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Abstract 

To answer major questions of cell biology, it is essential to understand cellular complexity. 
Modern automated microscopes produce vast amounts of images routinely, making manual 
analysis nearly impossible. Due to their efficiency, machine learning-based analysis software 
have become essential tools to perform single-cell-level phenotypic analysis of large imaging 
datasets. However, an important limitation of such methods is that they do not use the 
information gained from the cellular micro- and macroenvironment: the algorithmic decision is 
based solely on the local properties of the cell of interest. Here, we present how various 
microenvironmental features contribute to identifying a cell and how such additional 
information can improve single-cell-level phenotypic image analysis. The proposed 
methodology was tested for different sizes of Euclidean and nearest neighbour-based cellular 
environments both on tissue sections and cell cultures. Our experimental data verify that the 
microenvironment of a cell largely determines its entity. This effect was found to be especially 
strong for established tissues, while it was somewhat weaker in the case of cell cultures. Our 
analysis shows that combining local cellular features with the properties of the cell’s 
microenvironment significantly improves the accuracy of machine learning-based phenotyping. 

Introduction 
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Recent improvements in microscopy and computational cell biology have led to an explosion of 
data volume, often as large as millions of images. These large bioimaging datasets raised a 
strong need for automated and objective analysis tools1. Various software (both commercial 
and open-source) have been developed2–4 for image and computational data analysis. One of 
the most commonly used open-source software is CellProfiler5. It has modules for various 
image processing tasks that can be performed sequentially to form a pipeline. Via this pipeline, 
biological objects, usually nuclei, cytoplasm, and cells can be identified, and metric features of 
these objects such as area, shape, texture, and intensity can be calculated. Recent studies 
propose segmentation solutions for the distinguishing of even more complex shape 
morphologies such as touching6 or overlapping7 cells. 

Despite their advantages, single-cell segmentation approaches often prove to be inefficient, for 
example in the case of tissue section image analysis. Therefore, we have decided to use the 
simple linear iterative clustering (SLIC) superpixel segmentation method for the analysis of 
tissue sections as described in this article. Superpixel algorithms group pixels into larger 
coherent regions, therefore, they often replace the conventional pixel grid algorithms 
nowadays8. They have become increasingly popular in computer vision applications recently 
because they are fast, easy-to-use, and produce high-quality segmentations. The SLIC algorithm 
creates superpixels by clustering pixels according to similarities in intensity and proximity in the 
image plane9. 

Machine learning methods are designed to learn functional relationships from examples based 
on features rather than from manual verification of entire experiments10. Compared to 
conventional approaches, these methods are more efficient in handling multi-dimensional data 
analysis tasks such as distinguishing phenotypes that are defined by a high number of 
features11,12. CellProfiler Analyst is an extension to CellProfiler and performs supervised 
learning from extracted features to recognize a single phenotype in individual cell images13,14. 
CellClassifier allows researchers to view the original microscope images so the observer can 
annotate an individual cell in its natural context15. Enhanced CellClassifier is another approach 
based on CellProfiler metadata, suitable for multi-class classification16. This program enables 
the differentiation between complex phenotypes. Advanced Cell Classifier (ACC) is a graphical 
image analysis software tool that offers a variety of machine learning methods17. CellProfiler 
Analyst 2.0 has been released recently and has many advantages compared to its previous 
version18. It is written in Python, works with multiple machine learning methods, can perform 
cell- and field-of-view-level classification, and has a visualization tool to overview an 
experiment. ACC 2.0 includes phenotype finder, a novel method to automatically discover new 
and biologically relevant cell phenotypes19. Additionally, some software are capable of 
classifying whole images instead of objects within images (e.g., WND-CHARM, CP-CHARM)20,21. 
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An important limitation of the above-mentioned software is that they work at the single-cell 
level only: they do not derive data from the micro-, or the macroenvironment of the cell; 
therefore, they do not take the population context of the cell of interest into account. It has 
been shown that single-cell heterogeneity in cell populations is determined by both intrinsic 
and extrinsic factors22–24. Based on previous studies on genetically identical single cells, we are 
convinced that the diversity in their phenotypic properties is defined by the features of growing 
cell populations that inherently create microenvironmental differences to which cells finally 
adapt25,26. Cells of tissues are also not organized randomly: the basis of the cellular landscape is 
formed as early as during the differentiation process, which is determined by well-established 
biological mechanisms. Therefore, the cellular milieu strongly determines single-cell entity. 
Thus, it seems reasonable to use the environmental data of each single cell of interest for 
machine learning applications. 

In this paper, we present a systematic analysis of how cellular microenvironment affects the 
phenotypic analysis of single cells using supervised machine learning. Aggregated features of 
the environment were calculated for different neighbourhood sizes, and machine learning 
recognition rates were compared. Various popular machine learning methods were used for the 
evaluations. The methodology was tested on cell culture and tissue section data. Our results 
show that by incorporating the properties of the cellular microenvironment into phenotypic 
analysis tools, we can largely outperform classical approaches. 

Materials and methods 

Datasets 

To test our hypothesis on real biological and clinical data, we chose two different datasets. 
First, we tested our hypothesis on data of a cell-based breast cancer cell line treated with 
different drugs used in clinical practice. Next, images of a thin section of urinary bladder cancer 
tissue were analysed to verify our results and examine the performance of the novel method 
tested. 

MCF-7 High-Content-Screening Dataset 

The first dataset we used is a publicly available MCF-7 (MCF-7) breast cancer cell line set 
(available online at the Broad Bioimage Benchmark Collection27 
(https://www.broadinstitute.org/bbbc/BBBC021/) that had been treated for 24 hours with 113 
various small molecules at eight different concentrations. Briefly, the treatments applied on the 
MCF-7 breast cancer cell line included a distinct set of targeted and cancer-relevant cytotoxic 
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compounds that induced a broad range of gross and subtle cell phenotypes. Next, the cells 
were fixed, labelled for DNA, F-actin, and Β-tubulin and were imaged by fluorescent 
microscopy. Images included in the publicly available dataset were taken from 55 microtiter 
plates of 96-well format 55 plates of a 96-well microtiter plate. This dataset comprises about 
39.000 images containing approximately 2 million cells28. For our analysis, we used the single-
cell phenotypic annotation presented by Piccinini and colleagues19. Nine phenotypic and a 
debris class were identified, and approximately 1500 cells were labelled (see Supplementary 
Table S1). 

Urinary bladder cancer tissue sections 

Our second image dataset comprises images of a urinary bladder cancer (UBC) tissue. 
Hematoxylin-eosin (HE) staining of slides of the urinary cancer tissue was carried out according 
to the routine histopathologic process. Briefly, formalin-fixed and paraffin-embedded tissues 
were cut in 4-µm-thick sections and stained in a Tissue-Tek DRS 2000E-D2 Slide Stainer (Sakura, 
Nagano Japan) instrument according to the manufacturer’s instructions. Images were taken by 
an Axio Imager Z.1 (Carl Zeiss, Jena Germany) microscope equipped with an EC Plan-
NEOFLUOAR 20x/0.5NA lens using the AxioVision SE64Rel.4.9.1.1 (Carl Zeiss, Jena Germany) 
software. This dataset contains 38 images. We distinguished eight phenotypic classes and 
labelled an average of 1200 superpixels for each superpixel size (see Supplementary Table S1). 

Evaluation software 

For the experiments, we used an image analysis and machine learning software (SCT Analyzer) 
developed by Single-Cell Technologies Ltd. (Szeged, Hungary). This software is a newly 
developed visual tool designed to be user friendly; it offers massive parallelization and provides 
an out-of-the-box solution for a wide-range of cell-based and histological analyses. It supports 
all the best-known operating systems (Windows, Mac, Linux). It can handle standard image 
formats such as JPEG, TIFF, and PNG and supports microscopy and high-content screening 
formats both at the image and at the metadata levels. Versatile image pre-processing 
(illumination correction, filtering) and cell segmentation methods (including SLIC segmentation) 
are implemented. An interactive interface helps the user to annotate segmented regions into 
an arbitrary number of phenotype classes. Numerous machine learning methods are available 
even for single-cell-level prediction. Last but not least, an active learning interface is provided 
to maximize user efficiency29. 

Segmentation 
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Images from the high-content-screening dataset of drug-treated MCF-7 samples were 
segmented with a custom version of CellProfiler 2.2.0 (Fig. 1a). Nuclei were detected using the 
adaptive Otsu algorithm. Nuclei touching the boundaries and cells smaller than 5 µm were 
discarded. Cytoplasm of cells was extracted using adaptive thresholding with watershed 
separation based on the nuclei as seed points. 

In the case of the UBC section images, the SLIC superpixel segmentation algorithm was used9. 
We set different superpixel sizes: 25, 35, 50, 75, and 100 pixels - 6.75, 9.45, 13.5, 20.25, and 27 
µm (Fig. 1b). In all cases, we forced connectivity between superpixels if a superpixel was smaller 
than 20, 25, 40, 60 or 75 pixels, respectively. 

 

 
 
Figure 1. Segmentation and feature extraction. (a) Segmentation of the MCF-7 breast cancer 
cell line using CellProfiler 2.2.0. Scale bar: 50 µm (b) SLIC superpixel segmentation of urinary 
bladder cancer tissue section images. Images were segmented into superpixels of different sizes 
(25, 50, 100 pixels). Scale bar: 50 µm (c) The K-nearest neighbours (KNN) method, illustrated in 
a schematic figure and in real cell culture and tissue section scenarios, K=5. Scale bars: 25 µm 
(d) The n-distance method, illustrated in a schematic figure and in real cell culture and tissue 
section scenarios, n=50 pixels (cell culture: 19.51 µm, tissue sections: 13.5 µm). Scale bars: 25 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/231282doi: bioRxiv preprint 

https://doi.org/10.1101/231282
http://creativecommons.org/licenses/by-nc-nd/4.0/


µm (e) Superpixels containing two different phenotypes (cancer cell and fibroblast) share highly 
similar regular features, but features of their neighbourhoods differ significantly. Scale bars: 50 
µm. 
 

Feature extraction 
The most commonly used cell-based and neighbourhood features were extracted. Regular 
features describe the intensity, texture, and shape of individual objects. A full list of these 
features can be found in Supplementary Note 1. In this study, we analysed single-cell or 
superpixel image analysis results using only regular and neighbourhood features and the 
combination of these. 
  
To represent the properties of the microenvironment, we assumed that cellular features had 
already been calculated for all cells/superpixels. The center of mass was measured for each 
segmented area and was used as a reference point for distance calculation. We used two 
different approaches to get the neighbours of a cell or superpixel: the K-nearest neighbours 
(KNN) and the N-distance methods (Fig. 1c, d). For the KNN method (where ‘K’ stands for a 
positive integer), we selected the K-nearest neighbours for each cell/superpixel based on 
Euclidean distance. For the distance-based approach, we took a fixed (n pixel) distance-based 
radius around an area’s reference point and selected all cells/superpixels within this range. At 
the end of this selection process, we had all neighbouring cells/superpixels for each individual 
superpixel. From that point, we used the same methodology for both the KNN and the N-
distance methods to calculate neighbourhood features. 
  
Neighbourhood features were derived from the mean, median, standard deviation, minimum, 
and maximum statistics of cellular features. Distance statistics (mean, median, standard 
deviation, minimum, maximum) describing the localization of neighbours were computed. For 
the Euclidean distance-based approach, an extra feature was calculated describing the extent 
of the neighbourhood, i.e., the number of neighbours within the given range (in the case of 
KNN, this number was known since it was the ‘K’ value). 
  
Figure 1e represents an example in which two cells of different phenotypes share very similar 
basic features and local appearance, however, considering additional neighbourhood features, 
an obvious difference is revealed between them. 
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Figure 2. Distinguished phenotypes. (a) Cells of nine different phenotype classes identified in 
the MCF-7 High-Content-Screening Dataset. (b) Eight phenotypic classes in the UBC tissue 
image dataset. 
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Machine learning 
After feature extraction, we used the SCT Analyzer system to create the annotated single-cell 
set for machine learning classification. In the case of the high-content-screening dataset, we 
distinguished nine phenotypic classes: abundant, rounded, elongated, multinucleated, bundled 
microtubule, peripheral cytoskeleton, punctate actin foci, decreased cell size, and fragmented 
nucleus (Fig. 2a) and a debris class. The entire list of labelled cells in each class can be found in 
Supplementary Table S1. We paid special attention to avoid annotating identical cell types in 
close proximity and thus the biasing of neighbourhood features (because in this case cells 
would have extremely similar features and one may favourably bias the evaluation). In general, 
most of the images contained no more than one annotated cell. The performance of the 
annotated set was imported to Weka 3.8.1 (http://www.cs.waikato.ac.nz/ml/weka/), a machine 
learning and statistical framework.  
 
Within the UBC cancer tissue image dataset, we distinguished eight different phenotypic 
classes: cancer cell, lumen, endothelial cell, stroma, fibroblast-fibrocyte, lymphocyte-plasma 
cell, smooth muscle, and lipocyte (Fig. 2b) and a debris class. The entire list of labelled 
superpixels in each class can be found in Supplementary Table S1. As this dataset included less 
images than the previous one, it was unavoidable to have annotated cells close to one another. 
However, to make sure that the cells in close proximity land either in the training or in the test 
set, so that we can prevent a potentially positive influence of evaluation, we performed the fold 
generation for cross-validation at the image level instead of the cell level. This way, folds of 
images were created and were used for the 10-fold cross-validation measurement. 
 
For the high-content dataset, we investigated the size of the neighbourhood only, while in the 
case of the UBC image set, we also evaluated the classification performance as a function of 
superpixel size. 
 
In both cases, we evaluated five different classification methods: the Weka’s Naïve Bayes, the 
Random Forest, the Support Vector Machine (SMO), the Logistic Regression (Simple Logistic), 
and the Multilayer Perceptron approaches. We used 10-fold cross-validation to measure the 
classifiers’ performance. 
  
Results 
  
We evaluated the performance of neighbourhood features on both image sets. During this 
analysis, we compared different machine learning techniques as well as the extent of the 
neighbourhood and whether local features, microenvironmental features, or the combination 
of these features give the best results. Based on strong advice from biologists and pathologists, 
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who definitely highlight the importance of cellular environment, we expected that taking 
neighbourhood features into account will increase the performance of machine learning. This 
speculation was further supported by our observation that cells in different phenotypic classes 
can share highly similar local properties, but the extended features unambiguously distinguish 
them (Fig. 1e). We also speculated that there should be an optimal (nonzero, but not extremely 
large) extent of the neighbourhood’s size where classifiers perform best (i.e., an optimal 
neighbourhood size with respect to accuracy). 
  
Improved accuracy in cell culture 
  
In the case of the MCF-7 breast cancer cells, we used 5-25 nearest neighbours for the KNN, and 
neighbours ranging between 100 and 1200 pixels (39.025-468.3 µm) for the Euclidean distance-
based analysis. Cross-validation results show that increasing the number of neighbours 
improves accuracy (Fig. 3a) for all of the classifiers. Interestingly, we did not observe the 
expected tendency, i.e., accuracy did not peak, but increased and reached a plateau with a 
higher number of neighbours. The best performance we observed was for the 800-pixel 
distance (312.2 µm) radius using the SMO classifier. In this case, accuracy reached 88.57%, 
which is 8% better than that achieved when considering local features only. 
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Figure 3. Comparison of the performance of machine learning methods (RandomForest, 
NaiveBayes, SMO, SimpleLogistic, MultilayerPerceptron) on different neighbourhood distances. 
(a) Machine learning accuracies in the cell culture dataset using neighbours selected with the 
KNN (left) and the N-distance methods (right). (We note that principal component analysis was 
performed before the Naïve Bayes and the Multilayer Perceptron calculations to reduce 
computational complexity.) (b) Three-dimensional (3D) illustration (and its contour) of the 
performance of the RandomForest algorithm in the UBC tissue dataset with respect to different 
superpixel and neighbourhood sizes using the KNN (left) and the N-distance (right) methods. (c) 
Machine learning accuracies on the best performing superpixel size (SLIC35, based on Figure 3b 
results) in the case of the UBC tissue image dataset. 
 

Neighbourhood features have major influence on phenotyping tissue sections 
In the case of the UBC tissue images, we analysed neighbourhood features from 5-3000 nearest 
neighbours for the KNN method and between 100- and 1500-pixel distances (27-405 µm) for 
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the Euclidean neighbourhood method. First, we tested the RandomForest algorithm for all 
training sets. Cross-validation results for different SLIC sizes are plotted in Figure 3b, indicating 
that we observed the expected tendency for machine learning accuracy. The best performance 
appears at superpixel size 35 (when a superpixel region is approximately 89.3 µm2) in the case 
of 100-nearest neighbours; at this superpixel size this means that we calculate with features of 
the microenvironment from an average of 137.15 µm radius. In this case, accuracy reaches 
90.96%, while using only regular features at the same superpixel size and same KNN value, 
accuracy is only 83.87%, equalling to over 7% increase in performance. We also examined other 
supervised classification models at superpixel size 35 (Figure 3c). MLP classifier was found to 
produce the best accuracy (93.37%) when we used 100-nearest neighbours. Without the 
neighbourhood features, accuracy was only 74.96%. A similar tendency was detected for the 
other classifiers tested. In each case, higher accuracy was reached using neighbourhood 
features compared to considering regular features alone. 
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Figure 4. The effect of taking cellular microenvironment into account. (a) Prediction based on 
machine learning (SMO) in the cell culture dataset. Original image (left), scale: 50 µm, 
prediction using regular features only (middle), prediction using regular and neighbourhood 
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features (right) (b) Confusion matrices of the best machine learning performance (SMO) in the 
MCF-7 breast cancer cell dataset, taking the features of single-cells into account (middle) and 
considering neighbourhood features (N-distance: 1200 pixels, 468.3 µm) as well (right) (c) 
Prediction based on machine learning (MLP) in the UBC tissue dataset. Original image (left), 
scale: 50 µm, prediction using regular features only (middle), prediction using the combination 
of regular and neighbourhood features (right), superpixel size: 35 pixels (9.45 µm) (d) Confusion 
matrices of the best machine learning performance (MLP) in the case of the tissue section 
images. Calculations using base features only (middle) and taking cellular microenvironment 
into account (KNN, K=100). 
 
Discussion 
Phenotypic single-cell analysis has utmost importance for basic biological discoveries and next-
generation digital pathology evaluations. The comparison of neighbouring cells, at lesser or 
larger distances on the slide, is an important part of the routine histological work. For example, 
the recognition of anisocytosis or anisonucleosis, two cellular hallmarks of malignancy, based 
on the subjective morphological comparison of neighbouring tumour cells is of great 
importance. Until now, digital pathology evaluation strategies focused on single cell features, 
and to the best of our knowledge, the environment of individual cells was beyond its focus.  
 
Here, we present a machine learning-based phenotyping method that combines local and 
neighbourhood features, and we demonstrate that taking cellular and tissue component 
neighbourhood into account significantly increases recognition accuracy (Fig. 3). This 
improvement was detected both for cell cultures and tissue sections, although we should note 
that it proved to be somewhat weaker (but still prominent) in the case of cell culture images. 
This difference can be explained from a biological viewpoint: human tissue is a collection of 
similar cells, which acquire larger similarities during differentiation than that visible among 
cultured cells. Consequently, they predict each other’s morphology more than the loose colony 
of cells. Evidence is visible in Figure 1e, which displays two morphologically overlapping normal 
fibroblast and urothelial cancer cells. Regular features themselves cannot differentiate them; 
the proposed neighbourhood features can. Predictions and confusion matrices presented in 
Figure 4 confirm the effectiveness of neighbourhood features in machine learning calculations. 
Employing the information gained from the cellular microenvironment increases the ability of 
machine learning methods to identify patterns between cells near each other. 
 
The most exciting questions are: how many neighbours have to be called and from what 
distance to improve single-cell analysis?  In a cell culture, not surprisingly, the involvement of a 
growing number of neighbours improves accuracy in all of the classifiers until a plateau has 
been reached (Fig. 3a). As opposed to tissues, we did not observe a tendency, i.e., accuracy did 
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not peak. We assume that this is due to a combined effect of high cellular homogeneity within 
the cell culture and the fact that in an artificial environment cells do not have the chance to 
form the characteristic microenvironment during the short plating time. We believe that this 
tendency can be observed in the majority of cases except where the phenotypes depend on 
inter-cell communications (such as viral infection spread assays or extracellular vesicle studies). 
 
In the case of the UBC tissue, we found a peak of the optimal distance of neighbours at ~80-100 
micrometres, almost independently of the type of the classification method. The amount of 
information dramatically increases due to the influence of closer neighbouring superpixels to 
this point. But those neighbours that are located at further distances, likely due to the presence 
of other tissue components, led to slowly growing confusion; i.e., the increasing number of 
neighbouring elements resulted in a decrease in accuracy. In other words, the predictive value 
of a superpixel decreases with its heterogeneity, which cannot be compensated for by the 
involvement of more superpixels. A human organ is a complex structure of different tissues. 
The UBC tissue, which is sufficiently complex in a microscopic field, was selected for our 
analysis; this field contains at least eight different tissues in a complex but not haphazard 
manner.  The neighbouring superpixels within an optimal distance cover a sufficiently 
homogeneous area predictive of regular features. 
 
We anticipate that even higher recognition accuracy may be achieved by extending our current 
work with multi-scale local features that would mimic the pathologist’s work using various 
microscope magnifications to properly understand local and global cellular environment and to 
draw conclusions regarding any sections examined. 
 
The method presented here can be easily integrated into most single-cell phenotypic analyser 
pipelines, allowing for the wide-range utilization of its benefit to improve phenotypic 
characterization at the single-cell level. 
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