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Abstract  
 
Converging human studies have demonstrated that brain activity patterns observed during 

task performance reemerge in the following restful awake state. Such “awake 

reactivation” has been demonstrated across higher-order cortex for complex images or 

associations. However, it remains unclear what specific training components are 

reactivated in these studies. Here we sought to provide evidence for the reactivation of a 

particular visual feature – Gabor orientation. Following extensive training on a visual 

task, we found robust reactivation in human V1 that lasted at least eight minutes. This 

effect was not present in higher retinotopic areas such as V2, V3, V3A, or V4v, 

demonstrating that the effects in V1 are not due to top-down processes such as conscious 

rehearsal. Furthermore, the amount of awake reactivation predicted the amount of 

performance improvement on the visual task. These results demonstrate that functionally-

relevant awake reactivation of specific visual features occurs in early sensory cortex. 
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Introduction 

Understanding how the human brain learns is one of the central goals in neuroscience. A 

growing body of literature demonstrates that new learning becomes consolidated during 

offline states (Diekelmann & Born, 2010; McGaugh, 2000; Sasaki, Nanez, & Watanabe, 

2010). More specifically, recent functional magnetic resonance imaging (fMRI) studies in 

humans point to memory reactivation – the reemergence of the brain activity patterns 

observed during task performance – as a potential contributor to offline memory 

consolidation (Deuker et al., 2013; Schlichting & Preston, 2014; Staresina, Alink, 

Kriegeskorte, & Henson, 2013; Tambini & Davachi, 2013). This reactivation occurs 

during sleep (Deuker et al., 2013) but also during restful wakefulness (Chelaru et al., 

2016; de Voogd, Fernandez, & Hermans, 2016; Deuker et al., 2013; Guidotti, Del Gratta, 

Baldassarre, Romani, & Corbetta, 2015; Schlichting & Preston, 2014; Staresina et al., 

2013; Tambini & Davachi, 2013) in which case it is referred to as awake reactivation.  

 

Pioneering human studies have demonstrated the existence of awake reactivation for 

episodic memories in the medial temporal lobe including in the hippocampus (Tambini & 

Davachi, 2013), the entorhinal and the retrosplenial cortex (Staresina et al., 2013). 

Specifically, brain patterns during encoding of associations between different categories 

persisted into the following rest period (Staresina et al., 2013; Tambini & Davachi, 

2013). The amount of reactivation in the hippocampus also predicted later behavioral 

performance (Tambini & Davachi, 2013).  
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Building on these early findings, several lines of human studies found that awake 

reactivation exists beyond the medial temporal lobe (Chelaru et al., 2016; de Voogd et al., 

2016; Deuker et al., 2013; Guidotti et al., 2015; Schlichting & Preston, 2014). The brain 

patterns during encoding of associations between objects and spatial locations were 

shown to reemerge in both inferior temporal cortex and occipital cortex (Deuker et al., 

2013). In addition, category-specific awake reactivation was demonstrated in the inferior 

temporal cortex (de Voogd et al., 2016) and the fusiform face area (Schlichting & 

Preston, 2014). More recent studies used diverse paradigms beyond hippocampus-

dependent episodic memory. Repeated exposure to movies led to reactivation in a large 

cortical network, consisting mostly of the frontal and temporal lobes (Chelaru et al., 

2016). Similarly, training on a letter discrimination task induced reactivation across 

medial and lateral parietal regions and higher-order visual cortex (Guidotti et al., 2015). 

This converging evidence suggests that awake reactivation occurs across higher-order 

areas beyond the medial temporal lobe. 

 

However, previous research could not determine what specific training components were 

reactivated. Indeed, some previous studies used associative learning between different 

categories (Deuker et al., 2013; Schlichting & Preston, 2014; Staresina et al., 2013; 

Tambini & Davachi, 2013). The use of associative learning makes it difficult to 

disentangle brain processes related to the coding of each stimulus from the brain 

processes related to the binding of different stimuli (Deuker et al., 2013). The studies that 

did not use associative learning employed relatively complex visual stimuli such as 

animals, fruits, vegetables, letters and cartoon movies (Chelaru et al., 2016; de Voogd et 
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al., 2016; Deuker et al., 2013; Guidotti et al., 2015; Schlichting & Preston, 2014; 

Staresina et al., 2013; Tambini & Davachi, 2013). These complex visual stimuli consist 

of a large number of individual features that could potentially be reactivated. Further, 

these studies observed awake reactivation in higher-order brain regions that have mixed 

selectivity to features (Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016), making it 

again difficult to infer what specific features are reactivated.  

 

Isolating a specific feature that is reactivated is critical for at least two reasons. First, it 

will demonstrate the limits of the phenomenon. Does reactivation in the human brain 

occur only at the level of complete objects? Is it a phenomenon that can be observed only 

in higher-level cortex? Or is awake reactivation a phenomenon that can be observed 

across the whole brain and at different levels? Second, providing evidence for awake 

reactivation of specific features will link the studies in humans even more tightly to the 

phenomenon of neuronal replay observed in animals where replay is typically 

demonstrated for a specific feature (e.g., location in space (Carr, Jadhav, & Frank, 2011; 

Davidson, Kloosterman, & Wilson, 2009; Diba & Buzsaki, 2007; Foster & Wilson, 2006) 

or placement on the screen (Han, Caporale, & Dan, 2008)).   

 

Further, previous research often did not prevent subjects from consciously rehearsing the 

trained stimuli (de Voogd et al., 2016; Deuker et al., 2013; Guidotti et al., 2015; 

Schlichting & Preston, 2014; Tambini & Davachi, 2013). In fact, some of these studies 

may have even encouraged such conscious rehearsal. Therefore, it is unclear whether the 

observed awake reactivation in prior studies reflects spontaneous brain activity or 
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purposeful, top-down effects. Since awake reactivation is usually conceptualized as an 

automatic process outside of conscious awareness, it is important that the phenomenon is 

demonstrated even when conscious rehearsal is explicitly prevented. 

 

In the current study, we set to address above-mentioned limitations and provide evidence 

for reactivation of a specific visual feature that is not driven by conscious rehearsal. To 

do so, we focused on the primary visual cortex (V1), which is known to code stimulus 

orientation (Yacoub, Harel, & Ugurbil, 2008) and show changes after visual training 

(Rosenthal, Andrews, Antoniades, Kennard, & Soto, 2016; Sasaki et al., 2010). We used 

oriented Gabor patches rather than complex stimuli for training and examined whether 

the trained orientation is reactivated in V1 after extensive visual training. To prevent any 

conscious rehearsal, we required participants to perform a challenging fixation task while 

their pre- and post-training spontaneous brain activity was measured. Our results show 

that the activity patterns of V1 are more likely to be classified as the trained, compared to 

an untrained orientation shortly after visual training. However, higher retinotopic areas 

such as V2, V3, V3A, or ventral V4 (V4v), did not show this effect, thus providing direct 

evidence that the effects in V1 were not driven by top-down processes such as conscious 

rehearsal. Furthermore, greater amount of awake reactivation in V1 was found to be 

associated with greater learning amount on the trained stimulus. These findings 

demonstrate that feature-specific, spontaneous awake reactivation takes place after visual 

training in V1 and that this reactivation is functionally important for visual learning. 
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Results  

We examined whether a process of feature-specific, spontaneous awake reactivation 

occurs after visual training in human V1. We trained human subjects (n = 12) to detect a 

specific Gabor orientation (45° or 135°, counter-balanced between subjects; Figure 1A). 

The training induced significantly better performance on the post- compared to the pre-

training test (F(1,11)=34.351, P<0.001; Figure S1), thus demonstrating that significant 

behavioral learning took place.  

 

Before the training, we constructed a decoder that could distinguish between the 

multivoxel pattern of blood-oxygen-level dependent (BOLD) activity elicited by each 

Gabor orientation (Figure 1B). We then applied this decoder on the spontaneous activity 

scans conducted before (pre, two 5-min scans that we combined for analysis) and after 

(post1 & post2: consecutive two 5-min scans analyzed separately) the training.  
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Figure 1. Task and experimental procedure. (A) Subjects performed a 2-interval-forced-
choice (2IFC) orientation detection task, in which they indicated whether a Gabor patch 
appeared in the first or second interval. (B) The experiment consisted of three days. 
Visual training (~40 minutes on average) was conducted on Day 2. We collected two 
spontaneous measurement scans (5 minutes/scan) before (combined into a single pre 
baseline) and after training (post1 and post2). During these scans subjects detected a 
color change in a small fixation dot (see Methods). Decoder construction (~50 minutes) 
and retinotopy (~20 minutes) scans were collected on Day 1. Pre- and post-training 
behavioral tests were conducted on Days 1 and 3 to confirm that training improved task 
performance.  
 

If feature-specific awake reactivation indeed occurs in V1, it would manifest itself as 

post-training, but not pre-training, spontaneous activity appearing more similar to the 

trained, compared to the untrained, orientation. To test for such feature-specific awake 

reactivation in V1, we analyzed the decoder’s probability of classifying spontaneous 
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activity in V1 as the trained orientation. Note that in this analysis, spontaneous activity 

was always classified as either the trained or untrained Gabor orientation at each data 

point (see Methods), and therefore we only report the probability of “trained orientation” 

classifications. In order to examine whether the decoder’s classification for the trained 

orientation significantly increased after the training, we applied a one-way repeated 

measures ANOVA to the decoder’s probability. The result showed a significant main 

effect of time (pre vs. post1 vs. post2; F(2,22)=6.321, P=0.007). Consistent with the 

existence of feature-specific awake reactivation, the activation pattern in V1 was more 

likely to be classified as the trained orientation immediately after (post1) compared to 

before (pre) the visual training (t(11)=3.607, P=0.004, uncorrected paired sample t-test; 

Figure 2A,B). A significant quadratic trend was also observed in the time-course of the 

decoder’s probability (F(1,11)=12.041, P=0.005), indicating a peak right after training. 

Furthermore, the probability of classification as the trained orientation was significantly 

greater than chance in both post-training periods (post1: t(11)=4.467, P=0.001; post2: 

t(11)=2.929, P=0.014, one-sample t-tests) but not before training (pre, t(11)=0.243, 

P=0.812, one-sample t-test).  
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Figure 2. Probability of classifying spontaneous brain activity as trained orientation in 
V1. Consistent with the existence of awake reactivation, spontaneous activity in V1 
immediately after training was more likely to be classified as the trained orientation. The 
effect is visible both in the group (A) and individual data (B). Error bars represent s.e.m. 
* P<0.05, ** P<0.01, N.S. not significant. 
 

The above analysis focused on the decoder’s probability of classifying activity as the 

trained orientation based on the decoder’s binary classification (either trained or 

untrained orientation) at each data point. However, for each data point, the decoder could 

also produce a continuous measure: the likelihood that the data point came from the 

trained or untrained orientation. Analyzing these continuous likelihood values (rather 

than the binary classification performance), we still found the same pattern of results 
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(main effect of time in one-way repeated measures ANOVA, F(2,22)=3.780, P=0.039; 

Figure S2; see Methods). The likelihood of classification as the trained orientation was 

also significantly greater than chance in both post-training periods (post1: t(11)=3.584, 

P=0.004; post2: t(11)=2.400, P=0.035, one-sample t-tests) but not before training (pre, 

t(11)=0.427, P=0.678, one-sample t-test). Thus, both methods of analysis show that post-

training spontaneous activity in V1 appears more similar to the trained orientation. 

 

One potential concern is that these results could be due to subjects consciously imagining 

the trained stimulus during the spontaneous brain measurement (post1 and post2). We 

made such behavior unlikely by requiring subjects to perform a challenging task in which 

they monitored for a slight color change at fixation during the spontaneous brain 

measurement (Figure 1B; see Methods). We further delayed any post-training test until 

the next day, thus making it unnecessary for subjects to mentally practice the trained task 

immediately after the training was over.  

 

Despite these precautions, it is still possible that some amount of conscious rehearsal of 

the trained stimulus took place. We reasoned that if any conscious rehearsal occurred, 

reactivation-like activity should be observed in higher visual areas since top-down 

processes such as visual imagery (Albers, Kok, Toni, Dijkerman, & de Lange, 2013), 

attention (R. B. Tootell et al., 1998), and working memory (Harrison & Tong, 2009) have 

at least as strong (and often much stronger) influence on these higher visual areas as on 

V1. We therefore analyzed the decoder’s probability of classifying spontaneous activity 

as the trained orientation based on activity patterns in V2, V3, V3A, and V4v. In order to 
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test whether the decoder’s performance in higher visual areas changed after the training, 

we conducted a two-way repeated measures ANOVA with factors time (pre vs. post1 vs. 

post2) and region (V2, V3, V3A, and V4v). The ANOVA revealed no significant effects 

of time (F(2,22)=0.240, P=0.789), region (F(3,33)=2.113, P=0.117), or interaction 

between the two (F(6,66)=2.022, P=0.075). Despite the lack of significant overall effects 

(Figure 3; individual results are shown in Figure S3), we wanted to ensure that none of 

these higher retinotopic regions showed the pattern of results in V1 where decodability of 

the trained stimulus increased immediately after training (post1) compared to before 

training (pre). In fact, we found no such effects in V2, V3, V3A, or V4v (all P values > 

0.6 for pre vs. post1 in each area before correction: V2, t(11)=0.333, P=0.746; V3, 

t(11)=-0.492, P=0.632; V3A, t(11)=-0.380, P=0.711; V4v, t(11)=-0.514, P=0.618, paired 

sample t-tests). Therefore, the results in V1 are unlikely to be due to subjects consciously 

rehearsing the trained stimulus.  

 

We analyzed the data from V1 separately from the other four retinotopic areas based on 

our a priori hypothesis. However, if all five retinotopic regions are entered into a two-

way repeated measures ANOVA, then consistent with the existence of awake reactivation 

exclusively in V1, a significant interaction between region and time emerges 

(F(8,88)=2.303, P=0.027). In addition, we further examined whether the decoder’s 

probability of classifying spontaneous activity as the trained orientation in V1 is 

significantly greater than that in V2, V3, V3A, and V4v immediately after training 

(post1). We found a greater decodability of the trained stimulus in V1 compared to V2, 

V3A, and V4v immediately after training (post1) (V1 vs. V2, t(11)=4.196, P=0.001; V1 
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vs. V3, t(11)=1.478, P=0.168; V1 vs. V3A, t(11)=2.655, P=0.022; V1 vs. V4v, 

t(11)=2.708, P=0.020, paired sample t-tests, before correction). Again, these results 

support the notion that the pattern of increased decodability of the trained stimulus 

immediately after training is found exclusively in V1. 

 

 

Figure 3. Probability of classifying spontaneous brain activity as trained orientation in 
V2, V3, V3A, and V4v. Consistent with a lack of awake reactivation in higher retinotopic 
areas, spontaneous activity in V2, V3, V3A, and V4v was classified as the trained 
orientation at chance level (0.5) immediately after training. Error bars represent s.e.m. 
N.S. not significant. 
 

Finally, we examined whether the observed awake reactivation in V1 had functional 

consequences for learning. To address this question, we examined whether subjects who 

showed greater reactivation exhibited stronger behavioral improvement. We constructed 

subject-specific learning index that measures the amount of learning that was specific to 
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the trained orientation. Similarly, we constructed a subject-specific reactivation index that 

measures the amount of reactivation by comparing the probability of decoding the trained 

stimulus in the pre and post-training spontaneous measurement scans (see Methods for 

details about both indices). We then compared the learning index across subjects with a 

high vs. low amount of reactivation (using a median split). We found that the learning 

index for those who showed higher awake reactivation was significantly greater than that 

for those who showed lower awake reactivation (t(10)=2.616, P=0.026, independent 

samples t-test; Figure 4). This result indicates that greater amount of awake reactivation 

is associated with greater visual learning on the trained stimulus and suggests that awake 

reactivation has a functional role in the learning. 

 

 

Figure 4. Strength of awake reactivation predicts performance improvement. The 
amount of behavioral improvement specific to the trained orientation was significantly 
greater for subjects who showed higher levels of awake reactivation. Dots represent 
individual data. Error bars represent s.e.m. * P<0.05.  
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Discussion 

We investigated whether a process of spontaneous, feature-specific awake reactivation 

takes place in human V1 following training with a novel visual stimulus. We found that 

shortly after training, the spontaneous brain activity in V1 was more likely to be 

classified as the trained orientation. This awake reactivation was specific to V1; higher 

retinotopic areas failed to show similar effects. Furthermore, the strength of awake 

reactivation predicted behavioral performance improvement on the trained stimulus. 

These results suggest that spontaneous, feature-specific awake reactivation occurs in V1 

after the visual training and that this awake reactivation may serve to bolster the 

subsequent visual learning after the initial training is completed. 

 

Our findings go beyond the previous literature on awake reactivation in three important 

ways. First, we demonstrate feature-specific reactivation. Indeed, by comparing Gabor 

stimuli that only vary in their orientation, we revealed that a basic visual feature such as 

orientation is specifically reactivated in the brain. Conversely, previous human studies 

could not determine what specific aspect of the trained stimulus was reactivated. Some of 

the prior studies used associative learning between two different categories (Deuker et al., 

2013; Schlichting & Preston, 2014; Staresina et al., 2013; Tambini & Davachi, 2013). 

However, the reemergence of the brain processes during encoding of two different 

categories is insufficient to determine whether the reactivated information relates to the 

coding of each stimulus or the binding process (Deuker et al., 2013). Other studies did 

not use associative learning but employed complex stimuli such as animals, fruits, 

vegetables, letters and cartoon movies (Chelaru et al., 2016; de Voogd et al., 2016; 

Deuker et al., 2013; Guidotti et al., 2015; Schlichting & Preston, 2014; Staresina et al., 
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2013; Tambini & Davachi, 2013) that contain a large number of individual features that 

could potentially be reactivated. By demonstrating feature-specific reactivation, our study 

shows that awake reactivation in the human brain is not limited to the level of whole 

objects but extends down to the most basic visual features.  

 

Second, we show that reactivation in humans is not exclusive to higher-order brain areas 

but exists even in the primary visual cortex V1. Prior studies demonstrated the existence 

of reactivation mostly in the association cortex but not in the primary sensory areas 

(Chelaru et al., 2016; de Voogd et al., 2016; Deuker et al., 2013; Guidotti et al., 2015; 

Schlichting & Preston, 2014; Staresina et al., 2013; Tambini & Davachi, 2013). 

Therefore, our study suggests that human reactivation is likely to occur across most (if 

not all) brain regions. 

 

Third, our study demonstrates that awake reactivation can occur without conscious 

rehearsal. Most of the prior human studies on awake reactivation did not have a robust 

way of preventing subjects from engaging in conscious rehearsal (de Voogd et al., 2016; 

Deuker et al., 2013; Guidotti et al., 2015; Schlichting & Preston, 2014; Tambini & 

Davachi, 2013) and in some cases, may have actually encouraged such rehearsal. This 

issue is critical since awake reactivation is usually conceptualized as an automatic 

process outside of conscious awareness but evidence for this view has been lacking.  

 

Several pieces of evidence suggest that awake reactivation in our study was not due to 

conscious rehearsal of the trained stimulus. First, we required subjects to perform a 
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challenging task at fixation (see Methods) during the pre- and post-training periods. This 

fixation task introduced attentional demands that were not present in the no-task resting-

state scans used in the previous studies. The presence of a demanding task made it 

unlikely that subjects would engage in a purposeful recall of the trained stimulus. At the 

same time, the fixation task was designed so that the parts of the visual cortex 

corresponding to the trained stimulus were not prevented from engaging in reactivation 

processes. This was achieved by making the target in the fixation task small and spatially 

non-overlapping with the trained stimulus. Second, we delayed any further tests on the 

trained task until the next day. This manipulation removed any immediate motivation to 

purposefully rehearse the trained stimulus during the fixation task. Third, we checked 

whether reactivation-like activity could be detected in higher retinotopic areas such as 

V2, V3, V3A, and V4v. It is known that top-down processes such as visual imagery 

(Albers et al., 2013), attention (R. B. Tootell et al., 1998), and working memory 

(Harrison & Tong, 2009) have a strong influence on these higher visual areas. The lack of 

reactivation in those higher regions thus shows that the results in V1 are indeed not due to 

conscious top-down rehearsal of the trained stimulus. Finally, after completing the 

experiment, we asked subjects if they mentally imagined the trained stimulus while 

performing the fixation task and they all denied doing so. Note, however, that a verbal 

statement alone should not be considered as sufficient evidence for a lack of conscious 

rehearsal. 

 

Despite the fact that fMRI has limited spatio-temporal resolution compared to neuronal 

recordings, our results, together with prior human studies on awake reactivation, appear 
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to reveal processes akin to neuronal replay in animals (Carr et al., 2011). Neuronal 

replay, that is the reemergence of neuronal patterns that represent previous learning, has 

been studied extensively in hippocampal cells (Carr et al., 2011; Davidson et al., 2009; 

Diba & Buzsaki, 2007; Foster & Wilson, 2006; Yao, Shi, Han, Gao, & Dan, 2007) but 

also in areas of the neocortex, particularly the visual (Han et al., 2008; Ji & Wilson, 2007; 

Yao et al., 2007) and the frontal cortex (Euston, Tatsuno, & McNaughton, 2007) in 

animals. More recent studies have shown that neuronal patterns representing previous 

learning can be preplayed by a cue even before a task begins (Eagleman & Dragoi, 2012; 

Ekman, Kok, & de Lange, 2017; Xu, Jiang, Poo, & Dan, 2012). These studies 

demonstrated the existence of cue-triggered preplay during wakefulness in both rodent 

V1 (Xu et al., 2012), monkey V4 (Eagleman & Dragoi, 2012) and human V1 (Ekman et 

al., 2017). Based on this converging evidence, we suspect that our results reflect 

spontaneous firing of the same pools of V1 neurons that code for the trained stimulus 

after training is completed. Future studies using finer spatio-temporal resolution are 

needed to directly examine this possibility. 

 

In our study, the decodability of the trained orientation in V1 was highest in the first post-

training period (post1) but remained significant in the second post-training period (post2). 

Therefore, awake reactivation in our study continued at least until the onset of the second 

post-training period (post2), which occurred on average 7.75 minutes after the offset of 

visual training. In other words, reactivation persisted for at least ~8 minutes after subjects 

last experienced the trained stimulus. This time-course of awake reactivation in V1 

agrees well with neuronal results in anesthetized rodent V1 (Han et al., 2008). In that 
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study, 50 (125) stimulus repetitions led to ~3 (~14) minutes of replay activity. Compared 

to this study, our visual training was significantly longer but reactivation processes lasted 

for a shorter time. The shortened time length of reactivation is likely due to the fact that, 

unlike in anesthesia, the awake brain needs to remain responsive to its environment, 

which likely diminishes its capacity for reactivation. Future studies should include 

various training periods in order to delineate the time-course of the reactivation processes 

in humans. 

 

In summary, we found evidence for spontaneous, feature-specific awake reactivation in 

area V1 after training on a visual task in humans. Critically, these effects were not 

observed in higher retinotopic areas. Further, the amount of awake reactivation in V1 

predicted the behavioral learning amount on the trained stimulus. These results suggest 

that feature-specific awake reactivation might be a critical mechanism that supports 

offline memory consolidation. 
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Materials and Methods 

Participants 

Twelve healthy subjects (19 to 25 years old, 7 females) with normal or corrected-to-

normal vision participated in this study. Exclusion criteria comprised a history of 

neurological, psychiatric disorders and contraindications to MRI. All subjects provided 

their demographic information and written informed consent, which was approved by the 

Institutional Review Board of Georgia Institute of Technology. All experiments were 

performed during daytime. All twelve subjects’ data were included in the analysis. Each 

experiment was performed once for all subjects.  

 

Procedures 

The study consisted of three days (Figure 1B): decoder construction, retinotopy, and a 

pre-training test on Day 1, spontaneous brain activity measurements and training on Day 

2, and a post-training test on Day 3. Days 1 and 2 were separated by multiple days, while 

Day 3 always immediately followed Day 2.  

 

Orientation detection task 

Subjects completed a 2-interval-forced-choice (2IFC) orientation detection task during 

training, as well as during the pre- and post-training tests. Subjects indicated which of 

two intervals contained a Gabor patch. The Gabor patch (contrast = 100%, spatial 

frequency = 1 cycle/degree, Gaussian filter sigma = 2.5 degree, random spatial phase) 

was presented within an annulus subtending 0.75 to 5 degrees and was masked by noise 

generated from a sinusoidal luminance distribution at a given signal-to-noise (S/N) ratio. 
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For instance, 10% S/N ratio meant that noise replaced 90% of the pixels in the Gabor 

patch. The interval without the Gabor patch consisted of pure noise (0% S/N ratio). The 

interval in which the Gabor patch was presented was determined randomly. During the 

entire orientation detection task, subjects were asked to fix their eyes on a white bull’s-

eye on a gray disc (0.75° radius) at the center of the screen.  

 

Each trial began with a 500-ms fixation period. After the fixation period, two stimuli 

were presented for 50 ms each, separated by a 300-ms blank period. Subjects indicated 

the interval in which the Gabor patch appeared by pressing a button on a keypad. No 

feedback was provided.  

 

The training, as well as the pre- and post-training tests consisted of individual blocks. 

Within each block, we controlled the difficulty of the task by adjusting the S/N ratio 

using a 2-down 1-up staircase method. Each block started with stimuli at 25% S/N ratio 

and terminated after 10 reversals. Each block lasted approximately 1-2 minutes, 

contained 30-40 trials, and presented stimuli with just one orientation (45° or 135°). 

 

Training 

Training was conducted on Day 2 of our experiment. During the training, the subjects 

performed the 2IFC orientation detection task on one orientation only, randomly selected 

for each subject (to be either 45° or 135°). Subjects completed 16 blocks in total lasting 

approximately 40 minutes. The training was performed in the MR scanner.  
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Pre- and post-training tests 

The purpose of the pre- and post-training tests was to obtain each subject’s threshold S/N 

ratio for each Gabor orientation. During these tests, subjects performed the same 2IFC 

orientation detection task. Each test consisted of two blocks, one for each Gabor 

orientation (45° or 135°). The order of presentation of the two orientations was 

randomized for each test and each subject. Subjects performed the pre- and post-training 

tests in a mock scanner located immediately adjacent to the scanner room. 

 

Threshold S/N ratio 

The threshold S/N ratio was determined separately for each block of testing. We 

computed the threshold S/N ratio as the geometric mean of the S/N ratio during the last 6 

reversals in a block.  

 

Relationship between awake reactivation and behavioral improvement 

In order to check whether the amount of awake reactivation predicted the behavioral 

improvement, we first constructed an index of subjects’ learning. The learning index 

measures the relative learning amount for trained orientation compared to untrained 

orientation. The learning amount was defined as the change in the thresholds for pre- and 

post-training tests divided by the threshold at pre-training test: 

 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑎𝑚𝑜𝑢𝑛𝑡 =
𝑇/01 − 𝑇/345

𝑇/01
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where 𝑇/01 and 𝑇/345 refer to the threshold S/N ratios before and after training. We 

computed the learning index by subtracting learning amount for the untrained orientation 

from learning amount for the trained orientation. 

 

To relate the learning index to the amount of awake reactivation, we constructed an 

equivalent index of subject-specific awake reactivation. The reactivation index measures 

the increase in decodability of the trained stimulus in V1 from the pre- to the post-

training spontaneous brain measurement: 

 

𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	𝑖𝑛𝑑𝑒𝑥 =
𝑃/345 − 𝑃/01

𝑃/01
 

 

where 𝑃/01 and 𝑃/345 refer to the probability of classifying brain activity as the trained 

orientation in the pre- and post-training spontaneous brain measurements, respectively.  

 

Decoder construction  

The purpose of the decoder construction stage was to obtain each subject’s blood-

oxygen-level dependent (BOLD) signal patterns corresponding to each of the two Gabor 

orientations (45° and 135°). The data obtained from the decoder construction stage was 

later used to compute the parameters for the decoder that distinguishes between the two 

Gabor orientations.  

 

During the decoder construction scan, the subjects performed 10 runs of frequency 

detection task (see below for details of the task) inside the MR scanner. Each run 
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consisted of 18 trials, plus 6-sec fixation period in the beginning and the end of the run (1 

run = 300 sec). Each trial had two parts, 12-sec stimulus presentation period and the 

following 4-sec response period (1 trial = 16 sec). 

 

During 12-sec stimulus presentation period, 12 Gabor patches were presented at a rate of 

1 Hz. Each Gabor patch was flashed for 500 ms allowing for 500 ms blank period 

between consecutive Gabor stimuli. All 12 Gabor patches had one specific orientation 

(45° or 135°) chosen randomly on each trial.  In half of the 18 trials, one of the 12 Gabor 

patches had slightly higher spatial frequency compared to the other patches. For the other 

half of 18 trials, all 12 Gabor patches had the same spatial frequency. After the end of the 

12-sec stimulus presentation, subjects indicated whether a Gabor patch with a different 

spatial frequency was presented. All Gabor patches were displayed with 50% S/N. 

 

During each run, a white bull’s-eye on a gray disc (0.75° radius) was presented as a 

fixation point at the center of the screen. In the beginning of the 12-sec stimulus 

presentation period, the fixation point at the center of the screen changed its color from 

white to green to indicate that the stimulus presentation period had started. The color of 

the fixation point remained green throughout the 12-sec stimulus presentation period and 

changed to white again when the response period started.  

 

The subjects were instructed to press a button on a key pad during 4-sec response period 

if they detected any change in the spatial frequency during preceding stimulus 

presentation period. If they did not detect any frequency change, they were instructed not 
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to press a button. We controlled the difficulty of the task using an adaptive staircase 

method. The initial degree of the spatial frequency change in the first run was set to 0.24 

Hz and decreased by 0.02 in the case of a hit and increased by 0.02 in the case of a false 

alarm or miss. In the case of a correct rejection, the degree of the frequency did not 

change. The following run always started from the last degree of the frequency in the 

previous run.  

 

Retinotopy  

We defined the retinotopically-organized areas V1, V2, V3, V3A, and ventral V4 (V4v) 

using standard retinotopic methods (Sereno et al., 1995; R. B. H. Tootell et al., 1997). 

Briefly, we presented a flickering checkerboard pattern at vertical/horizontal meridians 

and in the upper/lower visual fields. Based on the contrast map of BOLD signals, we 

delineated visual cortical areas of V1, V2, V3, V3A, and V4v. Furthermore, we presented 

an annulus stimulus in order to delineate the retinotopic regions in each visual area 

corresponding to the visual fields stimulated by the Gabor patch. The stimulus was a 

flickering checkerboard pattern within an annulus subtending 0.75 to 5 degree from the 

center of the screen, which is identical with the size of the Gabor patch. Only the voxels 

activated by the flickering pattern within an annulus stimulus were included in the main 

analyses. 

 

Spontaneous brain activity measurement  

We recorded each subject’s “spontaneous” BOLD activity before (pre, two 5-min scans 

that we combined for analysis) and after (post1 & post2: consecutive two 5-min scans 
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analyzed separately) the visual training. In order to ensure that the subjects do not 

consciously imagine the trained orientation, we required them to perform a fixation task 

while they were scanned. During the fixation task, the subjects fixated their eyes on a 

white bull’s-eye on a gray disc (0.75° radius) at the center of the screen. They were 

instructed to press a button on a keypad as soon as they detected a color change of the 

center dot. A fixation dot changed its color from white ([R, G, B] = [255, 255, 255]) to 

faint pink ([R, G, B] = [255, 255 − x, 255 − x]) in an unpredictable way and returned to 

white 1.5 sec later. For the button press to be regarded as a hit, the subjects had to press a 

button within 1.5 sec (i.e., during the period when the color had changed). Initially, the 

color change x was set to 40 and then controlled by 2-down 1-up staircase rule.  

 

To confirm that the subjects’ performance during the fixation task remained at a similar 

level over time (pre, post1, post2), we conducted a one-way repeated measures ANOVA 

on the accuracy rate with a factor of time (pre vs. post1 vs. post2). The result showed no 

significant main effect of time (F(2,22)=2.045, Huynh-Feldt correction, epsilon=0.724, 

P=0.169), suggesting that the subjects’ performance was constant throughout time. 

 

MRI Data Acquisition  

Subjects were scanned inside a 3T MR scanner (Siemens 3T Trio) with a 12-channel 

head coil at Georgia Institute of Technology MRI Research Facility. For the anatomical 

reconstruction, high-resolution T1-weighted MR images were acquired using a multi-

echo magnetization-prepared rapid gradient echo (MPRAGE; 256 slices, voxel size = 1 × 

1 × 1 mm3, TR = 2530 ms, FoV = 256 mm). Functional MR images were acquired using 
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gradient echo EPI sequences (voxel size = 3 × 3 × 3.5 mm, TR = 2000 ms, TE = 30 ms, 

flip angle = 79°). Thirty-three contiguous slices were positioned parallel to the AC-PC 

plane to cover the whole brain. 

 

fMRI Data Analysis 

We analyzed the brain data using Freesurfer software 

(http://surfer.nmr.mgh.harvard.edu/). Since we obtained each subject’s brain data on 

separate days (days 1 and 2), we processed the structural images from two different days 

with the longitudinal stream (Reuter, Schmansky, Rosas, & Fischl, 2012), that is known 

to create an unbiased within-subject structural template using robust, inverse consistent 

registration. All functional data were motion-corrected. No spatial or temporal smoothing 

was applied to the functional data. We registered the functional data from two different 

days’ scans to the individual structural template that was created via the longitudinal 

stream using rigid-body transformations. A gray matter mask was used for extracting 

BOLD signals from voxels located within the gray matter. 

 

To localize the retinotopic areas V1, V2, V3, V3A, and V4v, as well as their sub-regions 

corresponding to the visual fields stimulated by the Gabor patch during the 2IFC 

orientation detection task, we performed a conventional amplitude analysis (see 

Retinotopy in Methods for more details about stimuli). Briefly, using the contrast map 

between vertical/horizontal meridians and upper/lower visual fields, we delineated visual 

cortical areas of V1, V2, V3, V3A, and V4v. Then using a separate scan during the 

Retinotopy session, we localized the sub-regions in each visual area corresponding to the 
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part of the visual field occupied by the Gabor patch during the 2IFC orientation detection 

task. To do so, we contrasted two conditions: an annulus ON condition, in which a 

flickering checkerboard pattern filled an annulus subtending 0.75 to 5 degrees (same size 

as in the 2IFC task) and an annulus OFF condition in which a flickering checkerboard 

pattern filled the whole screen except an annulus subtending 0.75 to 5 degrees. 

 

After we identified the sub-regions of V1, V2, V3, V3A, and V4v, we extracted the time-

courses of BOLD signal intensities from each voxel within the sub-regions using 

MATLAB (MathWorks, Natick, MA). We shifted the BOLD signals by 6 sec to account 

for the hemodynamic delay and removed a linear trend. Then, within each run, we 

normalized (“z-scored”) each voxel’s BOLD time-courses to minimize the baseline 

changes across runs. Specifically, to create the data sample for decoding, we averaged the 

BOLD signals across 6 volumes (12 sec) that correspond to the duration of the stimulus 

presentation period in the decoder construction stage.  

 

We used sparse logistic regression (SLR) (Yamashita, Sato, Yoshioka, Tong, & 

Kamitani, 2008) and the SLR toolbox (http://www.cns.atr.jp/~oyamashi/SLR_WEB). 

SLR selects relevant voxels in the ROIs automatically while estimating their weight 

parameters for classification. We selected the voxels within the sub-regions of V1, V2, 

V3, V3A, and V4v as the input voxels. Then we trained the decoder to classify the BOLD 

patterns as either the Gabor stimulus with 45° or 135° orientation using 180 data samples 

from 10 runs of decoder construction stage (90 samples for each orientation). We tested 

the accuracy of the decoder using a leave-one-run-out cross-validation procedure for each 
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of sub-regions of V1, V2, V3, V3A, and V4v. Figure S4 shows the decoder accuracy for 

each ROI. The accuracy of the decoder was significantly above the baseline for all ROIs 

(all P values < 0.005).  

 

Finally, we applied the same decoder to the spontaneous BOLD signals obtained before 

and after the visual training. The time-courses of the spontaneous BOLD signals were 

again averaged across 6 volumes. Then the decoder calculated how likely each 

spontaneous BOLD activity pattern averaged across 6 volumes is to the pattern elicited 

by the real Gabor orientation during decoder construction stage. Based on this likelihood 

result, the decoder classified each pattern averaged across 6 volumes to either trained or 

untrained orientation. Figure 2, 3 and Figure S3 show the probability of the brain 

activity being classified as the trained orientation. Figure S2 shows the likelihood of the 

brain activity being classified as the trained orientation. 

 

Statistics 

All statistical tests were two-tailed and the alpha level was set to 0.05. We used 

parametric statistical tests such as t-tests and ANOVA. For all repeated measures 

ANOVAs, we used Mauchly’s test of Sphericity to test the assumption of sphericity. We 

used Huynh-Feldt correction with the estimated epsilon when the sphericity assumption 

was violated. All such violations are reported when they occurred. All effects reported as 

significant remained such after application of Bonferroni correction. The sample size was 

determined based on similar fMRI experiments on visual learning (Guidotti et al., 2015; 
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Shibata, Sasaki, Kawato, & Watanabe, 2016). The data collection and analysis were not 

conducted blindly by the experimenters.  

 

Apparatus 

All visual stimuli were created via MATLAB and Psychtoolbox 3 on Mac OS X 

(Brainard, 1997). We presented visual stimuli on LCD display (1024 × 768 resolution, 60 

Hz refresh rate) inside a mock scanner and via MRI-compatible LCD projector (1024 × 

768 resolution, 60 Hz refresh rate) inside a 3T MR scanner. 

 

Data and Software Availability 

The data and the computer codes are freely available online at:  

https://osf.io/9du8v/ 

 

Acknowledgements 

This work was funded by a startup grant to D.R. from the Georgia Institute of 

Technology. 

 

Author Contributions 

J.W.B., Y.S., T.W. and D.R. conceived the study; J.W.B. and D.R. collected and 

analyzed data; J.W.B., Y.S., T.W. and D.R. wrote the manuscript. 

 

Competing Financial Interests 

The authors declare no competing financial interests.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/231381doi: bioRxiv preprint 

https://doi.org/10.1101/231381
http://creativecommons.org/licenses/by/4.0/


 

	 31 

Supplementary Information 
 

 

 

Figure S1. Threshold S/N (mean ± s.e.m.) during pre- and post-training stages for 

trained (white) and untrained (gray) orientations. To confirm that the subjects showed 

learning between pre- and post-training test stages, we performed a two-way repeated 

measures ANOVA with factors of orientation (trained vs. untrained orientation) and time 

(pre- vs. post-training) on the threshold S/N ratio. The results showed a significant main 

effect of time, indicating that the learning occurred for both orientations (time effect: 

F(1,11)=34.351, P<0.001). The dots represent individual data.   
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Figure S2. Likelihood of classification as trained orientation in V1. Individual data is 

plotted on the group data (mean ± s.e.m.). The likelihood of classification as trained 

orientation refers to a continuous measure (rather than a binary decision) of likelihood 

that a particular brain signal corresponds to the trained or untrained orientation. A one-

way repeated measures ANOVA to the decoder’s likelihood of classification as the 

trained orientation showed a significant main effect of time (pre vs. post1 vs. post2; 

F(2,22)=3.780, P=0.039). The likelihood of classification as the trained orientation 

increased immediately after (post1) compared to before (pre) the visual training (t(11)=-

2.750, P=0.019, uncorrected paired sample t-test). In addition, the likelihood of 

classification as the trained orientation was significantly higher than chance immediately 

after training (post1, t(11)=3.584, P=0.004, one-sample t-test) and 5 minutes after 

training (post2, t(11)=2.400, P=0.035, one-sample t-test) but not before training (pre, 

t(11)=0.427, P=0.678, one-sample t-test). Consistent with the result from the probability 
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of classification, this result indicates that post-training spontaneous activity in V1 appears 

more similar to the trained orientation.  
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Figure S3. Probability of classifying spontaneous brain activity as trained 

orientation in V2, V3, V3A, and V4v. Individual data is plotted on the group data (mean 

± s.e.m.) for each region of interest. The probability for the trained orientation did not 

increase immediately after training in V2, V3, V3A, and V4v.  

 

 

 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/231381doi: bioRxiv preprint 

https://doi.org/10.1101/231381
http://creativecommons.org/licenses/by/4.0/


 

	 35 

 

Figure S4. Accuracy of decoder during leave-one-run-out cross-validation in V1, V2, 

V3, V3A and V4v. The decoder was tested through ‘leave-one-run-out’ cross-validation 

using brain data obtained from the decoder construction scan. The accuracy of the 

decoder (mean ± s.e.m.) was above chance level (0.5) for all regions of interest (all P 

values < 0.005 before correction, one-sample t-tests; V1, t(11)=10.856, P=0.000; V2, 

t(11)=11.746, P=0.000; V3, t(11)=8.345, P=0.000; V3A, t(11)=3.851, P=0.003; V4v, 

t(11)=4.241, P=0.001). 
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