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Abstract 23 

Competing accounts propose that working memory (WM) is subserved either by persistent activity in 24 

single neurons or by dynamic (time-varying) activity across a neural population. Here we compare 25 

these hypotheses across four regions of prefrontal cortex (PFC) in a spatial WM task, where an 26 

intervening distractor indicated the reward available for a correct saccade. WM representations 27 

were strongest in ventrolateral PFC (VLPFC) neurons with higher intrinsic temporal stability (time-28 

constant). At the population-level, although a stable mnemonic state was reached during the delay, 29 

this tuning geometry was reversed relative to cue-period selectivity, and was disrupted by the 30 

distractor. Single-neuron analysis revealed many neurons switched to coding reward, rather than 31 

maintaining task-relevant spatial selectivity until saccade. These results imply WM is fulfilled by 32 

dynamic, population-level activity within high time-constant neurons. Rather than persistent activity 33 

supporting stable mnemonic representations that bridge distraction, PFC neurons may stabilise a 34 

dynamic population-level process that supports WM.     35 

 36 

  37 
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Temporary maintenance of relevant information in the absence of direct sensory input is a crucial 38 

component of working memory (WM). The neuronal basis of WM has been studied extensively 39 

through single-neuron recordings. These typically involve non-human primates performing tasks 40 

where a transient sensory stimulus must be remembered across a several second delay before a 41 

probe cues a response to the remembered stimulus. A consensus has developed from these 42 

experiments1-3, and from lesion studies4,5, that cognitive operations that use information in WM 43 

depend upon the prefrontal cortex (PFC)6, with individual PFC neurons sustaining stimulus-specific 44 

representations across the mnemonic delay. This stable coding has inspired biophysically plausible 45 

attractor network models of working memory, in which persistent activity is facilitated by a 46 

neocortical circuit structured with strong recurrent connections between similarly tuned neurons7.   47 

Recent findings have challenged these established views. Responses of PFC neurons are often highly 48 

heterogeneous, with only a minority exhibiting prolonged stimulus-specific encoding during a delay8-49 
12.  The majority of neurons instead show short-lived selectivity, with variable onset latencies and 50 

durations. This pattern of working memory activity is referred to as dynamic coding. Evidence for 51 

dynamic coding has led to revised attractor models that reconcile time-varying and stable single 52 

neuron responses13. It has also inspired alternate explanations for how WM may be achieved 53 

without relying upon a stable representation in the form of persistent spiking activity8,14-18. These 54 

include dynamic trajectory models where neural firing preserves a representation of the mnemonic 55 

stimulus throughout a delay by moving through a reproducible path of activity15,17,18. They also 56 

include synaptic models where WM is achieved by short-term plasticity of synaptic weights8,14. In the 57 

latter, stable delay-period WM correlates still arise, but as a by-product of spontaneous activity 58 

within a circuit that is temporarily embedded with mnemonic information.  59 

An important prediction rarely tested in the context of WM models relates to how network 60 

representations of stimuli resist distraction19-21. In a world where we are constantly exposed to 61 

salient sensory stimuli, efficient cognitive operations that depend on WM require that this 62 

information is resistant to distractions in our environment. The majority of task designs used to 63 

study single-neuron WM-correlates lack intervening stimuli during delays. If memoranda are 64 

maintained purely by persistent single neuron activity, and if those neurons flexibly encode multiple 65 

task features (as is common in PFC22-27), a distracting stimulus could disrupt the attractor state and 66 

cause the memory to be distorted or lost.  Several neurophysiological accounts suggest PFC 67 

possesses a privileged position in cortical processing – the ability for individual task-selective 68 

neurons to resist distraction28-30. More recently, however, the view that PFC neurons are resistant to 69 

distractors has been challenged21,31. If WM is maintained in the absence of stable single-neuron 70 

representations, it becomes important to understand how memoranda are encoded across the PFC 71 

population in the face of distraction, and what role neurons with persistent activity play in such 72 

population-level encoding. 73 

One factor worth considering is that single neurons exhibit considerable heterogeneity in the degree 74 

to which they exhibit persistent activity at rest32,33. By fitting an exponential decay to the 75 

autocorrelation of neuronal firing outside of the task, it is possible to characterise individual 76 

neurons’ intrinsic temporal stability (time constant)33,34. A neuron’s time constant likely reflects a 77 

combination of its intrinsic physical properties and its degree of recurrent connectivity35. Because 78 

neurons with higher time constants were more likely to be maintain information during extended 79 

cognitive processes such as decision-making33, we hypothesised that heterogeneity in single-neuron 80 
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time constants may explain why some neurons retain stimulus-specific mnemonic representations 81 

over a delay, whereas others exhibit more transient selectivity. This would reconcile persistent and 82 

dynamic WM coding. If attractor states underlie WM, classical stable mnemonic representations 83 

should primarily be evident in a subpopulation of neurons with high time constants. Furthermore, 84 

neurons with high time constants may facilitate the stability of WM representations throughout 85 

distraction. 86 

We tested these hypotheses in a spatial WM task where a stimulus revealing the reward for a 87 

correct response was presented either before or after the spatial WM cue. Presentation after the 88 

mnemonic cue serves as a salient distractor, potentially disrupting spatial WM representations36,37. 89 

This also allowed us to test how an interfering stimulus affected network-level mnemonic coding as 90 

a function of neuronal time constant. 91 

  92 

Results 93 

Task and Neurophysiological Recordings 94 

Two rhesus macaques (Macaca mulatta) performed a spatial working memory task where the 95 

reward amount for successful responses varied across trials (Fig1a)36,37. Briefly (see Methods), 96 

subjects were first required to fixate a central cue for 1000ms. If fixation was maintained, two cues 97 

were sequentially presented (for 500ms apiece), each followed by a 1000ms delay. The spatial cue 98 

indicated which of 24 locations the subject had to hold in working memory (the mnemonic stimulus); 99 

the reward cue indicated which of 5 reward magnitudes the subject would receive for a saccade to 100 

the remembered location. The subject could elicit a saccade to the remembered location following a 101 

go cue. In “RS trials”, the first and second cues were the reward and spatial cues respectively; the 102 

cue order was reversed in “SR trials”. We counterbalanced all spatial positions and reward levels, 103 

and the two trial types were randomly intermingled. As only the spatial cue was relevant for correct 104 

performance, the reward cue on SR trials may serve as a distracting stimulus, interfering with the 105 

stability of spatial working memory representations.  106 

Single neurons were recorded from four brain regions across prefrontal cortex (PFC; Fig1b): anterior 107 

cingulate cortex (ACC; areas 9m, 24c, n= 198), dorsolateral PFC (DLPFC; areas 9, 9/46d, n= 209), 108 

ventrolateral PFC (VLPFC; areas 9/46v, 45A, n= 206) and orbitofrontal cortex (OFC; areas 11, 13, n= 109 

152). Histological reconstruction of recording locations is reported elsewhere36,37. All neurons per 110 

region were pooled across sessions to form “pseudopopulations” in order to examine population-111 

level activity12,13,38. Importantly, neurons were not pre-screened for functional properties prior to 112 

recordings, facilitating an unbiased examination of population coding-dynamics and single-neuron 113 

resting time constant measures.  114 

Resting time constants 115 

We first sought to define each neuron’s resting time constant (“tau”) by fitting an exponential decay 116 

to its spike-count autocorrelation during the 1000ms fixation period33. The autocorrelation functions 117 

of those neurons that could successfully be described by an exponential decay with an offset34 were 118 

fitted to yield a resting time constant for each neuron (409 of 765 single neurons, see Methods).  119 
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As previously reported33, there was marked heterogeneity in the temporal specialisation of 120 

individual neurons both within and between PFC regions (Fig1c). Time constants differed 121 

significantly across areas (Kruskal-Wallis test, p=2.21 x 10-6), where the highest taus were within the 122 

ACC population (Mann-Witney U Tests; ACC v DLPFC, 4.51 x 10-7; ACC v OFC, 2.48 x 10-5; ACC v 123 

VLPFC, 7.58 x 10-6). We next characterised the population-level taus of the four PFC brain regions 124 

(Fig1d, see Methods). For this analysis, data from all recorded neurons within each brain area was 125 

fitted using the same exponential decay equation. This approach has previously shown a hierarchy of 126 

temporal specialisations exists across cortex34. Our results were consistent with this, again 127 

emphasising the distinction of ACC at the summit of a hierarchy across PFC regions33,34.   128 

Decoding analysis of Working Memory Activity 129 

We next applied a multivariate decoding approach to investigate population-dynamics across PFC38.  130 

Briefly, this involved calculating the average single-neuron firing rate for each condition (8 collapsed 131 

locations for Space; 5 Reward levels; see Methods) within two independent halves of the data 132 

(training and test sets). The difference in mean activity between each pair of conditions was 133 

calculated within each set (e.g. 28 pairwise differences for Space, 10 pairwise differences for 134 

Reward). For all neurons within each regional pseudopopulation, each pairwise conditional 135 

difference was correlated between the training and test sets to quantify how well each PFC region’s 136 

activity discriminated between the different conditions.  137 

Our results provide the most complete comparison to date of population-level WM activity patterns 138 

across multiple PFC brain regions (Fig2). Of the four PFC regions examined, VLPFC activity best 139 

discriminated between both the different spatial locations and the different reward sizes regardless 140 

of trial (SR, RS) type, and it was the only PFC region that sustained these selectivity patterns across 141 

delays. VLPFC was also the PFC region most strongly discriminating spatial information immediately 142 

prior to saccade. However, VLPFC activity exhibited a distinct temporal profile. On the SR task, 143 

spatial information was strongly represented during both the spatial cue and the first delay (Fig2a; 144 

Spatial cue and Delay One, p <0.0001; cluster-based permutation tests). Importantly, shortly after 145 

the reward cue was presented in SR trials, the VLPFC spatial discriminability was dramatically 146 

reduced (Fig2a, Delay Two). Instead, a robust representation of reward emerged which was 147 

maintained through to the end of the trial (Fig2b; Reward cue through end of trial, p <0.0001; 148 

cluster-based permutation tests). This strong reward representation, seemingly at the expense of 149 

the spatial WM representation, was noteworthy, as retaining a memory of the spatial location is the 150 

key task variable necessary for correct performance. A similar pattern of selectivity switching was 151 

present in RS trials, where the VLPFC population initially maintained a representation of the 152 

expected reward, but this representation attenuated as the spatial representation strongly emerged 153 

following the spatial cue (Fig2c, Spatial cue and Delay Two, p <0.0001; Fig2d, Reward cue and Delay 154 

One, p <0.0001; cluster-based permutation tests). These results are consistent with VLPFC spiking-155 

activity prioritising a representation of the most recently attended information, regardless of 156 

whether it is necessary to store the stimulus in working memory for successful performance39,40. 157 

Maintenance of spatial discriminability in DLPFC was weak, emerging relatively late in the spatial cue 158 

epoch and decaying shortly after the first delay (Fig2a, c). This is surprising given that DLPFC has 159 

often been implicated in the stable maintenance of working memory, but such discrepancies may be 160 

due to variability in recordings along the anterior-posterior gradient of DLPFC41, or studies describing 161 
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DLPFC cells or lesions which extend to surrounding areas including VLPFC1,4,5. OFC had phasic 162 

representations of spatial location during cue presentation and response42 (Fig2a, c), while ACC only 163 

exhibited brief spatial selectivity at the time of reward. ACC, OFC and VLPFC all had prolonged 164 

maintenance of reward size in both trial types (Fig2b, d), consistent with ACC and OFC playing a key 165 

role in reward-guided behaviour33,43-45.   166 

Population-activity separated by resting time constant 167 

We next sought to link the two previous analyses, exploring whether the heterogeneity of single-168 

neuron time constants (Fig1c) predicted different functional roles during working memory. As cells 169 

with higher taus have an intrinsic capacity for sustained persistent activity, we hypothesised that 170 

these cells would more likely be integral to stable attractor states and therefore exhibit stronger and 171 

more prolonged maintenance of spatial information7,13. We focussed upon VLPFC, as this was the 172 

only candidate region with sustained spatial selectivity. We subdivided the population based upon a 173 

median split of tau33, and then re-computed the spatial and reward discriminability as in Fig2 for 174 

high and low tau subpopulations (Fig3).  175 

As hypothesised, the high tau VLPFC neuronal subpopulation had more sustained selectivity for both 176 

spatial and reward information. Both tau subpopulations showed a similar temporal profile to the 177 

whole population of VLPFC neurons, but selectivity in the low tau population decayed quickly 178 

following stimulus offset. A formal comparison between the two subpopulations indicated the high 179 

tau subpopulation had stronger spatial selectivity during delay one (p=0.0482, cluster based 180 

permutation test) and reward cue presentation (p = 0.0027) of the SR task (Fig3a), and stronger 181 

reward coding during delay one (p = 0.0457) and when the spatial cue was presented (p=0.0077) on 182 

the RS task (Fig3d). However, an examination of activity during the task epoch when the respective 183 

reward or spatial cue was onscreen revealed strong selectivity that was statistically indistinguishable 184 

between the two subpopulations (“spatial cue” of Fig3a,c; “reward cue” of Fig3b,d). In other words, 185 

it is not the case that low tau subpopulations are simply less task-selective. Instead, high tau cells 186 

appear to be specialised for exhibiting sustained selectivity across delays, a property which may be 187 

critical for supporting WM processes. 188 

Cross-temporal activity separated by resting time constant 189 

The results presented so far – sustained population-level selectivity across delays only in cells with 190 

persistent resting activity - could be explained by both attractor models and alternate hypotheses of 191 

working memory7,46. They are also consistent with previous reports relating baseline autocorrelation 192 

to WM activity in single neurons47. The population WM selectivity in Fig3 could be supported either 193 

by individual neurons maintaining strong selectivity across the trial, or neurons dynamically 194 

encoding information with different latencies and durations such that the population-level 195 

selectivity is maintained over time.  196 

To contrast between these hypotheses, we performed a cross-temporal pattern analysis to probe 197 

the stability of the active encoding state33,38. To study cross-temporal generalisation of task 198 

selectivity, a classifier is trained at one timepoint (t) and tested at a different timepoint (t+ δ). If 199 

there remains a strong correlation between the test and training set at two distinct timepoints, 200 

selectivity generalises across the period between the two timepoints. By using all n timepoints as 201 

training and test sets, an n x n correlation matrix can be constructed.  202 
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The resulting pattern of generalisation can distinguish between different working memory models, 203 

as indicated by the exemplars in Fig4a. The first example shows a ‘stable attractor’ model on SR 204 

trials7. Soon after the spatial cue is visible, a stable state of network activity forms specific to each 205 

spatial location. This pattern of activity generalises (i.e., the “off-diagonal” regions of the matrix) 206 

throughout the time the stimulus remains in working memory (illustrated by red colour from 207 

stimulus presentation onwards). A revised ‘stable subspace’ version of this model incorporates a 208 

dynamic component during the cue period, with a stable state only present from the delay period 209 

(Exemplar 2)13. In this version, spatial coding during cue presentation doesn’t generalise to later 210 

periods in the trial, but a stable attractor is formed around the time of stimulus offset. A third 211 

exemplar shows what may happen if this stable subspace were to be disrupted by the presentation 212 

of the reward cue (‘distractible subspace’). A final example shows a purely ‘dynamic coding’ model 213 
38,46, whereby dynamic on-diagonal selectivity maintains an active representation of spatial 214 

information across time, but this never reaches a fixed point of stable network activity (i.e., lack of 215 

off-diagonal shading).  216 

The pattern produced by the activity of the VLPFC high tau subpopulation exhibited elements 217 

consistent with both stable and dynamic coding (Fig 4b, d)13,48. Coding from the spatial cue period 218 

was not positively correlated with the subsequent delay, consistent with dynamic activity during the 219 

initial encoding phase. Surprisingly, neural activity was anti-correlated between the cue and the 220 

delay (largest cluster, p<0.0001; cluster based permutation test), suggesting the way the network 221 

encodes spatial information reverses between cue presentation and delay. This selectivity pattern 222 

reversal was also evident in VLPFC reward coding, but was not present in any other PFC area despite 223 

strong reward selectivity in ACC and OFC (Supplementary Fig1).  224 

Despite this dramatic reversal of selectivity from the cue to delay periods, a stable state of cross-225 

temporal generalisation was established in the high tau subpopulation during the first delay epoch 226 

which was sustained through the reward cue epoch (Fig4b; largest cluster, p<0.0001; cluster based 227 

permutation test). This finding is consistent with the VLPFC high tau subpopulation demonstrating 228 

attractor-like working memory activity in classical tasks without intervening stimuli1,7,13. However, 229 

the cross-generalisation of maintained spatial information was disrupted during the subsequent 230 

reward delay epoch on SR trials, and there was no significant generalisation between the activity in 231 

the first and second delay (Fig4b, no candidate clusters). The fact that network activity in the VLPFC 232 

high tau subpopulation is dynamic at cue presentation, then exhibits a reversed stable state of 233 

generalisation which is disrupted following the distractor (reward cue), suggests VLPFC network 234 

activity is not performing the function of a conventional attractor for spatial working memory7.    235 

Compared with high tau cells, the VLPFC low tau subpopulation had much more transient dynamics 236 

(Fig4c, e). Although there is weak on-diagonal selectivity, this does not extend off the diagonal, 237 

consistent with dynamic coding. The spatial selectivity in the high tau subpopulation was 238 

significantly more stable over time during the post-stimulus delay and shortly after (largest clusters, 239 

SR p = 0.0002, RS p = 0.0135; cluster based permutation test; Supplementary Fig2). In summary, of 240 

all of the subpopulations across the PFC areas we examined, only the high tau VLPFC subpopulation 241 

formed a stable spatial mnemonic representation, but the additional task element of a salient 242 

distractor allowed us to show that this state was inconsistent with current attractor models.   243 

 244 
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Anti-correlation between Cue and Delay Period Activity 245 

Recent work has suggested that stable population activity can co-exist alongside strong temporal 246 

dynamics during the initial encoding phase13. This can occur if the mnemonic representation is 247 

established at the time of the cue but is accompanied by a transient, orthogonal pattern of activity. 248 

These results would appear inconsistent with the reversal of spatial coding we observed in the VLPFC 249 

high tau population between cue presentation and delay. To examine this issue in more detail, we 250 

correlated activity within the VLPFC high tau subpopulation across time within each condition (Fig5a, 251 

see Methods)13. This showed a strong positive correlation across the whole trial, including between 252 

cue and delay periods (asterisk on Fig5a). This suggests that within a given spatial location, VLPFC 253 

high tau firing rates were stable and correlated across the trial (as opposed to the instability and 254 

reversal of mnemonic coding across the trial evident in Fig4). Whilst this may be taken as evidence 255 

against a reversal of selectivity patterns, we reasoned this positive correlation may be largely driven 256 

by the intrinsic firing rates of the neurons (e.g. a neuron which is high firing during the cue may also 257 

be higher firing during the delay even if it is modulated across the trial). By demeaning activity across 258 

conditions for each neuron and repeating the analysis, we revealed an anticorrelation in the activity 259 

of high tau VLPFC neurons between the spatial cue and delay periods (asterisk on Fig5b, see 260 

Methods). The high cross-trial correlations observed in Fig5a are therefore likely driven by neurons 261 

possessing relatively consistent firing across the trial.  262 

To further examine the stability and pattern of spatial selectivity across the trial using an alternate 263 

method, we employed principal component analysis (PCA). Previously, this method revealed a 264 

mnemonic subspace that was stable from cue onset through the delay period13. The mnemonic 265 

subspace was defined by time-averaging delay period activity for each stimulus condition for each 266 

neuron and running PCA across conditions (conditions x neurons matrix). Projecting data from the 267 

cue period into this subspace still enabled decoding of spatial position, supporting the proposal that 268 

the stable activity in the delay period is already established during cue presentation13. 269 

We tried to replicate this PCA approach in the high tau VLPFC subpopulation (Fig5c-d, see Methods), 270 

by defining the subspace based upon time-averaged delay one activity in the SR trials. We then 271 

projected neural firing from across the trial onto the first two principal axes (Fig5c). If the mnemonic 272 

representation is stable, all traces should be fairly fixed and separable across time (as in ref13 FigS3). 273 

During the first delay, there is a stable representation of mnemonic information, as all conditions are 274 

separable within this subspace. The representation of space is also shown to be geometrically 275 

consistent with the spatial environment, with the activity for nearby spatial locations clustered in the 276 

subspace. However, supporting our previous analyses, projecting neural activity from the cue period 277 

into the subspace didn’t lead to a reliable spatial code. Remarkably the spatial conditions were 278 

separable in the cue period, but in the opposite direction to that observed during the delay period. 279 

This pattern was also replicated for reward coding on RS trials, suggesting this reversal is a general 280 

pattern of VLPFC coding between cue and delay periods, and not limited to spatial selectivity 281 

(Supplementary Fig3). To quantify the reliability of the SR Delay 1 subspace, we calculated the 282 

variance explained by projecting data at each timepoint (Fig5d). Unlike previous findings13, the 283 

mnemonic subspace in the delay explains only a small proportion of variance during the cue period.  284 

In short, we find little evidence that the VLPFC high tau subpopulation forms a stable subspace 285 

maintaining information from cue onset through the delay. Rather, the population geometry 286 
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reverses its selectivity pattern for both reward and spatial information between the cue and delay 287 

periods (Fig4b, 4d, Fig5c-d, Supplementary Fig3), before forming a stable subspace that maintains 288 

WM-related information across the initial delay before the subsequent cue (distractor) period.    289 

Cross-Task Generalisation  290 

Thus far we have demonstrated that only high tau VLPFC neurons exhibit stable cross-temporal 291 

generalisation of mnemonic information. We next explored whether there was cross-task 292 

generalisation between SR and RS trials. Previous studies have demonstrated task-specific PFC 293 

activity to identical stimuli when they cue a different response49,50. However, whether the pattern 294 

and stability of population activity depends on the order in which identical information (cueing the 295 

same response) is received remains unknown. To explore this, we used data from one trial type as a 296 

training set, and data from the other trial type as a test set. This analysis allowed us to test, for 297 

example, whether the population pattern for spatial selectivity that emerges in delay one of SR trials 298 

(Fig4b) is similar to the population pattern for spatial selectivity in delay two of RS trials. This 299 

analysis also allowed us to test whether the population pattern in delay two was similar across both 300 

trial types; at this point in the trial, the subjects have processed the same information and are 301 

required to prepare the same response. 302 

Fig6a depicts three possible exemplars for cross-task generalisation. As demonstrated in Fig2, VLPFC 303 

has spatial coding on both trial types, thus if there is “no across-task generalisation” this would 304 

mean there are multiple network patterns of spatial selectivity capable of supporting correct 305 

performance. In “stimulus/delay-locked cross-task generalisation”, the population pattern in the 306 

spatial cue and subsequent delay periods is similar across trial types. In this scenario, spatial location 307 

could be readout identically across trial types using activity post-stimulus presentation (red colour 308 

on heatmap), but because spatial selectivity on SR trials is disrupted by the reward cue (Fig4), 309 

distinct readout weights would be required at the time of response. In “action-dependent cross-task 310 

generalisation”, the population selectivity pattern is similar across trial types only during delay two 311 

and the saccade response. This may occur if a different route through neural state space is taken on 312 

the two trial types, but the routes converge and the same common endpoint is reached by delay 313 

two.  314 

We performed this analysis on all recorded VLPFC neurons. The activity pattern of this population 315 

was primarily consistent with stimulus locked generalisation (Fig6b). This is because there is strong 316 

cross-task generalisation between when the spatial cue is presented and during the initial one-317 

second mnemonic period following that (Cue period p<0.0001; Delay period p<0.0001; cluster based 318 

permutation tests). There is then little cross-task generalisation in delay two, indicating distinct 319 

activity patterns in this epoch between the two tasks. We confirmed a strong representation of trial 320 

type during delay two using a separate decoding algorithm, which discriminated activity related to 321 

trial type (Fig6c, see Methods). These results indicate that a different set of read-out weights for 322 

working memory of spatial location would be required from VLPFC activity for correct performance 323 

on the two trial types, implying multiple, independent task-specific neural states can support 324 

working memory.  325 

 326 

 327 
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Single neurons switch between reward and spatial selectivity 328 

Thus far, the results suggest a heterogeneous and primarily dynamic account of working memory 329 

activity within the PFC population. To examine the underlying pattern of this population 330 

heterogeneity, we analysed single neuron selectivity for different task features. This analysis 331 

explored how strong and sustained WM selectivity patterns were in individual neurons8,48, how 332 

these WM representations were affected by the presentation of a second salient cue (which may 333 

induce selectivity competition), and whether neural activity in delay two encoded a combination of 334 

task variables25,26.   335 

To quantify single-neuron encoding of both reward and spatial information, we ran a separate one-336 

way Kruskal-wallis test for space and reward at each timepoint (Fig7a, b). Encoding at each 337 

timepoint was determined significant through a cluster-based permutation test (see Methods; 338 

cluster-forming threshold, p <0.05). This allowed us to plot whether each neuron was encoding 339 

space, reward or both factors at any given point in time (Fig7c, d). On the SR trials, a large 340 

proportion of VLPFC neurons were selective for spatial location during cue presentation or the 341 

subsequent delay (Fig7a, top). These neurons had heterogeneous onset latencies and most were 342 

transiently selective, as opposed to sustaining a spatial representation across time. Strikingly, many 343 

of these spatially selective neurons subsequently coded reward size later in the trial (Fig7a, bottom). 344 

This is consistent with the VLPFC population analysis (Fig2) showing that the most recently 345 

presented stimulus is encoded, as opposed to the task-relevant spatial information necessary for 346 

correct performance. A similar result was also observed on RS trials, where many reward-selective 347 

neurons (Fig7b, top) subsequently encoded spatial location (Fig7b, bottom). This suggests that the 348 

population-level patterns we observed (Fig2) arise because single PFC neurons are involved in 349 

multiple distinct cognitive functions25, as opposed to different subpopulations representing different 350 

task-related factors becoming active at different stages of the trial.  351 

The ability of PFC neurons to encode both reward and spatial information may highlight neuronal 352 

flexibility, or the facility to code multiple factors concurrently. Figs7c-d characterise the proportion 353 

of neurons simultaneously coding spatial and reward information. During the presentation of the 354 

second cue, some neurons appeared to multiplex reward and spatial information. To establish the 355 

nature of this mixed selectivity, we ran a 2-way ANOVA to explore any interaction effects (Fig8, see 356 

Methods). It could be that neurons code both factors with a non-linear interaction21,25 , exhibiting a 357 

different pattern or degree of spatial coding at each reward level. Alternatively, both factors could 358 

be coded simultaneously without an interaction51 (e.g. similar pattern of spatial selectivity for each 359 

reward level resting upon a different baseline firing rate). We found little evidence for non-linear 360 

mixed selectivity. Instead, there was a positive correlation between selectivity for space and reward 361 

at the time of the second cue (Fig8), implying most neurons that exhibit mixed selectivity for 362 

multiple factors do so as a linear combination.  363 

This flexibility of single-neuron selectivity patterns appears inconsistent with more traditional 364 

accounts of PFC function during working memory. To quantify the proportion of neurons exhibiting 365 

stimulus-specific selectivity throughout the trial, we split the data into eight 500ms epochs from 366 

fixation onset until the response was cued. We ran a separate Kruskal-wallis test on the average 367 

firing rate of each neuron across these epochs. A subpopulation of neurons with selective responses 368 

during the initial cue presentation was defined (n=73 for reward, n= 72 for space). The proportion of 369 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 14, 2017. ; https://doi.org/10.1101/231506doi: bioRxiv preprint 

https://doi.org/10.1101/231506
http://creativecommons.org/licenses/by-nc-nd/4.0/


this subpopulation selective for each factor was then calculated for all other epochs (Fig7e). On SR 370 

trials, this showed that only 18.06% of the spatially selective neurons at cue one are selective for 371 

spatial location alone by the end of the second delay. Around the same proportion (15.28%) had 372 

additionally gained a representation of reward size, whilst a further 19.44% had no significant spatial 373 

selectivity and switched to coding reward. The majority (47.22%) of spatially selective neurons at cue 374 

one were non-selective by the end of delay two. Thus unlike classical notions of working memory 375 

being supported by sustained selectivity1,2, our results suggest single neurons do not maintain 376 

sustained working memory correlates9, at least not in cases where other task-relevant or salient 377 

information may compete for neuronal representation.  378 

 379 

Discussion 380 

Here we used a spatial working memory task with a distracting reward cue to test whether working 381 

memory (WM) is subserved by persistent activity in single neurons or by dynamic activity across a 382 

neural population. This task design with a distractor allowed us to specifically contrast these 383 

different hypotheses of WM coding. A recent cortical attractor model of WM would suggest a 384 

dynamic cue-related response followed by a stable state of fixed network activity specific to the 385 

mnemonic stimulus13. This model would predict that if changes in this stable state were induced by 386 

distractor presentation, this would compromise the WM representation. This constraint does not 387 

apply to WM models that do not rely on stable network states. Of the four PFC subregions 388 

examined, mnemonic selectivity during the delays was present only in VLPFC neurons, and this was 389 

present only in the subpopulation of neurons with high time constants. Within these VLPFC neurons, 390 

the pattern of both reward and spatial selectivity reversed from the cue to delay epochs, where it 391 

then became stable and generalised across time. However, once the reward cue was presented, 392 

spatial selectivity was largely quenched and instead the VLPFC population switched to coding the 393 

salient reward information. These results demonstrate that high tau VLPFC neurons are capable of 394 

stable selectivity that could serve WM functions, but that in contexts where multiple behaviourally 395 

relevant stimuli are available, VLPFC neurons flexibly code the focus of current attention26,37,39.  396 

Both attractor13,19,52 and synaptic models14 of working memory stress the importance of a recurrent 397 

network architecture. By using the decay of autocorrelation of spiking activity during a fixation 398 

period as an unbiased metric of intrinsic persistent activity, we demonstrate that neurons with 399 

higher time constants (taus) are more likely to exhibit working memory-related selectivity, but only 400 

in the VLPFC population. The VLPFC high tau subpopulation had stable selectivity during the initial 401 

delay period following stimulus offset, whereas the low tau subpopulation exhibited dynamic coding. 402 

Importantly, any distinction between the high and low tau VLPFC subpopulations was only evident 403 

during this mnemonic phase, ruling out the possibility that high tau cells are simply more task-404 

selective. These results build upon recent work showing PFC neurons with higher taus have a greater 405 

role in decision-making and the maintenance of reward information over extended time periods33, 406 

highlighting a broader role for high time constant neurons subserving extended cognitive processes.  407 

These findings would therefore appear supportive of theories proposing that cortical attractor 408 

networks fulfil WM functions7,13. 409 
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However, we also observed several features of the data which suggest VLPFC activity is incompatible 410 

with current attractor models. Firstly, we showed that VLPFC reverses both its spatial and reward 411 

tuning between cue presentation and the subsequent delay. Previous studies have shown that cue 412 

and delay dynamics are distinct13,38,48, but our discovery that the tuning geometry reverses between 413 

cue and delay appears novel. This finding is also inconsistent with a stable subspace spanning both 414 

cue presentation and memory13. The inverted tuning geometries may reflect a mechanism to 415 

dissociate stimuli currently in the environment and those held within memory53, or alternatively a 416 

mechanism to load information into working memory from an initial state of dynamic sensory 417 

encoding.  418 

By probing the effect of a salient reward cue on the stability of mnemonic representations, we were 419 

able to further test whether cortical attractors in PFC provide a mechanism for distractor-resistant 420 

WM. It was shown that the intervening reward cue quenched the WM selectivity pattern in the 421 

VLPFC population. A recent report similarly showed that a task-irrelevant distractor morphed spatial 422 

selectivity of PFC neurons21; however this irrelevant distracting cue could be instantly dismissed and 423 

was not encoded. The PFC population activity, although morphed with respect to activity pre-424 

distraction, could therefore continue to maintain a strong mnemonic representation. In our 425 

paradigm, the reward cue acted as a more ethologically-valid distractor with behavioural relevance. 426 

Reward anticipation is known to activate a large proportion of neurons in prefrontal cortex22,43,54-59, 427 

and many neurons holding the spatial representation flexibly switched to code the reward. This 428 

suggests that different neural mechanisms may be required to maintain WM when a distracting 429 

stimulus also carries behavioural relevance and activates neurons across PFC. This WM mechanism 430 

seemingly eludes current attractor models, which predict distractor-resistant spatial selectivity.  431 

The dynamic switch of VLPFC activity to coding the behaviourally relevant distractor provides further 432 

evidence that PFC neurons can be tuned to multiple diverse cognitive factors and that they can flip 433 

between them within the course of a trial25,27,48,60. It also suggests previous studies concluding PFC 434 

neurons are resistant to distraction do not generalise to more behaviourally salient stimuli28-30. Here 435 

we use a reward-predictive cue presented at the fixation spot, as opposed to a peripherally flashed 436 

target29 or stimulus21,28 which is irrelevant to the task. The flexibility with which VLPFC neurons 437 

changed the factor they encoded also has implications for accounts of mixed selectivity21,25,51. Shortly 438 

after the second stimulus was shown, there was evidence for neurons encoding a combination of 439 

factors. However, we found the majority of this mixed selectivity was linear51, as opposed to non-440 

linear21,25. 441 

Inverted tuning between cue and delay, a weakening of a stable mnemonic representation by a 442 

distracting cue, and neurons flexibly encoding both factors all suggest VLPFC activity is incompatible 443 

with existing cortical attractor models13. There are several possible interpretations of the WM 444 

activity we observed across PFC. Although WM-related activity and WM-deficits following brain 445 

damage are both most commonly associated with LPFC4,5,61, it is conceivable that classical distractor 446 

resistant stable activity was present in a PFC region we did not sample. However, we sampled a large 447 

expanse of LPFC including both banks of the principal sulcus (PS: areas 9/46d, 946v), and several 448 

millimetres of cortex both dorsal (area 9) and ventral (areas 45a, and 47/12) to PS, as well as parts of 449 

the medial (ACC) and ventral (OFC) PFC. Mnemonic activity has been observed in other brain 450 

regions, such as the parietal cortex62,63. However, this activity is more sensitive to distraction29,64, and 451 

parietal inactivation produces comparatively modest WM deficits relative to PFC, suggesting it plays 452 
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less of a role in WM processes6,65,66. A further possibility is that we may have missed stable, 453 

persistent activity in PFC because of a more anterior recording location than previous studies41. We 454 

also consider this interpretation unlikely. Recent studies recording more posteriorly in LPFC including 455 

the frontal eye field have shown that selectivity for a remembered spatial location is not stable when 456 

either multiple mnemonic stimuli are subsequently presented or a distractor appears21,67. Instead, 457 

we note that the vast majority of tasks reporting stable coding do so during a delay period where 458 

there is only one mnemonic representation to be maintained and no intervening stimuli2,3,13,48. Had 459 

our study similarly terminated at the end of delay one on SR trials (Fig4b), our findings would be 460 

highly consistent with findings of these tasks13. Crucially, without presentation of a distractor 461 

stimulus, both the most recently presented stimulus and the posited locus of the subject’s attention 462 

are confounded with working memory39. Our findings suggest stable mnemonic representations are 463 

present in PFC, specifically in high tau VLPFC neurons, but that these neurons can also flexibly switch 464 

which information they encode as other behaviourally relevant variables compete for the subject’s 465 

attention.  466 

Of the PFC regions studied, VLPFC mnemonic representations were the strongest, and the only ones 467 

present during the second delay of SR trials, although in an altered state relative to the initial delay.  468 

The question therefore remains how WM is achieved on this task. One possibility, although not 469 

directly verifiable with our data, is that a PFC region maintains a representation of the mnemonic 470 

stimulus in an activity silent state14,15. Alternatively, PFC may be essential for setting up a stable 471 

mnemonic spatial representation during the initial delay which can then be transmitted to 472 

oculomotor regions to prepare a saccade, akin to activity for reaching movements68. Either way, our 473 

data are incompatible with PFC maintaining WM in cortical attractor networks throughout a delay 474 

interrupted with a behaviourally relevant distractor. This provides novel neurophysiological evidence 475 

that stable activity states within PFC may be more tightly associated with the most-recently 476 

presented behaviourally-relevant stimulus, rather than the contents of working memory.  477 

  478 

 479 

Methods 480 

Subjects and neurophysiological procedures 481 

Neurophysiological procedures and task design have been reported previously36,37. In brief, two male 482 

rhesus macaques (Macaca mulatta) served as subjects. Single neuron recordings were taken from 483 

four regions of prefrontal cortex (Fig1b) including dorsolateral prefrontal cortex (DLPFC, n=209), 484 

ventrolateral prefrontal cortex (VLPFC, n=206), orbitofrontal cortex (OFC, n=152) and the anterior 485 

cingulate cortex (ACC, n=198). Histological reconstructions of the precise locations of all recorded 486 

neurons have been reported previously36,37. We randomly sampled neurons and did not attempt to 487 

pre-select neurons based on responsiveness to enable a fair comparison of neuronal properties 488 

between different brain regions. 489 

 490 

 491 
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 Task 492 

A detailed overview of the task structure has been described elsewhere36,37. We monitored eye 493 

position and pupil dilation during the task using an infrared system (ISCAN). Subjects first fixated a 494 

central cue for 1000ms before two cues were presented sequentially, each for 500ms, each followed 495 

by a 1000ms delay. One of the cues was a spatial location that the subject had to hold in working 496 

memory, and the other indicated how much reward the subject would receive for correct 497 

performance of the trial. We used 24 different spatial positions and two different reward-predictive 498 

picture sets, each cue indicating one of five reward levels (Fig1a). The 24 spatial targets were 499 

regularly distributed in a 5 x 5 matrix centred at the fixation spot, with each position separated by 500 

4.5° of visual angle. The positions were collapsed into eight locations forming triangles to allow for 501 

sufficient trials for the decoding analyses. On Space-Reward (SR) trials, the spatial position was 502 

shown first followed by the reward cue, whereas on Reward-Space (RS) trials the cues were 503 

presented in the reverse order. If subjects maintained fixation through both of the cue and delay 504 

periods, the fixation cue changed colour and the subject could initiate a saccade to the remembered 505 

spatial location (Fig1a). If the saccade terminated within 3° of the remembered target and was 506 

maintained in this location for 150ms, a reward was delivered and the trial was recorded correct. 507 

Trials where fixation was maintained but the saccade failed to terminate in the remembered 508 

location were recorded as errors. Different trial types and conditions were randomly intermingled. 509 

Subjects completed ∼600 correct trials per day.  510 

Data-analysis 511 

Single-neuron activity during a 1000ms fixation period was used to assign time constants (Fig1c-d)33. 512 

Single unit responses were time-locked to the onset of the fixation period of successfully completed 513 

trials. Fixation-period rasters were divided into 20 discrete, successive 50ms bins. The spike count 514 

for each neuron within each bin was calculated for each trial. Pearson’s correlation coefficient was 515 

used to compute the across-trial correlation of spike-counts between all of the bins. For each single 516 

neuron, this produced an exponential decay when autocorrelation was plotted as a function of time 517 

lag between bins (as in Fig1d). The decay of the autocorrelation was fitted to the data using the 518 

following equation34: 519 

𝑅 (k∆) = 𝐴 [𝑒𝑥𝑝 (−
𝑘∆

𝜏
) + 𝐵] (Eq.1) 520 

In which k∆ refers to the time lag between time bins (50 to 950ms) and τ is the time constant of the 521 

neuron (Fig1c), when data from one autocorrelogram is fitted, or the cortical area when data from 522 

all neurons within that area are fitted together (Fig1d). Neurons from all areas, particularly ACC, 523 

showed evidence of lower correlation values at the shortest time lag33. This may reflect 524 

refractoriness or negative adaptation34. To overcome this, fitting started from the largest reduction 525 

in autocorrelation (between two consecutive time bins) onwards.  526 

All recorded neurons were included in the population-level time constant analysis (Fig1d). Single 527 

neurons were assigned a time constant if their autocorrelogram could be reasonably described by an 528 

exponential decay33. Neurons were therefore automatically excluded if they had a fixation firing rate 529 

of <1Hz or no decline in their autocorrelation function in the first 250ms of time lags (28 of 765 530 

excluded). Neurons were also excluded if the fitting produced extreme parameters (A > 1.2, A < 0, 531 

τ>1000, τ<10; 156 of 737 excluded). Finally, this was followed by a process of visual inspection where 532 
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a further set of neurons were excluded which were considered to possess autocorrelation functions 533 

poorly characterised by an exponential decay (172 of 581 excluded). This left 141 DLPFC, 157 VLPFC, 534 

73 OFC and 38 ACC neurons for analysis. Two independent observers completed this process, blind 535 

to each neuron’s functional properties and recording location. The majority of excluded cells were 536 

recorded in ACC, where many neurons’ autocorrelation functions were flat, possibly reflecting a 537 

timescale longer than could be indexed with a 1-seond foreperiod. In VLPFC, which is the brain 538 

region where most analyses were performed, only 23.8% of all recorded neurons were excluded. All 539 

results were replicated without the visual inspection exclusion criteria.  540 

A multivariate decoding approach was used to investigate population-dynamics of working memory 541 

coding38. Decoding was performed separately for different task-types (i.e. SR or RS) and different 542 

task features (i.e. space and reward). For each neuron, correct trials were split equally into a training 543 

set and a test set. Within each set, trials were grouped according to the relevant feature to be 544 

decoded (either eight spatial groups or five reward levels). Neuronal firing rate for each of these 545 

conditions (Conds) was averaged across trials for each neuron producing a vector length Conds. The 546 

pairwise difference between neural firing in each of the conditions was calculated. For eight spatial 547 

locations (five reward levels) this produced 28 (10) pairwise differences (PWDs). The Pearson’s 548 

correlation coefficient for each PWD was calculated across neurons between the training set and the 549 

test set. These correlation coefficients were averaged using Fisher’s Z-transformation to produce a 550 

single correlation-coefficient quantifying either reward discriminability or spatial discriminability. 551 

This process was repeated for each timepoint, so that the temporal profile of decodability could be 552 

evaluated (Fig2-3). A similar analysis was used to probe if the task being performed could be 553 

decoded (Fig6c). 554 

Cluster-based permutation tests were used to correct for multiple comparisons while assessing the 555 

significance of time-series data33,69. Discriminability metrics were compared between the high and 556 

low tau subpopulations using Fishers-Z transformation (Fig3). This yielded a test-statistic at each 557 

timepoint. Test statistics were divided into ten, non-overlapping 500ms epochs beginning at fixation 558 

onset. Consecutive bins in each analysis window with an uncorrected (cluster-forming) threshold of 559 

p<0.05 (one-tailed) were defined as candidate clusters. The size of the clusters were compared to a 560 

null distribution constructed using a permutation test. Neurons assigned to each subpopulation 561 

were randomly permuted 10,000 times and the cluster analysis was repeated for each permutation. 562 

The length of the longest cluster for each permutation was entered into the null distribution. The 563 

true cluster size was significant at the p<0.05 (p<0.01) level corrected if the true cluster length 564 

exceeded the 95th (99th) percentile of the null distribution. A cluster’s significance was determined 565 

to be p<0.0001 if its length exceeded all those in the null distribution. A similar method was used to 566 

compare discriminability to chance levels (Fig2). Consecutive bins in each analysis window with an 567 

uncorrected (cluster-forming) threshold of p<0.01 (two-tailed) were defined as candidate clusters. In 568 

this case, permuted clusters were calculated by shuffling the order of neurons in each of the PWDs 569 

in the test set.  570 

The multivariate decoding approach allowed us to also probe the cross-temporal stability of 571 

mnemonic representations (Fig4). The discriminability measure described above involved correlating 572 

the PWDs calculated at the same timepoint for a training and a test set. In the cross-temporal 573 

analysis, a timepoints x timepoints matrix was constructed where the training set at each timepoint 574 

was tested at all other timepoints33,38.  In Fig4 the matrix of correlation coefficients was averaged 575 
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across the diagonal in order for the data to reflect both training-to-test and test-to-training trial 576 

projections. To probe the stability of population coding in this analysis, cluster-based permutation 577 

tests were used. Neighbouring pixels in each analysis window with an uncorrected (cluster-forming) 578 

threshold of p<0.01 (two-tailed) were defined as candidate clusters. The null distribution was 579 

generated by the same permutation method as in Fig2. To compare the stability between high and 580 

low time constants, a two-dimensional version of the Fishers-Z transformation method described 581 

above was used (Supplementary Fig2).   582 

Independent to selectivity measures, neural firing rate was correlated across the trial (Fig5a, b). 583 

Firing rate for each condition (eight spatial locations, five reward levels) was correlated across 584 

neurons between each timepoint pair. A separate training and test set were defined based upon a 585 

split half of the trials. The matrix of correlation coefficients plotted represents the average (using 586 

Fisher’s Z-transform) value across all of the conditions (Fig5a). For Fig5b, prior to performing the 587 

correlation, neural firing rate was demeaned within each condition and timepoint for each neuron.  588 

Principal component analysis (PCA) was used to perform a state space analysis (Fig5, Supplementary 589 

Fig3)13. Each subspace was defined using a training set of data averaged across half of the available 590 

trials for each neuron and tested using data from the remaining half. This makes stimulus-variance 591 

captured non-arbitrary (Fig5d) and explains why only a minimal amount of variance is explained in 592 

fixation before stimulus presentation. For each neuron, firing rate on training set trials was averaged 593 

for each condition for each timepoint. For the fixation and delay one subspaces, activity was 594 

averaged across the relevant timepoints (Fixation: -1000 to 0ms relative to cue onset; Delay One: 595 

500ms to 1500ms relative to cue onset). This produced a Conds x Neurons matrix. Activity was 596 

demeaned across conditions for each neuron. PCA was then performed over conditions to define a 597 

low-dimensional coding subspace for the two epochs within a high-dimensional neural state space. 598 

For the dynamic subspace, firing was not averaged across timepoints and the PCA was performed 599 

separately at each timepoint. Therefore, a slightly different subspace is produced for each time 600 

point. Once the principal components have been defined, we projected the left-out test set data 601 

onto the principal axes of the subspaces (Fig5c). The plotted traces therefore display a low-602 

dimensional representation of the trajectory of population activity in the subspace across time.  603 

To assess the generalizability of the delay one subspace, we plotted the stimulus variance (SV) it 604 

captured across the trial relative to the fixation and dynamic subspaces (Fig5d). SV was calculated 605 

using the following formula: 606 

   SV = Tr(𝑆𝑢𝑏𝑘
𝑇 ×  𝐶 × 𝑆𝑢𝑏𝑘)   (Eq.2) 607 

In which Subk refers to the subspace defined from training data (limited to the first k principal axes) 608 

and C refers to the across-stimuli covariance matrix of the test data. In our analyses, we used one 609 

fewer principal axes than the number of conditions (Space: k =7; Reward: k = 4).   610 

For the preliminary single-neuron encoding analyses (Fig7a-d), a one-way kruskal-wallis test was 611 

performed for spatial location and reward size at each time point. A cluster-based permutation test 612 

was performed to test for significance (Fig7c-d). Consecutive bins in each analysis window with an 613 

uncorrected (cluster-forming) threshold of p<0.05 were defined as candidate clusters. In this case, 614 

permuted clusters were calculated by shuffling the relevant feature (spatial location or reward size) 615 
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across trials. To probe whether neurons coding for both factors simultaneously demonstrated either 616 

linear or non-linear mixed selectivity, we performed a two-way ANOVA (Fig8).  617 

Several graphs with time series data were smoothed across time bins for illustrative purposes (Fig2; 618 

Fig3; Fig6c; Fig7c-d, bottom half). A moving average spanning five 10ms bins was used. However, all 619 

statistical tests were performed on the unsmoothed data. 620 
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 802 

Figure 1: Overview of reward-varying spatial working-memory task, recording locations and time constant analysis.   803 
a) Reward-varying spatial working memory task. Monkeys were trained to remember a spatial position in working memory. 804 
They were also presented with a cue indicating the reward size they would receive for successfully completing the trial with a 805 
saccade to the remembered location. On RS (Reward-Space) trials, the reward cue was presented first; whereas on the SR 806 
(Space-Reward) trials, the cues were presented in the reverse order. On SR trials the reward cue therefore acted as a 807 
distraction to working memory of the task-relevant spatial information. b) Approximate location of neural recordings. Neurons 808 
were recorded from anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex 809 
(VLPFC), and orbitofrontal cortex (OFC). c) Histograms of the single-neuron time constants within the four PFC brain regions. 810 
Time constants are highly variable across neurons. Solid and dashed vertical lines represent mean(Log(τ)) and mean(Log(τ)) ± 811 
SD(Log(τ)) respectively. d) Population-level time constants of firing rate autocorrelation in DLPFC, VLPFC, OFC and ACC 812 
during pre-stimulus fixation epoch. Time constant captures the rate of decay of autocorrelation over time. ACC had the highest 813 
and most distinct time constant of all PFC regions studied.   814 
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  816 

Figure 2: Ventrolateral prefrontal neurons maintain information for both spatial and reward stimuli during delay 817 
epochs. The coding of each task feature (spatial location, a and c; reward level, b and d) are plotted for each brain area and 818 
trial type (SR-task, a and b; RS-task, c and d). Ventrolateral prefrontal cortex (VLPFC) is the only region to strongly code 819 
information about space and reward across the trial. Notably, the VLPFC activity primarily encodes the factor most recently 820 
presented. When the reward cue is shown first (RS task, c and d), a representation of reward size is maintained throughout the 821 
first delay, but falls away when the spatial cue is presented. More surprisingly, a similar weakening of spatial coding is also 822 
observed on the SR Task (a), even though this analysis is restricted to trials where the subject remembered the correct spatial 823 
location. Therefore, the maintenance of a strong population code for spatial location within this epoch does not seem essential 824 
for working memory. The VLPFC population strongly encodes and maintains a representation of the remembered spatial 825 
location, but this is substantially weakened by the offset of the reward cue. The first solid vertical line signifies when subjects 826 
were cued to respond. The first and second dashed vertical lines represent the average timing of the subjects’ saccade and the 827 
onset of reward respectively. Coloured horizontal lines represent significant encoding for the corresponding brain region 828 
(Cluster-based permutation test, p<0.05).  829 

   830 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 14, 2017. ; https://doi.org/10.1101/231506doi: bioRxiv preprint 

https://doi.org/10.1101/231506
http://creativecommons.org/licenses/by-nc-nd/4.0/


 831 

Figure 3: Ventrolateral prefrontal neurons with higher resting time constants maintain reward and spatial information 832 
across delays.  Coding for space (a and c) and reward size (b and d) is calculated for two subpopulations of ventrolateral 833 
prefrontal cortex (VLPFC) neurons subdivided by resting time constant. The subpopulation with higher time constants has a 834 
stronger representation of remembered spatial location during the first delay of the SR task (a, p = 0.0482) and whilst the 835 
reward cue is on screen (p = 0.0027). The high time constant population also has a trend towards having stronger spatial 836 
coding in the second delay of the RS task (c, p = 0.0639). These neurons code reward more strongly during the first delay of 837 
the RS task (d, p = 0.0457) and just as the spatial cue is being presented (p = 0.0077). Notably, on SR trials, where the reward 838 
cue is acting as a distractor, the high time constant subpopulation do not exhibit stronger reward coding. They also switch off 839 
reward coding on RS trials as soon as the task-relevant (spatial) cue is presented. Horizontal black bars represent a significant 840 
difference between the high and low time constant subpopulations (Cluster-based permutation test, p<0.05).   841 
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 847 

Figure 4: Cross-temporal dynamics of spatial selectivity by high and low time constant populations. a) Schematic 848 
representing cross-temporal dynamics of different working-memory codes on SR trials. Each pixel represents how well spatial 849 
location can be discriminated when using half of the trials at one timepoint as a training-set (X-Axis), and the other half of trials 850 
at a separate timepoint as a test-set (Y-Axis). On diagonal, the value is identical to those plotted in Fig3. Off diagonal, the plot 851 
indicates the stability of any spatial coding across time. In the first exemplar, stable spatial coding is evident across the trial, as 852 
data from any timepoint after cue presentation can be used to decode the remembered spatial location at any other timepoint. 853 
The second exemplar is similar, but this stable state is only established following a transient dynamic phase where the cue is 854 
initially encoded. The third exemplar shows that this stable state is established during the initial delay – but collapses after the 855 
reward cue is presented. The final exemplar shows that spatial location is coded throughout the trial (heat on the diagonal), but 856 
that this code is not stable across time. Therefore, the way space is coded at two distinct timepoints is inconsistent. b-e) Cross-857 
temporal decodability of spatial location is plotted for high (b, d) and low (c, e) time constant VLPFC populations on SR (b, c) 858 
and RS (d, e) trials. The high time constant subpopulation has a much greater stability of its spatial coding: the off-diagonal 859 
elements are warm, meaning that the same population code persists throughout the delay epoch following the spatial cue. 860 
Despite this stability, there is a negative correlation between the cue period and the delay indicating a reversal of spatial tuning 861 
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between these epochs. In SR trials, a stable state is reached during the first delay, but this is disrupted by the presentation of 862 
the reward cue, and there is only a weak non-significant cross-temporal generalisation between the first and second delay. A 863 
dynamic, rather than stable, representation of space returns around the time of the go cue. In the low time constant population, 864 
coding is always dynamic, so no stable state is established. Dotted lines encircling areas of strong coding indicate significant 865 
cross-temporal stability (p<0.05, Methods).  866 
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 886 

Figure 5: VLPFC high time constant population reverses its spatial coding between cue presentation and the 887 
subsequent delay. a) Within-condition correlation of neural firing across time for SR trials. All bins are positively correlated with 888 
each other, suggesting neural firing is stable across time. Note positive correlation between cue period and delay (asterisk). b) 889 
Within-condition correlation analysis where activity for each neuron was demeaned across each of the spatial locations. There 890 
now exists a negative correlation between the time of the spatial cue presentation and the first delay (asterisk). c) Reversal of 891 
VLPFC high time constant spatial tuning between cue and delay. A mnemonic subspace was defined by time-averaged delay 892 
one activity. The across-trial firing for each condition was projected back onto the first and second principal axes of this 893 
subspace. While the conditions remain well-separated on both principal axes during the first delay, the subspace does not 894 
generalise well into the second delay as activity from the different conditions converges. At the time of the cue, the conditions 895 
appear separable, but in the reverse configuration from that during the delay. The inset shows the geometric location of each 896 
spatial location that appeared on the screen. d) The stimulus variance captured by three different subspaces is displayed. The 897 
fixation subspace is defined by time-averaged activity in the 1000ms before cue presentation. This should represent a chance-898 
level amount of variance explained. The Delay1 subspace is defined by time-averaged activity from 500ms to 1500ms after cue 899 
presentation. The dynamic subspace is defined separately at each individual time point. The dynamic subspace explains a 900 
much greater amount of variance during the cue period, illustrating that there is little consistency in the activity patterns 901 
between cue and delay epochs. However, the Delay1 subspace captures as much variance as the dynamic subspace during 902 
the first delay, suggesting the VLPFC high tau population activity has settled to a stable state by this point.   903 
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 908 

Figure 6: Cross-generalizability of working memory across trial types. By using data from SR trials as a training set for a 909 
classifier, and data from RS trials as a test set, the generalizability of spatial coding across task types can be studied. a) 910 
Exemplars of how population activity may generalise across trial types. If there is no across-task generalisation, spatial position 911 
cannot be decoded from neural activity recorded on the other trial type. If there is stimulus-locked generalisation, spatial 912 
position can be decoded by activity from the other trial type; however, it is relative to cue presentation so the decoding is 913 
displaced off of the diagonal. If there is action-dependent generalisation, neural activity generalises along the diagonal in the 914 
second delay and response epochs as subjects prepare and execute their saccade. b) Cross-generalizability in VLPFC is 915 
primarily locked to the presentation of the stimulus. Spatial position cannot be decoded from activity during the second delay 916 
period, implying distinct population codes on the two trial types in the delay immediately prior to response. Only once the action 917 
is initiated (at the go cue), does a cross-trial generalisation appear on the diagonal. Dashed lines encircling areas of strong 918 
coding indicate a significant cross-generalizable stability (p<0.05, see Materials and methods). c) Decoding task type. The task 919 
the subjects are performing can be accurately decoded from VLPFC neural activity, throughout the trial. This is particularly 920 
important during the second delay, as at this point the subject has been exposed to the same visual stimuli, just in reverse 921 
order.  922 
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 923 

Figure 7: Flexibility of single-neuron selectivity. a) SR Trials: Single neuron coding. The top plot shows the spatial coding of 924 
individual ventrolateral PFC neurons; each row of the matrix represents single neuron selectivity. Neurons are sorted by their 925 
latency for spatial encoding; all neurons above the horizontal white line were selective for space either during cue presentation 926 
or the first delay. For many of these cells, selectivity is transient; few code space across extended periods of the trial.  927 
Furthermore, a large proportion of these neurons subsequently become selective for reward at cue two/delay two (neurons are 928 
sorted in the same order in the panel below). b) RS Trials: Single neuron coding. Neurons are now sorted by their latency for 929 
reward encoding, with all neurons above the white line selective during cue presentation or the first delay. The top panel shows 930 
reward encoding, which again is primarily transitory in nature. The bottom panel shows that many of the neurons initially coding 931 
reward go on to code the spatial-location when this cue is presented. Fraction of neurons selective for either or both task 932 
factors across SR (c) or RS (d) trials. Presentation of the second stimulus reduces the number of neurons selective for the 933 
initially presented cue. e) Switching of selectivity across a trial. Neurons are included in this analysis if they were selective 934 
during the presentation of the first cue. The selectivity pattern of these neurons is profiled across time. On SR trials, only a 935 
minority of cue selective neurons retain an exclusive representation of space across the entire trial; many neurons gain reward 936 
coding, some at the expense of spatial selectivity, and others in addition to this. 937 
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 947 

Figure 8. Absence of non-linear interactions between reward and spatial selectivity on SR (a) and RS (b) trials. The 948 
mean population F-statistics from a sliding 2-way ANOVA with an interaction term are plotted (±SEM; top panel). The 949 
interaction term between both factors does not change from that during pre-trial fixation. However, when there is a positive 950 
correlation between reward and spatial selectivity F-statistics at the time of Cue 2 (Bottom panel), indicating linear mixed 951 
selectivity. Spearman correlation of Spatial and Reward coding F-Statistics during Cue 2 for c) SR trials; d) RS trials. To 952 
complement the above analysis, we performed a single spearman correlation between the raw F-statistics from a 2-way 953 
ANOVA of spike-counts during the second cue. Each dot represents a neuron appropriately coloured. Space and Reward 954 
neurons were required to have only one significant main effect (p<0.05) and a non-significant interaction (p>0.05). Linear mixed 955 
neurons were required to have two significant main effects (p<0.05) and a non-significant interaction (p>0.05). Non-linear mixed 956 
neurons were required to have two significant main effects (p<0.05) and a significant interaction (p<0.05). Non-selective 957 
neurons had no significant effects (p>0.05). A very small proportion of neurons did not meet these criteria so were unclassified.  958 
F-statistics have been log-transformed for illustrative purposes.  959 

 960 

 961 

 962 

 963 

 964 

 965 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 14, 2017. ; https://doi.org/10.1101/231506doi: bioRxiv preprint 

https://doi.org/10.1101/231506
http://creativecommons.org/licenses/by-nc-nd/4.0/


 966 

Supplementary Figure 1: Cross-temporal dynamics of reward selectivity by brain region and task (a, RS task; b, SR 967 
task). All brain areas studied have neural activity representing reward size. Only VLPFC shows a reversal of reward tuning 968 
between the cue epoch and the subsequent delay. This feature of coding is present on both trial types.  969 
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 985 

Supplementary Figure 2: Comparison of VLPFC High and Low tau cross-temporal spatial coding for a) SR trials; b) RS 986 
trials. Negative z-scores illustrate stronger coding in the high tau population. Coding of spatial location is more stable for the 987 
high tau population between the first delay and the reward cue of SR trials (largest cluster, p = 0.0002; cluster based 988 
permutation test, see Methods), and during the reward cue of SR trials (largest cluster, p = 0.0086; cluster based permutation 989 
test). There is a stronger switch in coding between the spatial cue and the first delay in high tau cells (largest cluster, p = 990 
0.0079; cluster based permutation test). On RS trials, there is a more stable coding in high tau cells during the second delay 991 
(largest cluster, p = 0.0135), as well as between this time and the reward onset (largest cluster, p = 0.0120; cluster based 992 
permutation test). Dotted lines encircling areas of strong dissimilarities in coding indicate a significant difference in cross-993 
temporal stability between high tau and low tau populations (p<0.05, see Materials and methods).  994 
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 1010 

Supplementary Figure 3: VLPFC high time constant population reverses its reward coding between cue presentation 1011 
and the subsequent delay. a) Within-condition correlation of neural firing across time for RS trials. All bins are positively 1012 
correlated with each other, suggesting neural firing is stable across time. Note positive correlation between cue period and 1013 
delay (asterisk). b) Within-condition correlation analysis where activity for each neuron was demeaned across each of the 1014 
reward sizes. There now exists a negative correlation between the time of the reward cue presentation and the first delay 1015 
(asterisk). c) Reversal of VLPFC high time constant reward tuning between cue and delay. A mnemonic subspace was defined 1016 
by time-averaged delay one activity. The across-trial firing for each condition was projected back onto the first and second 1017 
principal axes of this subspace. While the conditions remain well-separated on the first principal axis during the first delay, the 1018 
subspace does not generalise well into the second delay as activity from the different conditions converges. At the time of the 1019 
cue, the conditions appear separable, but in the reverse configuration from that during the delay. d) The stimulus variance 1020 
captured by three different subspaces is displayed. The fixation subspace is defined by time-averaged activity in the 1000ms 1021 
before cue presentation. This should represent a chance-level amount of variance explained. The Delay1 subspace is defined 1022 
by time-averaged activity from 500ms to 1500ms after cue presentation. The dynamic subspace is defined separately at each 1023 
individual time point. The dynamic subspace explains a much greater amount of variance during the cue period, illustrating that 1024 
there is little consistency in the activity patterns between cue and delay epochs. However, the Delay1 subspace captures as 1025 
much variance as the dynamic subspace during the first delay, suggesting the VLPFC high tau population activity has settled to 1026 
a stable code by this point.   1027 
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