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ABSTRACT 
Checkpoint inhibitor immunotherapies have had major success in treating patients with 
late-stage cancers, yet the minority of patients benefit ​[1]​. Mutation load and PD-L1 staining are 
leading biomarkers associated with response, but each is an imperfect predictor. A key 
challenge to predicting response is modeling the interaction between the tumor and immune 
system. We begin to address this challenge with a multifactorial model for response to 
anti-PD-L1 therapy. We train a model to predict immune response in patients after treatment 
based on 36 clinical, tumor, and circulating features collected prior to treatment. We analyze 
data from 21 bladder cancer patients ​[2]​ using the elastic net high-dimensional regression 
procedure ​[3]​ and assess accuracy using leave-one-out cross-validation. In held-out patients, 
the model explains 79% of the variance in T cell clonal expansion. This predicted immune 
response is multifactorial, as the variance explained is at most 23% if clinical, tumor, or 
circulating features are excluded. Moreover, if patients are triaged according to predicted 
expansion, only 38% of non-durable clinical benefit (DCB) patients need be treated to ensure 
that 100% of DCB patients are treated. In contrast, using mutation load or PD-L1 staining alone, 
one must treat at least 77% of non-DCB patients to ensure that all DCB patients receive 
treatment. Thus, integrative models of immune response may improve our ability to anticipate 
clinical benefit of immunotherapy. 
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Introduction 
Immunotherapies such as checkpoint inhibitors have become a major success in treating 
patients with late-stage cancers, in many cases leading to durable responses ​[1,4–7]​. The basis 
for this success is thought largely to result from the somatic mutations present in cancer cells 
allowing the immune system’s T cells to distinguish cancer from normal cells, in part because 
mutations may lead to the presentation of neoantigens on the cancer cell surface by the major 
histocompatibility complex ​[8,9]​. However, many cancers develop mechanisms for suppressing 
the immune system, including expression of checkpoint molecules ​[1]​. The promise of 
checkpoint inhibitor cancer therapies is predicated on counteracting checkpoint molecules to 
unleash the immune system to selectively kill cancer cells. 
 
Despite checkpoint inhibitors’ unprecedented successes, there is an urgent need to improve 
prediction of patient response to checkpoint inhibitor immunotherapy. Response rates vary 
across patients, and known biomarkers for response such as high mutation load are not 
predictive for every patient ​[7,10–13]​. Several studies have refined definitions of mutation load 
and assessment of neoantigen quality to improve prediction of response ​[8,14]​, but this process 
remains imperfect. Thus, predicting response is critical for identifying patients who are likely or 
unlikely to benefit, anticipating adverse responses to treatment ​[15]​, and accelerating the 
development of new treatments. Further, effective models for predicting response may point to 
molecular features that can be measured and monitored through non-invasive methods. 
 
A key challenge for predicting response is modeling features of the immune system and cancer 
simultaneously. Recently, clinicians have begun to collect a wealth of molecular tumor and 
immune system data before and during immunotherapy, but researchers have yet to model how 
molecular and clinical features interact to affect response. 
 
To address this challenge, we develop a multifactorial model for response to checkpoint 
inhibitors. Our approach uses the elastic net ​[3]​ -- a machine learning method for regression that 
automatically selects informative features from the data -- and models clinical, tumor, and 
immune system features simultaneously. We applied our model to the data of Snyder et al. ​[2]​, 
who measured mutations and gene expression in the tumor and T cell receptor (TCR) 
sequences in the tumor and peripheral blood in urothelial cancers treated with anti-PD-L1. 
Rather than model the clinical response of each patient directly, we modeled the response of 
each patient’s immune system and used the predicted immune responses to stratify patients 
based on expected clinical benefit. By modeling the immune response, we have the advantage 
of predicting fine-grained, molecular measurements that are associated with clinical response.  
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Methods 
All of our analyses were conducted in Python 3 using open source software, and Jupyter 
notebooks that replicate our experiments are publicly available at 
https://github.com/lrgr/multifactorial-immune-response ​. 

Patient Data 
We used the patient data collected by Snyder et al. ​[2]​. For the data collection details and the 
Institutional Review Board approval see ​[2]​. 

Multifactorial modeling of clonal expansion 
In our first analysis, we develop a predictive model of the log number of tumor-infiltrating 
lymphocyte (TIL) clones that expanded in the blood three weeks after each patient’s initial 
immunotherapy treatment. We chose to model TIL clone expansion, as it is a finer-grained and 
more immediate measurement of patient response than standard clinical data that still exhibits 
positive association with durable clinical benefit ​[2]​. Our analysis is based on the 21 patients 
with recorded clonal expansion, whole exome sequencing (WES), and RNA sequencing 
(RNA-seq) data. 
 
Our predictions were based upon 36 patient features derived from nineteen attributes of each 
patient collected prior to treatment (see Table 1). For the one patient who did not have a 
5-factor score ​[16]​ recorded, because atezolizumab was given as first line therapy, we 
substituted the patient’s Bajorin risk score ​[16]​. We encoded Prior BCG and Albumin < 4 as 
binary features, with values in {0,1}. For each of the remaining attributes, we included both the 
raw feature value, x, and a log(1+x) transform of the feature value as inputs to our models to 
capture nonlinear relationships between inputs and the target. 
 
We trained two machine learning models to predict log clonal expansion from our input features: 
the elastic net ​[3]​, a high-dimensional linear regression procedure designed to reduce overfitting 
and be robust to irrelevant features, and random forests ​[17]​, a highly-nonlinear regression 
procedure based on averaging the predictions of many randomly constructed decision trees. We 
fit the elastic net using the Python scikit-learn ​[18]​ ElasticNetCV function with feature 
normalization, candidate L ​1 ​ratio hyperparameters [.1, .5, .7, .9, .95, .99], hyperparameters 
selected using leave-one-out cross-validation, tolerance 10 ​-7​, and a maximum number of 
iterations of 10 ​6​. We fit the random forest model using the Python scikit-learn 
RandomForestRegressor with 1000 decision trees. Prior to fitting each regression model, 
missing input feature values were imputed using the median non-missing feature value in the 
training set. 
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Clinical Tumor Circulating 

Prior intravesical Bacillus 
Calmette–Guérin (BCG) 

Missense SNV count  
(mutation load) 

Productive unique TCR 
count 

Age Expressed missense SNV count Clonality (TCR) 

Albumin < 4 Neoantigen count Diversity (TCR) 

Baseline neutrophil to lymphocyte ratio Expressed neoantigen count T cell fraction 

Time since last chemotherapy (days) Clonality (TCR) Top clone frequency (%) 

5-factor score ​[16] Diversity (TCR)  

 T cell fraction  

Table 1 ​: Patient attributes collected prior to treatment and processed as learning pipeline 
inputs. 

Leave-one-out error analysis of expansion predictions 
To estimate the effectiveness of our learning pipelines at predicting the clonal expansion of new 
patients, we conducted a leave-one-out cross-validation (LOOCV) analysis. Specifically, for 
each of the 21 patients in turn, we withheld that individual’s data from the training set, fit each of 
our learning pipelines (including hyperparameter selection) on the remaining 20 patients, and 
formed a prediction of the held-out patient’s log clonal expansion using each of the learned 
models. We then compared each learned model’s predictions with the observed log clonal 
expansion for the held-out patient and computed the squared error. By computing the average 
of this held-out squared error across all patients, we obtain an unbiased estimate of each 
learning pipeline’s error in predicting previously unseen patient expansion. Saria et al. ​[19]​ use a 
similar leave-one-out analysis to assess predictive models of preterm infant illness. We 
moreover compute a measure of variance explained in held-out patients by computing one 
minus the ratio of the LOOCV mean squared error to the empirical variance of log clonal 
expansion. Finally, following ​[20]​, we conduct a nonparametric test of association between the 
input features and clonal expansion based on the pipeline’s LOOCV error. Specifically, we 
perform a permutation test that compares the observed LOOCV error to the distribution of 
LOOCV errors obtained when patient immune responses are permuted in our cohort uniformly 
at random. The null hypothesis of no association between input features and clonal expansion is 
rejected whenever the observed LOOCV error is unusually small (i.e., when the leave-one-out 
prediction accuracy of the learning pipeline is unusually high). 

Feature importance 
To assess the degree to which different classes of features contribute to the predictive accuracy 
of our learning pipelines, we assigned each input feature to a category (‘Clinical’, ‘Circulating’, or 
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‘Tumor’) and, for each category, repeated our LOOCV analysis with features from that category 
excluded from the model.  
 
In addition, inspired by ​[17,20]​, we test for association between clonal expansion and the input 
features belonging to a given category when the remaining input features are also available to 
the model. To achieve this, we perform a permutation test comparing observed LOOCV error 
when all features are presented to the model to the distribution of LOOCV errors obtained when 
the vector of feature values belonging to a given category are permuted in our cohort uniformly 
at random. The null hypothesis of no association between clonal expansion and the input 
features belonging to a category is rejected whenever the observed LOOCV error is unusually 
small. 

Implications for durable clinical benefit 
Snyder et al. ​[2]​ previously demonstrated a positive association between the number of TIL 
clones that expanded in the blood two weeks after treatment and the durable clinical benefit of 
cancer immunotherapy. Here, a treatment is said to have durable clinical benefit (DCB) for a 
patient if the patient experiences progression free survival for at least six months after 
treatment. To assess whether our learning pipelines are also predictive of durable clinical 
benefit for previously unseen patients, we compare the distribution of held-out expansion 
predictions for those patients who did and did not experience DCB. 

Results 

Leave-one-out error analysis of expansion predictions 
We used the elastic net ​[3]​, a machine learning method that automatically selects informative 
features from the data, to model the relationship between immune response and the clinical, 
tumor, and circulating features from Snyder et al. ​[2]​. On our dataset, a baseline prediction rule 
that ignores all patient features and predicts the mean log clonal expansion for all patients 
achieves a mean squared error (MSE) of 0.838. This baseline level of error represents the total 
variance of log clonal expansion that may be explained by patient features. By leveraging 
patient features, the elastic net model achieves a large reduction in prediction error, explaining 
79% of this variance in held-out patients with a LOOCV MSE of 0.176. Figure 1a highlights the 
accuracy of the elastic net model by plotting elastic net predictions against the ground truth 
clonal expansions of each held-out patient; perfect predictions would lie on the red line. 
Permutation testing with 1000 random permutations of patient responses demonstrated a 
statistically significant association between patient features and clonal expansion evidenced by 
the small elastic net LOOCV error (​p​ < 0.002, Figure 1b). The random forest model performed 
far worse with a LOOCV MSE (0.886) that exceeded the baseline MSE, indicating severe 
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overfitting. For this reason, we focused on the elastic net learning procedure in the remainder of 
our analyses. 
 

 
Figure 1: ​(a) Predicted log TIL expansion versus ground-truth log TIL expansion for patients 
held out using LOOCV. Predictions are formed using the elastic net. (b) Histogram of LOOCV 

error when patient responses are permuted uniformly at random 1000 times. The overlaid 
dotted line displays the LOOCV error obtained on the original dataset. 

 

Feature importance 
The elastic net procedure automatically performs feature selection by setting the coefficients of 
some input variables to zero. The final elastic net model fit to the entire training set retains 20 of 
the 36 input features, a mix of clinical, tumor, and circulating patient attributes (see Figure 2). 
When we repeat our LOOCV error analysis using only clinical and circulating features (that is, 
excluding all tumor features), the variance explained in held-out patients drops from 79% to 
23%. When we repeat the LOOCV error analysis using only clinical and tumor features 
(excluding all circulating features), the explained variance drops to 8.5%. Finally, when we 
repeat the LOOCV error analysis using only circulating and tumor features (excluding all clinical 
features), ​the learned prediction rules are accurate on training data but do not generalize to 
held-out patients. Due to this "overfitting" phenomenon, the learning pipeline without clinical 
features performs worse than the baseline prediction of the mean, achieving a nominal variance 
explained of 0%. ​Permutation testing with 1000 random permutations of patient features 
belonging to a given category demonstrated a statistically significant conditional association 
between clinical features and clonal expansion (​p​ < 0.002), between circulating features and 
clonal expansion (​p​ < 0.001), and between tumor features and clonal expansion (​p​ < 0.004), 
evidenced by the small LOOCV error of the elastic net. These findings indicate that clinical, 
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tumor, and circulating features are all contributing significantly to the predictive accuracy of the 
elastic net learning pipeline.  
 

 
Figure 2: ​Learned elastic net coefficients and feature types. 

Implications for durable clinical benefit 
While mutation load (missense SNV count) and PD-L1 staining have moved forward as clinical 
biomarkers, expansion of tumor-associated T-cell clones in the peripheral blood, hereafter 
referred to as TIL clone expansion, provides additional insight into clinical response. Figure 3a 
compares the distributions of the predicted number of expanded TIL clones for held-out patients 
who did and did not experience durable clinical benefit (DCB). This display should be contrasted 
with the DCB-stratified distributions of standard biomarkers like missense single-nucleotide 
variant (SNV) count, expressed neoantigen count, and PD-L1 staining (Figures 3b-d, 
respectively). Notably, 100% of patients who experienced durable clinical benefit have predicted 
expansion scores above the sixty-second percentile prediction for patients without durable 
clinical benefit. This indicates that, if patients are triaged according to predicted expansion, only 
38% of non-DCB patients need be treated to ensure that 100% of DCB patients are treated. In 
contrast, using PD-L1 staining alone, one must treat at least 77% of non-DCB patients to ensure 
that all DCB patients receive treatment. Using missense SNV count or expressed neoantigen 
count alone, one must treat at least 85% of non-DCB patients to ensure that all DCB patients 
are treated.  
 
Each of these biomarkers is known to be associated with DCB in cancer immunotherapy 
patients ​[21]​, and, indeed, mutation load and PD-L1 expression are both correlated with 
radiographic response in the larger urothelial cancer dataset including these patients ​[22]​. 
However, none of these biomarkers alone is a perfect discriminator of DCB and non-DCB 
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patients. The elastic net learning pipeline is able to integrate mutation load, expressed 
neoantigen count, and multiple other patient features into a composite biomarker with greater 
DCB discriminating ability. 
 

 
Figure 3:​ Distributions of biomarker values in patients with and without durable clinical benefit 
(DCB, defined as ≥ 6 months of progression-free survival): (a) predicted number of expanded 
TIL clones; (b) missense SNV count; (c) expressed neoantigen count; and, (d) percentage of 

tumor infiltrating immune cells found to be PD-L1-positive. When each biomarker alone is used 
for triage, the patients highlighted in red must be treated to ensure all DCB patients are treated. 
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Discussion 
We have introduced a multifactorial model for predicting response to checkpoint inhibitor 
immunotherapy. Our model integrates tumor, clinical, and immune features to predict a measure 
of immune response. Notably, we train our model to predict a fine-grained intermediate measure 
of immune response, the expansion of tumor-associated TCRs in the peripheral blood, which is 
associated with the coarser-grained clinical response, here measured as stable disease or 
better for at least 6 months. 
 
We demonstrate and evaluate our model on a dataset of urothelial cancers from Snyder et al. 
[2]​. We find that our model can predict the number of tumor infiltrating T cell clones that expand 
in the blood post-therapy with high estimated accuracy. In addition, if the patients in our cohort 
are triaged according to held-out predicted expansion, only 38% of non-DCB patients need be 
treated to ensure that 100% of DCB patients are treated. Moreover, we find that our model 
achieves the highest LOOCV accuracy when tumor, circulating, and clinical features are all 
included, demonstrating that they provide complementary information. We next intend to 
validate our model fully out-of-sample on a new cohort of urothelial cancer patients. 
 
We anticipate that integrative models of tumor, immune system, and clinical features such as 
those introduced here will be necessary to understand the complexity of the anti-tumor immune 
response. Indeed, other groups have integrated radiographic tumor burden and TIL clone 
expansion to assess response to anti-PD-1 therapy in melanoma and found that responses 
depend on both immune and tumor features ​[23]​. Non-invasive measurement of immune system 
activity and cancer genomics in the blood has the potential to transform many areas of cancer 
care, including early detection ​[24]​ and monitoring response ​[25]​. When taken together, these 
data offer a tantalizing early look at how predictive models of the peripheral immune system, 
and predictive models of clinical response from peripheral immune system features, will play a 
role in helping to personalize immunotherapy treatment strategies and drug discovery. 
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