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Abstract 17 

Accurate quantification of cellular and mitochondrial bioenergetic activity is of great 18 

interest in medicine and biology. Mitochondrial stress tests performed with Seahorse 19 

Bioscience XF Analyzers allow estimating different bioenergetic measures by 20 

monitoring oxygen consumption rates (OCR) of living cells in multi-well plates. 21 

However, studies of statistical best practices for determining OCR measurements 22 

and comparisons have been lacking so far. Therefore, we performed mitochondrial 23 

stress tests in 126 96-well plates involving 203 fibroblast cell lines to understand how 24 

OCR behaves across different biosamples, wells, and plates. We show that the noise 25 

of OCR is multiplicative, that outlier data points can concern individual 26 

measurements or all measurements of a well, and that the inter-plate variation is 27 

greater than intra-plate variation. Based on these insights, we developed a novel 28 

statistical method, OCR-Stats, that: i) robustly estimates OCR levels modeling 29 

multiplicative noise and automatically identifying outlier data points and outlier wells; 30 

and ii) performs statistical testing between samples, taking into account the different 31 

magnitudes of the between- and within-plates variations. This led to a significant 32 

reduction of the coefficient of variation across plates of basal respiration by 36% and 33 

of maximal respiration by 32%. Moreover, using positive and negative controls, we 34 

show that our statistical test outperforms existing methods, which either suffer from 35 
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an excess of false positives (within-plates methods), or of false negatives (between-36 

plates methods). Altogether, the aim of this study is to propose statistical good 37 

practices to support experimentalists in designing, analyzing, testing and reporting 38 

results of mitochondrial stress tests using this high throughput platform. 39 

Keywords: Oxygen Consumption Rate (OCR); mitochondrial respiration; 40 

bioenergetics; statistical testing; outlier detection. 41 

1. Introduction 42 

Mitochondria are double membrane enclosed, ubiquitous, maternally inherited 43 

organelles present in most eukaryotic cells (1). They are mostly known as the 44 

powerhouses of the cell (2,3) due to their pivotal function in the cellular energy supply 45 

where ATP is generated by the mitochondrial respiratory chain in a process referred 46 

to as oxidative phosphorylation. Furthermore, mitochondria are involved in regulating 47 

reactive oxygen species (4), apoptosis (2), amino acid synthesis (5,6), cell 48 

proliferation (6), cell signaling (7), and in the regulation of innate and adaptive 49 

immunity (8). A decline in mitochondrial function, reflected by a diminished electron 50 

transport chain activity, is related to many human diseases ranging from rare genetic 51 

disorders (9) to common ones such as cancer (7,10), diabetes (11), 52 

neurodegeneration (12), and aging (3). One of the most informative tests of 53 

mitochondrial function is the quantification of cellular respiration, as it directly reflects 54 

electron transport chain impairment (9) and depends on many sequential reactions 55 

from glycolysis to oxidative phosphorylation (13). One of the last steps of cellular 56 

respiration is the oxidation of cytochrome c in complex IV which reduces oxygen to 57 

form water. Therefore, estimations of oxygen consumption rates (OCR) expressed in 58 

pmol/min, are conclusive for the ability to synthesize ATP and mitochondrial function, 59 

even more than measurements of intermediates (such as ATP or NADH) and 60 

potentials (16,17). 61 
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OCR was classically measured using a Clark-type electrode, which is time 62 

consuming, limited to whole cells in suspension and high yield, and does not allow 63 

automated injection of compounds (17). Also, experimentation with isolated 64 

mitochondria is ineffective because cellular regulation of mitochondrial function is 65 

removed during isolation (18). In the last few years, a new technology that calculates 66 

O2 concentrations from fluorescence (19) in a microplate assay format has been 67 

developed by the company Seahorse Bioscience (now part of Agilent Technologies) 68 

(20). It allows simultaneous real-time measurements of both OCR and ECAR in 69 

multiple cell lines and conditions, reducing the amount of required sample material 70 

and increasing the throughput (14,20).  71 

Typically, OCR and ECAR are measured using the Seahorse XF Analyzer in 96 (or 72 

24) well-plates at multiple time steps under three consecutive treatments (Fig. 1), in a 73 

procedure known as mitochondrial stress test (21). Under basal conditions, 74 

complexes I-IV exploit energy derived from electron transport to pump protons across 75 

the inner mitochondrial membrane. The thereby generated proton gradient is 76 

subsequently harnessed by complex V to generate ATP. Blockage of the proton 77 

translocation through complex V by oligomycin represses ATP production and 78 

prevents the electron transport throughout complexes I-IV due to the unexploited 79 

gradient, thus generating ATP-ase independent OCR only (Figs. 1A-B). 80 

Administration of FCCP, an ionophor, subsequently dissipates the gradient 81 

uncoupling electron transport from complex V activity and increasing oxygen 82 

consumption to a maximum level (Figs. 1A-B). Finally, mitochondrial respiration is 83 

completely halted using rotenone, a complex I inhibitor. There is still some remaining 84 

oxygen consumption that is independent from electron transport chain activity (Figs. 85 

1A-B). This approach is label-free and non-destructive, so the cells can be retained 86 

and used for further assays (15).  87 

Figure 1. Principle of the mitochondrial stress test assay (A) Cartoon illustration 88 

of OCR levels (y-axis) versus time (x-axis). Injection of the three compounds 89 
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oligomycin, FCCP and rotenone delimit four time intervals within which OCR is 90 

roughly constant. (B) Targets of each compound in the electron transport chain. (C) 91 

Typical layout of a mitochondrial stress test 96-well plate.  92 

OCR differences in the natural scale between the various stages of this procedure 93 

lead to the estimation of six different bioenergetics measures: basal respiration, 94 

proton leak, non-mitochondrial respiration, ATP-linked respiration, spare respiratory 95 

capacity, and maximal respiration (14,17) (Table 1). An increase in proton leak and a 96 

decrease in maximal respiration are indicators of mitochondrial dysfunction (17). 97 

ATP-linked respiration, basal respiration, and spare capacity alter also in response to 98 

ATP demand, which is not necessarily mitochondrion-related as it may be the 99 

consequence of deregulation of any cellular process altering general cellular energy 100 

demand. 101 

Current literature describing the Seahorse technology addresses experimental 102 

aspects regarding sample preparation (22,23), the amount of cells to seed (23,24), 103 

and compound concentration in different organisms (13,22,25). However, studies 104 

regarding statistical best practices for determining OCR levels and testing them 105 

against another are lacking. The sole definition of bioenergetic measures varies 106 

between authors, as well as the number of time points in each interval (usually three 107 

time points, but in some cases: one (26), two (27), and four or more (11)); and 108 

whether differences (6,13,28), ratios (12,29), or both (24,25) should be computed. 109 

Consequently, comparison of results across studies is difficult. Moreover, statistical 110 

power analyses for experimental design are often not provided. Differences in OCR 111 

between biosamples (e.g. patient vs. control, or gene knockout vs. WT) can be as 112 

low as 12 – 30% (30–32). Therefore, to design experiments with appropriate power 113 

to significantly detect such differences, it is important to know the source and 114 

amplitude of the variation within each sample, and reduce it as much as possible. 115 
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We performed and analyzed a large dataset of 126 experiments in 96-well plate 116 

format involving 203 different fibroblast cell lines, out of which 26 were seeded in 117 

more than one plate (Table S1). The large amount of between-plate and within-plate 118 

replicates allowed us to statistically characterize the nature and magnitude of biases 119 

and random variations in these data. We developed a statistical procedure called 120 

OCR-Stats, to extract robust and accurate oxygen consumption rates for each well, 121 

which translates into robust summarized values of the multiple replicates within and 122 

between plates. The OCR-Stats algorithm includes automatic outlier identification 123 

and controls for well and plates biases, which led to a significant increase in accuracy 124 

over state-of-the-art methods.  125 

Between-well and between-plate biases, as well as random variations, were found to 126 

be multiplicative. This motivated us for a definition of bioenergetics measures based 127 

on ratios: ETC-dependent OC proportion, ATPase-dependent OC proportion, ETC-128 

dependent proportion of ATPase-independent OC, and Maximal OC fold change 129 

(Table 1).  130 

Table 1. OCR ratios, abbreviations and equivalents 

OCR ratios Abbreviation Equivalent 

ETC-dependent OC 

proportion 

E/I – proportion Basal Respiration: ���� � ���� 

ATPase-dependent OC 

proportion 

A/I – proportion ATP-linked respiration: ���� �

���� 

ETC-dependent proportion of 

ATPase-independent OC 

E/Ai - proportion Proton Leak: ���� � ���� 

Maximal OC fold change M/I – fold change Spare respiratory capacity: 

���� � ���� 

Maximal over ETC-

independent OC fold change 

M/Ei – fold change Maximal respiration: ���� �

���� 
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Not defined as a ratio Not defined Non-mitochondrial respiration: 

���� 

 131 

We provide estimators for each instance and show that they are empirically normally 132 

distributed. This permitted the use of linear regression models for assessing the 133 

statistical significance of bioenergetics measures comparisons between two 134 

biosamples. Using positive and negative controls from individuals known to have 135 

mitochondrial respiratory defects, we show that OCR-stats outperforms currently 136 

used statistical tests, which either suffer from an excess of false positives (within-137 

plates methods), or of false negatives (between-plates methods). 138 

Furthermore, our study provides experimental design guidance by i) showing that 139 

between-plate variation largely dominates within-plate variation, implying that it is 140 

important to seed the same biosamples in multiple plates, and ii) providing estimates 141 

of variances within and between plates for each bioenergetic measure allowing for 142 

statistical power computations. A free and pose source implementation of OCR-stats 143 

in the statistical language R is provided at github.com/gagneurlab/OCR-Stats. 144 

2. Results 145 

2.1 Experimental design and raw data 146 

We measured OCR, ECAR, and cell number of 203 dermal fibroblast cultures 147 

derived from patients suffering from rare mitochondrial diseases and control cells 148 

from healthy donors (normal human dermal fibroblasts - NHDF, Methods, Table S1). 149 

These were assayed in 126 plates, all using the same protocol (Methods). Also, 26 150 

cell lines were grown independently and measured in multiple plates. We will refer to 151 

these growth replicates as different biosamples. The NHDF cell line was seeded in all 152 

plates for assessment of potential systematic plate biases. The corners of each plate 153 

were left as blank, i.e. filled with media but not cells, to control for changes in 154 

temperature (22). One common layout of a plate is depicted in Fig. 1C, showing how 155 
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each biosample is present in many well replicates. We seeded between 3 and 7 156 

biosamples per plate (median = 4). This variation reflects typical set-ups of 157 

experiments in a lab performed over multiple years. Then, we used the standard 158 

mitochondrial stress test assay (21) leading to four time intervals with three time 159 

points each and denoted by Int1 (before adding any treatment), Int2 (after oligomycin), 160 

Int3 (after FCCP) and Int4 (after rotenone) (Fig. 1A). We also flagged wells that did 161 

not react as expected to the treatments and discarded them from the statistical 162 

analysis (Methods). 163 

2.2 Random and systematic variations between replicates within plates 164 

Representative replicate time series are shown in Fig. 2A, with data from 12 wells for 165 

one biosample in a single plate depicting commonly observed variations. 166 

Figure 2. OCR behavior over time. (A) Typical time series replicates inside a plate. 167 

Behavior of OCR expressed in pmol/min (y-axis) of Fibro_VY_017 over time (x-axis). 168 

Colors indicate the row, and shape the column of 12 well replicates. Variation 169 

increases for larger OCR values, OCR has a systematic well effect and there exist 170 

two types of outliers: well-level and single-point. (B) Scatterplot of standard deviation 171 

(y-axis) vs. mean (x-axis) of all 3 time replicates of each interval, well and plate of 172 

OCR of NHDF only, shows a positive correlation (n = 409). (C) Same as (B) but for 173 

the logarithm of OCR, where the correlation disappears. 174 

First, outlier data points occurred frequently. We distinguished two different types of 175 

outliers: entire series for a well (e.g., well G5 in Fig. 2A) and individual data points 176 

(e.g., well B6 at time point 6 in Fig. 2A). In the latter case, eliminating the entire 177 

series for well B6 would be too restrictive and result in losing valuable data from the 178 

other 11 valid time points. Therefore, methods to detecting outliers considering these 179 

two possibilities must be devised. 180 

Second, we noticed a proportional dependence of OCR value and variance between 181 

replicates (Fig. 2B), suggesting that the error is multiplicative. Unequal variance, or 182 
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heteroscedasticity, can strongly affect the validity of statistical tests and the 183 

robustness of estimations. We therefore propose modeling OCR on a logarithmic 184 

scale, where the dependency between variance and mean disappears (Figs. 2B, 2C). 185 

Respiratory chain enzyme activities such as NADH-ubiquinone reductase have also 186 

been shown to obey log-normal distributions (33). 187 

Third, we observed systematic biases in OCR between wells (e.g., OCR values of 188 

well C6 are among the highest, while OCR values of well B5 are among the lowest at 189 

all time points, Fig. 2A). Variations in: cell number, initial conditions, treatment 190 

concentrations, or fluorophore sleeve calibration can lead to systematic differences 191 

between wells, which we refer to as well biases. To investigate whether well biases 192 

could be corrected using cell number to a large extend as in (26), we counted the 193 

number of cells after the experiments using Cyquant (Methods). As expected, 194 

median OCR for each interval grows linearly with cell number measured at the end of 195 

the experiment (Spearman rho between 0.32 and 0.47, P < 2.2e-16, Fig. S1A). 196 

However, the relation is not perfect reflecting important additional sources of 197 

variations and also possible noise in measuring cell number. Strikingly, dividing OCR 198 

by cell count led to a higher coefficient of variation (standard deviation divided by the 199 

mean) between replicate wells than without that correction (Fig. S1B). This analysis 200 

showed that normalization for cell number by division by raw cell counts is insufficient 201 

and motivated us to derive another method to capture well biases. Finally, we found 202 

that sex does not significantly associate with OCR levels (Fig. S2), in agreement with 203 

(34). 204 

2.3 A statistical model of OCR 205 

Building on these insights, we next introduced a statistical model for OCR within 206 

plates. For a given biosample in one plate, we modeled the logarithm of OCR ��,� of 207 

well w at time point t as a sum of well biases, interval effects and noise, i.e.,:  208 

��,� � ��	�
 � 	� � 
�,� ,   1� 
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where ��	�
 is the effect of the interval i(t) of time point t, βw is the relative bias of well 209 

w compared to a reference well, and 
�,� is the error.  210 

We defined the OCR levels �� as the expected log OCR per interval, averaged over 211 

all wells: 212 

��� � �� �� �
∑ 	��

�
,     2� 

where n is the number of wells.  213 

Note that the well bias is modeled independently for each plate, i.e., the bias of a 214 

certain well in one plate is different from the bias of the well at the same location in 215 

another plate. 216 

We present now the OCR-Stats algorithm. For a given plate: 217 

1. Fit the log linear model (1) using the least-squares method, which consists in 218 

minimizing ∑ ∑ ��,� � ��	�
 � 	���
�� , thus obtaining the coefficients αi, βw. 219 

Compute ���  using (2).  220 

2. For each time point t in interval i and well w, define the OCR residual: 221 

��,� � ��,� � ���	�
, which is used to identify outliers (Methods, Fig. S3). 222 

3. Identify and remove well level outliers, fit again, iteratively, until no more are 223 

found (Fig. S3A-B).  224 

4. Identify and remove single point outliers, fit again, iteratively, until no more 225 

are found (Fig. S3C-D).  226 

5. Scale back to natural scale in order to compute the bioenergetics measures 227 

(e.g.: Basal respiration � exp��� � exp ��� ), or take the ratio-based metrics 228 

(Tables 1 and 2).  229 

Table 2. OCR ratio-based metrics 

OCR ratios Metrics 

ETC-dependent OC proportion ���� � ����

����

� 1 � exp ��� � ��� 
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ATPase-dependent OC proportion ���� � ����

����

� 1 � exp �� � ��� 

ETC-dependent proportion of 

ATPase-independent OC 

���� � ����

����

� 1 � exp ��� � �� � 

Maximal OC fold change ����

����

� exp �� � ��� 

Maximal over ETC-independent 

OC fold change 

����

����

� exp �� � ���� 

 230 

2.4 Variations within plates 231 

We were then interested in determining the amplitude of the OCR variation between 232 

wells inside each plate, in order to compute the number of wells needed to obtain 233 

robust estimates �̂. Using only the controls NHDF, we computed the standard 234 

deviation ��,�
�  of the logarithm of OCR across all wells for each plate j and interval i. 235 

Then, we computed the median across plates, thus obtaining one value ��
� per 236 

interval (��
� � 0.10, ��

� � 0.13, ��
� � 0.12, ��

� � 0.16�. As we work in the logarithmic 237 

scale, the error in the natural scale becomes multiplicative and relative. The standard 238 

error of the estimates �̂ can be expressed as �
��
^ � ��

�/"��, where nw is the number 239 

of wells. The highest value of ��
� was 0.16, therefore cells should be seeded in 10 240 

wells in order to get a relative error of 5%. This result is derived from variation after 241 

removing outliers, so considering that around 16.5% of wells were found to be 242 

outliers, ideally 10/1 � 0.165� $ 12 wells should be used per biosample to get a 243 

relative error of 5%. 244 

2.5 Variations between plates 245 

After analyzing the OCR variation among wells inside plates, we set up to study the 246 

variation across multiple plates. Using data from the controls NHDF, we found that 247 

the variability between plates in all four intervals is much larger than between wells 248 

(Table S2, Fig. S4). We next asked whether a systematic plate bias exists that could 249 
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be corrected for. We indeed observed a similar increase in OCR on interval 1 for both 250 

biosamples on plate #20140430 with respect to plate #20140428 (Fig. 3A). To test 251 

whether this tendency held across the repeated biosamples, we compared all 252 

replicate pairings with their respective NHDF controls and found a positive correlation 253 

(Fig. 3B). These differences can come from changes in temperature or the use of 254 

different sensor cartridges (13). Because the plate biases are systematic, they can 255 

be corrected for by using a log linear model (Methods). Nonetheless, the biases do 256 

not explain all the between plate variation, as the remaining variance is large (relative 257 

variance of the residuals: I1: 49.8%, I2: 51.6%, I3: 65.6% and I4: 55.9%). Therefore, 258 

when comparing two samples, it is important that they are seeded in the same plate, 259 

and that the test is performed multiple times.  260 

Figure 3. Plate bias. (A) Log of OCR in interval 3 (y-axis) for the cell lines #65126 261 

and NHDF (x-axis) which were seeded in 2 different plates (color-coded). The similar 262 

increase in OCR from plate #20140128 to #20140430 in both biosamples suggests 263 

that there is a systematic plate bias. (B) Scatterplots of the differences of the 264 

logarithm of OCR levels θ of all possible 2 by 2 combinations of repeated biosamples 265 

across experiments (y-axis) against their respective controls (NHDF) (x-axis) show 266 

that there exists a positive correlation (I1: ρ= 0.64, P < 2.3x10-8, I2: ρ= 0.65, P < 267 

1.2x10-8, I3: ρ= 0.52, P < 1.2x10-5, I4: ρ= 0.64, P < 1.4x10-8), confirming a systematic 268 

plate bias (n = 63). (C) Scatterplot of the difference of log OCR levels of patients vs. 269 

control NHDF (both axes) of every interval with respect to another. All intervals 270 

correlate with each other even after removing plate bias (by subtracting control 271 

values). 272 

2.6 Statistical testing for the comparison of biosamples 273 

In order to compare bioenergetics measures of two biosamples, we first need to 274 

evaluate the suitability of testing using differences versus testing using ratios of the 275 

OCR levels in the natural scale. As there is a remaining cell number effect after 276 
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correcting for well biases (Fig. 3C), we recommend testing using ratios of OCR levels 277 

(or differences in the logarithmic scale) (Table 3).  278 

Table 3: OCR ratio based differences for statistical testing 

OCR ratios b Tested differences d 

ETC-dependent OC proportion ��,� � ���,�� � ��,� � ���,�� 

ATPase-dependent OC proportion ��,� � ��,�� � ��,� � ��,�� 

ETC-dependent proportion of ATPase-

independent OC 

%��,� � ���,�& � ��,� � ���,�� 

Maximal OC fold change ��,� � ��,�� � ��,� � ��,�� 

Maximal over ETC-independent OC fold 

change 

��,� � ���,�� � ��,� � ���,�� 

Subsequently, for any given OCR ratio b (eg. M/Ei - fold change), we test the 279 

differences of the log OCR ratios of a cell line f versus a control c using the following 280 

linear model: 281 

'�,�,� � (�,� � )�,�,� , 3� 

where '�,�,� corresponds to the difference of ratio b of a cell line f and the respective 282 

control on plate p. We solve it using linear regression, thus obtaining one value (�,�  283 

per each ratio b and cell line f. We then compare these (�,�values (which follow a t-284 

Student distribution) against the null hypothesis (�,� � 0 to compute p-values and 285 

confidence intervals (Figs. 4A, 4B, Methods). 286 

2.7 Benchmark of OCR-Stats algorithm 287 

In order to benchmark the OCR-Stats algorithm, we computed the coefficient of 288 

variation (standard deviation divided by mean) of the six bioenergetics measures in 289 

the natural scale of all repeated biosamples across plates for the following methods: 290 

i) the default Extreme Differences (ED) method (Methods) provided by the vendor, ii) 291 

the log linear (LL) corresponding to steps 1 and 2 of the OCR-Stats algorithm, iii) 292 

complete OCR-Stats (LL + outlier removal), and iv) OCR-Stats after correcting for 293 
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plate effect (OCR-PE) using (4) (Methods). 294 

Each step contributed to decreasing the coefficient of variation, obtaining a final 295 

significant reduction of 36% and 32% in basal and maximal respiration, respectively, 296 

from plate corrected OCR-Stats (OCR-PE) with respect to ED (P < 0.03, one-sided 297 

Wilcoxon test) (Fig. 5). 298 

Figure 5. Benchmark using coefficient of variation. Coefficient of variation (CV = 299 

standard deviation / mean, y-axis) of replicates across experiments (n=26) using 300 

different methods (x-axis) to estimate the 6 bioenergetics measures. In all, except for 301 

Spare Capacity, OCR-Stats with plate effect showed significantly lower variation with 302 

respect to the Extreme Differences method. P-values obtained from one-sided paired 303 

Wilcoxon test. 304 

2.8 Benchmark of OCR-Stats statistical testing method 305 

We applied OCR-Stats statistical testing, Extreme Differences plus Wilcoxon test 306 

within each plate (within-plate ED), and Extreme Differences plus Wilcoxon test 307 

across plates (across-plate ED) to obtain the M/Ei ratio and maximal respiration (MR) 308 

of all the 26 cell lines that were seeded in more than one plate (Methods). For every 309 

approach, we computed p-values for significant fold changes against the controls. Six 310 

of these cell lines come from patients with rare variants in genes associated with an 311 

established cellular respiratory defect, allowing for assessing the sensitivity of each 312 

approach (Table S3, (35–39)). Additionally, two cell lines (#73901 and #91410) that 313 

showed no significant respiratory defects in earlier studies (40,41) served as negative 314 

controls. 315 

The within-plate ED method reported significantly higher or lower MR for 56 out of 69 316 

(81.2%) biosamples with respect to the control (Fig. 4A, Table S3). Moreover, all 26 317 

cell lines had one or more significant biosamples on every plate, and 11 cell lines had 318 

one or more not significant sample (Fig. 4A). These ambiguous results show the 319 

importance of testing using multiple plates and advocate for a more robust approach 320 
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than within-plate ED.  321 

Figure 4. Statistical testing of M/Ei fold change patient vs. control on multiple 322 

plates. (A) Ratio of M/Ei fold change (y-axis) of all cell lines repeated across plates 323 

(x-axis) and their respective control, sorted by p-value obtained using the OCR-Stats 324 

method. Left of the red dashed line are cell lines with significantly lower M/Ei fold 325 

change using OCR-Stats. Dots in orange represent cell lines with significantly lower 326 

or higher M/Ei fold change using the ED method. Highlighted positive (+) and 327 

negative (-) controls. (B) Similar as (A), but depicting the p-value in logarithmic scale 328 

(y-axis) using OCR-Stats. Red dashed line at P = 0.05. Dots in red represent 329 

biosamples with significantly lower M/Ei fold change using the OCR-Stats method. 330 

(C) Quantile-quantile theoretical (x-axis) vs. observed (y-axis) plot of the residuals of 331 

the linear model (3) applied to M/Ei fold change.  332 

One approach to evaluate samples seeded in multiple plates is to perform a 333 

Wilcoxon test on the ED values averaged per plate (across-plate ED, Methods). 334 

However, this requires at least five plate replicates in order to obtain significant 335 

results. Here, only one cell line, #78661, was found significant this way. On this data, 336 

OCR-Stats was much more conservative than within-plate ED and found only 7 out of 337 

26 (26.9%) cell lines to have aggregated significantly lower M/Ei than the control, 338 

including all 6 positive control cell lines (Figs. 4A, 4B, Table S3). Moreover, OCR-339 

Stats did not report significant M/Ei differences for the two negative controls. There 340 

was no evidence against the normality and homoscedasticity assumption of OCR-341 

Stats as the quantile-quantile plots of the residuals aligned well along the diagonal 342 

(Figs. 4C, S5). Altogether, these results show that OCR-Stats successfully identifies 343 

and removes variation within and between plates, providing more stable testing 344 

results which translates into less false positives. 345 

Discussion and conclusion 346 

Mitochondrial studies using extracellular fluxes, specifically the XF Analyzer from 347 
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Seahorse, are gaining popularity; therefore, it is of paramount importance to have a 348 

proper statistical method to estimate the OCR levels from the raw data. Here, we 349 

have developed such a model, the OCR-Stats algorithm, which includes approaches 350 

to control for well and plate biases, and automatic outlier identification. By doing so, 351 

we were able to significantly reduce the coefficient of variation of replicates across 352 

plates. Additionally, after analyzing the intra-plate variation, we suggest that the 353 

minimum number of wells replicates per biosample in a 96 well-plate should be 12.  354 

We found that dividing cellular OCR by cell number was introducing more noise than 355 

was seen for uncorrected data. Here, we seeded always the same number of cells. 356 

Hence, the variations across wells that we observed in cell number at the end of the 357 

experiments are largely overestimated by noise in measurements. In other 358 

experimental settings in which different numbers of cells are seeded, we suggest to 359 

include an offset term to the model (1) equal to the logarithm of the seeded cell 360 

number to control for this variation by design. Also, the Seahorse XF Analyzer can be 361 

used on isolated mitochondria and on isolated enzymes, where a normalization 362 

approach is to divide OCR by mitochondrial proteins or enzyme concentration (42). 363 

However, as described here for cellular assays, robust normalization procedures 364 

require careful analysis. 365 

We showed that there is roughly multiplicative bias between plates that can be 366 

controlled for to some extent by including control samples on every plate. To handle 367 

this plate bias, we proposed an extension of our within-plate robust linear regression 368 

approach adding a plate specific term. We demonstrated that OCR comparisons 369 

should be done using ratios rather than differences, as this eliminates sources of 370 

variation like cell number. We introduced a linear model, the OCR-Stats statistical 371 

testing, and showed that the results agree with previous results of patients diagnosed 372 

with mitochondrial disorders.  373 

Significance with the OCR-Stats statistical algorithm can be reached by seeding a 374 
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biosample in one plate only; provided there were other between-plate replicates to 375 

compute the inter-plate variance. Nevertheless, we still recommend performing at 376 

least 3 independent experiments of the same cell lines as one result alone can lead 377 

to wrong conclusions (Fig. 4A). Also note that a contaminated sample can increase 378 

the variability, affecting the significance of other samples. Therefore, it is important to 379 

detect them and discard them from further analysis. 380 

In principle, OCR-Stats should be able to estimate ECAR levels. Similar analyses as 381 

performed here should be done beforehand in order to guarantee that the method is 382 

indeed applicable. Preliminary investigations suggest that the nature of noise 383 

(outliers, multiplicative) is similar than for OCR. 384 

Methods 385 

Biological material 386 

All biosamples come from primary fibroblast cell lines of humans suffering from rare 387 

mitochondrial diseases, established in the framework of the German and European 388 

networks for mitochondrial disorders mitoNet and GENOMIT. The controls are 389 

primary patient fibroblast cell lines, normal human dermal fibroblasts (NHDF) from 390 

neonatal tissue, commercially available from Lonza, Basel, Switzerland. 391 

Measure of extracellular fluxes using Seahorse XF96 392 

We seeded 20,000 fibroblasts cells in each well of a XF 96-well cell culture 393 

microplate in 80 ml of culture media, and incubated overnight at 37°C in 5% CO2. 394 

The four corners were left only with medium for background correction. Culture 395 

medium is replaced with 180 ml of bicarbonate-free DMEM and cells are incubated at 396 

37°C for 30 min before measurement. Oxygen consumption rates (OCR) were 397 

measured using a XF96 Extracellular Flux Analyzer (21). OCR was determined at 398 

four levels: with no additions, and after adding: oligomycin (1 μM); carbonyl cyanide 399 

4-(trifluoromethoxy) phenylhydrazone (FCCP, 0.4 μM); and rotenone (2 μM) 400 

(additives purchased from Sigma at highest quality). After each assay, manual 401 
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inspection was performed on all wells using a conventionally light microscope. Wells 402 

for which the median OCR level did not follow the expected order, namely, 403 

median(OCR(Int3)) > median(OCR(Int1)) > median(OCR(Int2)) > median(OCR(Int4)), 404 

were discarded (977 wells, 10.47%). It is important to notice that other cell lines, or 405 

cell lines under certain conditions may not react as expected to the standard 406 

treatments, so they should not be discarded. We also excluded from the analysis 407 

contaminated wells and wells in which the cells got detached (461 wells, 4.94%, 408 

Methods). All the raw OCR data is available in Table S4. 409 

Cell number quantification 410 

Cell number was quantified using the CyQuant Cell Proliferation Kit (Thermo Fisher 411 

Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. In brief, 412 

cells were washed with 200 µL PBS per well and frozen in the microplate at -80°C to 413 

ensure subsequent cell lysis. Cells were thawed and resuspended vigorously in 200 414 

µL 1x cell-lysis buffer supplemented with 1x CyQUANT GR dye per well. 415 

Resuspended cells were incubated in the dark for 5 min at RT whereupon 416 

fluorescence was measured (excitation: 480 nm, emission: 520 nm). 417 

Extreme Differences (default) Method to compute bioenergetics measures  418 

On every plate independently, for each well, on interval 1 take the OCR 419 

corresponding to the last measurement, on intervals 2 and 4 take the minimum and 420 

on interval 3 the maximum OCR value (14). Then, do the corresponding differences 421 

to estimate the bioenergetics measures. Report the results per patient as the mean 422 

across wells plus standard deviation or standard error, separately for each plate. 423 

Outlier Removal 424 

For each sample s and well w, compute the mean across time points of its squared 425 

residuals: *� + mean���,�
� �, thus obtaining a distribution /. Identify as outliers the 426 

wells whose *� 0 median/� � 5 · mad/�, where mad, median absolute deviation, is 427 

a robust estimation of the standard deviation (Fig. S3A). We found that deviations by 428 
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5 mad from the median were selective enough in practice. Compute the vector of 429 

estimates �̂ using the remaining wells and iterate this procedure until no more wells 430 

are identified as outliers. It required 8 iterations until convergence and around 16.5% 431 

of all the wells were found to be outliers (Fig. S3B). 432 

Single point outliers are identified in a similar way. After discarding the wells that 433 

were found to be outliers in the previous step, categorize as outliers single data 434 

points whose ��,�
� 0 median�%��,�

� & � 5 · mad���,�
� � (Fig. S3C). Iterate until no more 435 

outliers are found. It required 19 iterations until convergence and approximately 6.1% 436 

of single points were found to be outliers (Fig. S3D). 437 

Plate effect model 438 

In an attempt to correct for plate effect, we propose a log linear model where the 439 

levels �� depend on interval i, samples s and plate p: 440 

�4�,�,� � ��,� � 	�,� � 
�,�,� , 

thus obtaining one coefficient 	�,� for each plate-interval combination. These effects 441 

are added to the previous estimates: ���,�,�

� � ���,� � 	�,�, obtaining the final estimates 442 

�� 
�. As for (1), the model is solved using linear regression. 443 

For benchmarking, we cannot test using the estimates �� 
�, because we would fall into 444 

circularity, as correcting using 	�,� forces replicates to have a closer value. Therefore, 445 

just for benchmarking purposes, we correct for plate effect using only the data from 446 

the controls NHDF c of each plate, namely:  447 

��,�
� � 	�

� � 	�
� � 	�

� � 
�,� .  

We solved it using linear regression and used the effects 	�
� as offsets in (1). Then, 448 

we recomputed ���  values accordingly. We scaled back to natural scale to calculate 449 

the bioenergetics measures and the coefficient of variation of all repeated 450 

biosamples (except the control). 451 

Multi-plate averaging method 452 
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In case of inter-plate comparisons, the multi-plate averaging methods takes the 453 

average and standard error of the bioenergetics measures obtained using the ED 454 

method of all repeated biosamples across plates (Agilent Technologies, 2016). 455 

OCR-Stats statistical testing 456 

To evaluate the OCR ratios between a sample f and a control, both located on a 457 

plate p, we use the corresponding tested difference d (Table 3). We define (�,�,�,�: �458 

6��� � ���7
�,�

� 6��� � ���7
����,�

, where i and j are any two different intervals. From there, 459 

we can obtain a t-statistic: ��� �  !��

"#	 

, where d0 = 0 as that is the value that we want to 460 

compare μ against, and se is the standard error. The t-statistic follows a t-distribution 461 

with n – 2 degrees of freedom, from which we can compute p-values. Moreover, we 462 

can obtain confidence intervals: 8( � 9�(��$!�
% , ( � 9�(��$!�

% :, where 1 � �� is the 463 

confidence level and �$!�
%  the 1 � �/2� quantile of the tn-2 distribution. Note that the 464 

normality assumption holds for the residuals )�,�,� (Figs. 4C, S5). 465 
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