). S2 cells and S2 cells expressing tubulin-GFP were maintained 

at 25 C in Shields and Sang M3 medium (Sigma) supplemented with 20% heat-

inactivated fetal bovine serum (FBS, Invitrogen). The cell density was kept below 6-

8×106 cells/ml to avoid formation of cell aggregates. cnn dsRNA production and 

RNAi treatments were carried out according to (Somma et al., 2008); dsRNA-treated 

S2 cells were grown for 5 days at 25°C, and then processed for TEM analysis. 

 

Transmission electron microscopy (TEM) 

For preparation and ultrastructural analysis of S2 cells we used the protocol described 

in detail by Strunov et al. (2016). Briefly, the cell pellet was fixed in 2.5% 

glutaraldehyde in 0.1 M sodium cacodylate buffer for 1 h at room temperature, post-

fixed for 1 h in 1% water solution of osmium tetroxide containing few crystals of 

potassium ferricyanide (K3[Fe(CN)6]), and then incubated overnight at 4°C in 1% 

aqueous solution of uranyl acetate. Next day, specimens were dehydrated in ethanol 

series and acetone, and embedded in Agar 100 Resin (Agar Scientific, Essex, UK). 
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Complete polymerization of samples was conducted by keeping them in 60°C oven 

for three days. Ultra-thin (70 nm) sections were obtained with Leica ultracut ultra-

microtome. Sections were examined with JEOL JEM-100SX transmission electron 

microscope at 60 kV in Inter-institutional Shared Center for Microscopic Analysis of 

Biological Objects (Institute of Cytology and Genetics, Novosibirsk, Russia). The 

obtained images were slightly modified in Photoshop CS5 using levels and brightness 

and contrast tools. 3D reconstructions of prometaphase cells were obtained using the 

“Reconstruct” free editor (Fiala, 2005).  

 

Measurements with ImageJ 

The length of membranes (NME, RDM, QNM and ER) in S2 cells at different mitotic 

stages was measured with ImageJ software (https://imagej.nih.gov/ij/), using the 

simple freehand selection tool and measure function. For membrane measurements, 

we considered only longitudinal or slightly oblique longitudinal sections. The data 

obtained for each mitotic stage were compared using one-way ANOVA with post-hoc 

Tukey HSD test. 

 The distance between MTs within a bundle at different mitotic stages was also 

measured using ImageJ software. For each mitotic stage, we analyzed 10 transversally 

cut bundles containing at least 10 MTs. For each bundle, we measured the radial 

distances between the MT at the center of the bundle and its neighbor MTs; measures 

were taken from MT center to MT center and the mean distance was quantified. Data 

obtained for different mitotic stages were compared using one-way ANOVA with 

post-hoc Tukey HSD test. 

 

Confocal microscopy observations 

2×106 of S2 cells were centrifuged at 200 × g for 5 min, washed in 2 ml of phosphate 

buffered saline (PBS, Sigma), and fixed for 10 min in 2 ml of 3.7% formaldehyde in 

PBS. Fixed cells were spun down by centrifugation at 200 × g for 5 min, resuspended 

in 500 µl of PBS and placed onto a clean slide using Cytospin™ 4 cytocentrifuge 

(Thermo Fisher Scientific) at 900 rpm for 4 min. The slides were then immersed in 

liquid nitrogen, washed in PBS, incubated in PBT (PBS + 0.1% TritonX-100) for 30 

min and then in PBS containing 3% bovine serum albumin (BSA) for 30 min. The 

following primary antibodies were used for immunostainings (all diluted in PBT): 

mouse monoclonal anti-α-tubulin (1:600, Sigma, T6199), mouse monoclonal anti-
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Lamin Dm0 (1:300, Developmental Studies Hybridoma Bank, ADL67.10), rabbit 

polyclonal anti-Cid (1:300, Abcam, ab10887) and rabbit polyclonal anti-GFP (1:200, 

Invitrogen, A11122). These primary antibodies were detected by incubation for 1 h 

with FITC-conjugated anti-mouse IgG (1:30, Sigma, F8264), Alexa Fluor 568 

conjugated anti-mouse IgG (1:500, Invitrogen, A11031), Alexa Fluor 488 conjugated 

anti-rabbit IgG (1:300, Invitrogen, A11034) and Alexa Fluor 568 conjugated anti-

rabbit IgG (1:350, Invitrogen, A11077). All slides were mounted in Vectashield 

medium with DAPI (Vector Laboratories, H-120) to stain DNA and reduce 

fluorescence fading. Confocal immunofluorescent images were obtained on a Zeiss 

LSM 710 confocal microscope, using an oil immersion 100×/1.40 plan-apo objective 

and the ZEN 2012 software. 
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Figure 1. Prometaphase stages of S2 cells. 
(A) PM1 stage; note formation of QNM in the area of nuclear fenestration and the 
presence of a normal DNM along most nuclear envelope. (B) PM2 stage; note that 
almost all nuclear envelope is composed by QNM. (C) PM3 stage; note disassembly 
of the inner membrane of the QNM through vesiculation (inset; vesicles are indicated 
by arrowheads). (D) PM4 stage; note the almost complete disassembly of the QNM 
(remnants of the QNM are observed at the cell poles, arrowhead) and the appearance 
of ER membrane stacks. Asterisks indicate the cell regions shown at higher 
magnification in the central and rightmost images. Scale bars: 1 µm; except rightmost 
image of C, 0.1 µm.  
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Figure 2. Schematic representation of intracellular membrane behavior during 
mitosis of S2 cells. 
(A) Membrane remodeling during prometaphase and metaphase. In PM1, a QNM 
begins to form in the proximity of the nuclear fenestration area, and during PM2 
extends along the entire nuclear envelope. During late PM2 and PM3, the inner 
double membrane of the QNM becomes swollen and progressively disassembles 
through a vesiculation process, while a RDM persists around the nucleus. In PM4, 
only small patches of QNM are observed at the cell poles and the RDM disassembles. 
In metaphase cells, multilayer stacks of ER membranes form alongside the spindle.  
(B) Membrane length measured in 70 nm sections of interphase and mitotic cells. The 
DNM is present in interphase and prophase cells, in PM1 cells, and around some 
regions of anaphase chromosomes. In PM3 cells, the DNM is no longer present and 
the non-QNM portions of the nuclear envelope are made of RDM.  To calculate the 
total membrane length we counted twice the QNM. Note that the total membrane 
length is similar from prophase through late prometaphase and increases in metaphase 
and anaphase cells. Error bars, SEM. 
	
   	
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 11, 2017. ; https://doi.org/10.1101/232199doi: bioRxiv preprint 

https://doi.org/10.1101/232199


	
   32	
  

	
  
 
Figure 3. Examples of S2 cell metaphases. 
Note the stacks of parallel ER membranes in A, and the kinetochores with k-fibers 
(arrowheads) in B. Asterisks indicate the cell regions shown at higher magnification 
in the images on the right. Scale bars: Left images 5 µm; right images 1 µm. 
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Figure 4. Examples of S2 cell anaphases. 
(A) Early anaphase cell showing initial separation of the sister chromatids. Note the 
kinetochores of the separating sister chromatids (arrowheads) and the vesicles at the 
spindle poles. (B) Mid-late anaphase. Note the formation of a double membrane 
around the chromosomes (arrowheads) and the MT bundles in the center of the cell. 
Asterisks indicate the cell regions shown at higher magnification in the central and 
rightmost images. Scale bars: leftmost image 5 µm, central and rightmost images 1 
µm. 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 11, 2017. ; https://doi.org/10.1101/232199doi: bioRxiv preprint 

https://doi.org/10.1101/232199


	
   34	
  

 
 
Figure 5. Examples of S2 cell telophases. 
(A) Early telophase with the chromosomes almost completely surrounded by a double 
membrane. Note the bulges protruding from both the equatorial region and the cell 
pole. (B) Late telophase with fully reformed nuclei. Note the multiple protrusions 
emanating from the intercellular bridge. Asterisks indicate the cell regions shown at 
higher magnifications. Scale bars: A, left image 5 µm, right image 1 µm; B, left 
image 5 µm, right image 1 µm. 
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Figure 6. Lamin immunostaining recapitulates TEM observations. 
Cells were stained for lamin, tubulin and DNA. A lamin meshwork encases the 
nucleus in interphase and early prometaphase cells (PM1 and PM2), begins to 
disintegrate in mid-prometaphase (PM3), and it is completely disassembled in late 
prometaphase (PM4) and metaphase cells. Note that fragments of the nuclear lamina 
persist from prometaphase till late telophase. Scale bars: 5 µm. 
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Figure 7. MT organization in S2 cell prometaphases and metaphases. 
(A) Examples of transverse sections of MTs in prometaphase and metaphase cells; in 
the bottom panels MTs are pseudocolored in red. In the PM1 cell shown, MTs are not 
bundled. In the PM2, PM3, PM4 and metaphase (M) cells, MTs are organized in 
bundles, and the average distance between bundled MTs decreases during progression 
from early prometaphase to metaphase. Scale bar: 0.1 µm. (B) Quantification of the 
distances between MTs within bundles; the average distances observed in PM3, PM4 
and metaphase (M) cells are significantly smaller than those seen in PM1 and PM2 
cells (* and **, p<0.05 and 0.01, respectively; ANOVA with post-hoc Tukey HSD). 
(C, D) Distributions of MT bundle sizes (number of MTs per bundle) from early 
prometaphase to metaphase. In (C), the upper row of the pie charts shows the 
distribution of all MTs, while the lower row show only bundled MTs. 
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Figure 8. Organization of MT bundles in S2 cell late prometaphase/metaphase. (A) Longitudinal 
serial sections showing a large MT bundle comprising MTs that are attached to kinetochores (k-fibers) 
and MTs that run laterally to kinetochores. In the bottom panels, the dotted red lines delimit the MT 
bundles, and kinetochores are pseudocolored in red. (B) Transverse serial sections through a large MT 
bundle comprising kinetochore-attached MTs (k-fiber) and two lateral MT bundles. The first and third 
series of panels show the original images. In the second and forth series of panels, kinetochores and 
most MTs are pseudocolored in red. MTs embedded into the kinetochore are less clear than the other 
MTs in the section, and are tentatively pseudocolored in green. Scale bars: 1 µm (A), 0.1 µm (B). 
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Figure 9. Organization of MT bundles in S2 cell metaphases. 
(A, B) Serial optical sections (A) and maximum projection (B) of a metaphase cell stained for 
tubulin, the centromere marker Cid and DNA (DAPI). Some MT bundles are running 
continuously between the two spindle poles without encountering the centromeres (interpolar 
bundles), while other bundles end at kinetochores (k-fibers). Note that MT bundles attached to 
different kinetochores and interpolar bundles are closely apposed (and/or intermingled) in the 
regions comprised between the centromeres and the spindle poles. Scale bars: 5 µm.   
(C) A model for MT-kinetochore interaction during late prometaphase and metaphase cells. 
The model depicts a portion of a late prometaphase/metaphase that includes only two 
chromosomes. Grey MT bundles are k-fibers; green and red MTs are interpolar MT bundles 
running laterally to kinetochores; the scheme does not imply that the k-fibers are as numerous 
as the interpolar MT bundles. k-fibers A and B are attached to the kinetochores of two neighbor 
chromosomes. Note that k-fiber A is a lateral MT bundle for kinetochore B, while k-fiber B is a 
lateral MT bundle for the kinetochore A. 
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