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Abstract

Background: Count data generated by next-generation sequencing assays do not measure absolute
transcript abundances. Instead, the data are constrained to an arbitrary “library size” by the sequencing
depth of the assay, and typically must be normalized prior to statistical analysis. The constrained nature
of these data means one could alternatively use a log-ratio transformation in lieu of normalization, as often
done when testing for differential abundance (DA) of operational taxonomic units (OTUs) in 16S rRNA
data. Therefore, we benchmark how well the ALDEx2 package, a transformation-based DA tool, detects
differential expression in high-throughput RNA-sequencing data (RNA-Seq), compared to conventional RNA-
Seq differential expression methods.

Results: To evaluate the performance of log-ratio transformation-based tools, we apply the ALDEx2
package to two simulated, and one real, RNA-Seq data sets. The latter was previously used to bench-
mark dozens of conventional RNA-Seq differential expression methods, enabling us to directly compare
transformation-based approaches. We show that ALDEx2, widely used in meta-genomics research, identifies
differentially expressed genes (and transcripts) from RNA-Seq data with high precision and, given sufficient
sample sizes, high recall too (regardless of the alignment and quantification procedure used). Although we
show that the choice in log-ratio transformation can affect performance, ALDEx2 has high precision (i.e.,
few false positives) across all transformations. Finally, we present a novel, iterative log-ratio transformation
(now implemented in ALDEx2) that further improves performance in simulations.

Conclusions: Our results suggest that log-ratio transformation-based methods can work to measure
differential expression from RNA-Seq data, provided that certain assumptions are met. Moreover, these
methods have high precision (i.e., few false positives) in simulations and perform as good as, or better than,
than conventional methods on real data. With previously demonstrated applicability to 16S rRNA data,
ALDEx2 can work as a single tool for data from multiple sequencing modalities.

Background
In the last decade, new technologies, collectively known as next generation sequencing (NGS), have come to
dominate the market [22]. Although NGS has a wide range of applications, the use of NGS in transcriptome
profiling, called massively parallel RNA-sequencing (RNA-Seq), is perhaps most popular [41]. Like microarray,
RNA-Seq is used to quantify transcript abundance (i.e., expression) [22]. Unlike microarrays however, RNA-
Seq is able to estimate the abundance of uncharacterized transcripts as well as differentiate between transcript
isoforms [41]. Meanwhile, advances in NGS have reduced the cost of sequencing tremendously, making it possible
to generate an enormous amount of raw sequencing data easily and cheaply.

However, the analysis of raw sequencing data is not trivial. The data, constituting a “library” of hundreds
of thousands of short sequence fragments, must undergo a number of processing steps prior to abundance
estimation [15]. In the setting of an established reference genome (or transcriptome), this process generally
includes (1) removal of undesired sequences (e.g., assay-specific adapters, ribosomal RNA, or short reads) and
quality filtering, (2) alignment of the remaining sequences to the reference, and (3) quantification of transcript
abundance [15]. In addition, RNA-Seq has two notable sources of bias that an analyst may need to address:
transcripts with longer lengths [23] and higher GC content [9] have their abundances over-estimated.

Alignment is a computationally expensive process that, in many cases, contributes to the major bottleneck
in RNA-Seq workflows [8]. As the ability to generate raw sequence data appears to outpace gains in computing
power, the advantage of fast alignment seems clear. Although dozens of aligners exist (e.g., see [16] [4] [40]
[3]), the STAR aligner [8] has grown in popularity as a method that balances accuracy with efficiency, having
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good performance in systematic evaluations [10] [3]. Recently, a new family of “pseudo-alignment” methods has
emerged (e.g., Kallisto [6], Sailfish [26], and Salmon [25]), providing an order of magnitude faster speeds than
conventional aligners [25]. On the other hand, quantification is comparatively quick and usually performed by
the aligners themselves. In essence, quantification involves “counting” the number of times a sequence aligns
to a given portion of the reference [15]. This results in a matrix of counts (or pseudo-counts) describing the
estimated number of times each transcript was present for each sample under study (although some methods
represent abundance in other units [37]). Yet, the choice in the alignment and quantification method used seems
to matter less than the choice in the software used for down-stream analyses[43].

The “count matrix” produced by alignment and quantification is perhaps most commonly used for differential
expression (DE) analysis, a means by which to identify which genes (or transcripts), if any, have a statistically
significant difference in abundance across the experimental groups [15]. Like alignment, dozens of methods
exist for DE analysis, providing a unique approach to normalization and statistical modeling. Of these, DESeq
[2] and edgeR [30] seem most popular. Both use a type of normalization whereby each “library” (i.e., sample
vector) is adjusted by a scaling factor based on a reference (or pseudo-reference). DESeq uses as the reference
the median of the ratios of each gene for that sample to the geometric mean of each gene for all samples [2] [7].
Meanwhile, edgeR uses as the reference the weighted mean of log ratios between that sample and an explicitly
chosen reference, a method known as the trimmed mean of M (TMM) [31] [7]. Underlying this approach is the
rarely stated assumption that most transcripts do not differ in abundance while gains and losses happen with
equipoise [11].

While the choice in normalization can affect the final results of a DE analysis [19] [18], it is necessary because
per-sample counts generated by alignment and quantification do not compare directly [33]. This is because a
sequencer only sequences a fraction of the total input, thereby constraining the per-sample output to a fraction
of the total amount of sequencing (called sequencing depth) [33]. As such, the increased presence of any one
transcript in the input material results in a decreased measurement for all other transcripts [33]. This sum
constraint makes RNA-Seq data a kind of compositional data in which each sample is a composition and the
transcript-wise counts are the components [20]. Compositional data have two key properties. First, the total
sum of all components is an artifact of the sampling procedure [39]. Second, the differences between any two
components only carry meaning proportionally [39]. For example, the difference between the two counts [50,
500] is the same as the difference between [100, 1000] since the latter could be obtained from the former simply
by doubling the sequencing depth. RNA-Seq data have both of these properties, but differ slightly from true
compositional data in that count data only contain integer values [20] [28].

Compositional data analysis (CoDA) describes a collection of methods used to analyze compositional data,
including those pioneered by Aitchison in 1986 [1]. Commonly, such analyses begin with a transformation,
most often the centered log-ratio (clr) transformation (defined in Methods). In contrast to normalizations,
these transformations do not claim to retrieve absolute abundances from the compositional data [27]. Yet, they
are sometimes used as if they were normalizations themselves [27]. The ALDEx2 package (available for the R
programming language) uses log-ratio transformations in lieu of normalization for the analysis of sequencing
data [12]. This package, first developed for analyzing meta-genomics data, identifies differentially abundant
features across two or more groups by applying statistical hypothesis testing to compositional data in three
steps: (1) generate Monte Carlo (MC) instances (of log-ratio transformed data) based on the provided count
matrix using the Dirichlet distribution, (2) apply univariate statistical models on the MC instances, and (3)
calculate the expected (i.e., average) FDR-adjusted per-transcript p-values across all MC instances [12]. By
default, ALDEx2 uses the clr transformation, although it supports other transformations too.

The ALDEx2 package is not well-adopted for RNA-Seq analysis, although its applicability to RNA-Seq is
established elsewhere [13]. However, ALDEx2 is used to analyze 16S rRNA data (e.g., [38] [5]) where it is
shown to achieve much lower false positive rates (FPR) than competing DE methods [36]. Yet, we do not
know of any paper which independently benchmarks ALDEx2 as a DE method for RNA-Seq (excepting the
aforementioned article written by the ALDEx2 authors [13]). Moreover, we do not know the extent to which the
choice of log-ratio transformation influences the final results of an analysis. Finally, we do not know whether
the results produced by ALDEx2 are sensitive to the chosen alignment and quantification method. In this paper,
we use simulated and real data to evaluate the performance of ALDEx2 as a DE method for RNA-Seq data
and demonstrate that ALDEx2, under the appropriate conditions, performs as well as or better than standard
DE methods, establishing its validity for the analysis of RNA-Seq data. In doing so, we also present a novel
log-ratio transformation, based on iterative runs of ALDEx2, that improves accuracy when compared with other
approaches.
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Methods

Data acquisition
To benchmark how well the ALDEx2 package (available for the R programming language) performs as a dif-
ferential expression method for RNA-Seq data, we analyzed three data sets. The first two contain simulated
data generated from the polyester package (available for the R programming language) [14]. polyester simulates
RNA-Seq data as raw sequencing data (i.e., FASTQ read sets) where the abundances of the transcripts follow
a negative binomial model [14]. The third data set contained real data sourced from a previously published
benchmark study [43], retrieved as raw RNA sequencing data (i.e., FASTQ read sets) from the NCBI SRA,
under accession SRP082682 https://www.ncbi.nlm.nih.gov/Traces/study/?acc=srp082682. We used these
raw data for sequencing alignment, quantification, and differential expression analysis.

Data simulation
We simulated two sequencing experiments with two groups of twenty samples each (i.e., 40 samples total per
experiment) using a forked version of polyester, hosted on GitHub, that adds multi-core support (archived at
https://github.com/kcha/polyester/commits/545e33c9776db2927f9a22c8c2f5bfde2b3081a7). As such,
when describing data sets with less than 40 samples, we refer to a random sub-sample of the complete data set
and not to newly simulated data.

To run polyester, we used the human GRCh37 DNA primary assembly FASTA file and the GRCh37.87
annotation GTF file, as compiled into a FA file using the gffread command line tool [37]. We set the parameters
to achieve 20x coverage with a mean fragment length of 300 bases. Transcripts were selected randomly to
have different magnitudes of differential expression with weighted probability: 4-fold up-regulation (3% of
transcripts), 2-fold up (7%), 1.5-fold up (9%), 1.5-fold down-regulation (6%), 2-fold down (3%), and 4-fold down
(2%). Each sample had a random multiplicative weight applied to their library size (with a mean between-group
difference of 0.20 with a within-group standard deviation of 0.05).

Otherwise, the two simulated experiments differ only in the mean-variance relationship underlying the neg-
ative binomial model. The first is a low-variance data set built using the default size argument. The second is
a high-variance data set built using size = 1 such that the variance of the negative binomial model equals the
mean plus the mean squared. We selected these size parameters based on the precedent set by the authors in
their flagship publication [14].

Alignment and quantification
To maintain benchmarking comparisons withWilliams et al. [43], we used alignment and quantification protocols
(for each of our three data sets) congruent with theirs. We performed alignment to the GRCh37 release of the
Human genome using STAR v2.5 [8] and Salmon v0.8 [25]. For STAR, we used the “Basic” two-pass mode to
output BAM alignments to the Human genome and transcriptome. For Salmon, alignments were made to the
transcriptome (built using gffread, as for the simulated data) across 100 bootstraps. For Salmon, we trialled both
the SMEM-based lightweight-alignment approach (hereafter called slFMD) and the “quasi-mapping” approach
(hereafter called slQUASI).

We quantified expression at both the gene- and transcript-level. For transcript-level expression, counts were
estimated using salmon quant for the slFMD and slQUASI alignments, as well as for the STAR transcriptome
alignment (hereafter called stsl). For gene-level expression, counts were estimated using the “GeneCounts”
quant mode in STAR (i.e., using the STAR alignment; hereafter called stst). We then condensed transcript-level
expression to gene-level expression using the tximport package (available for the R programming language) [34]
with the argument type = “salmon” and a key built from the EnsDb.Hsapiens.v86 database (from Bioconductor)
[29].

Log-ratio transformations
The ALDEx2 package produces different results depending on the log-ratio transformation used. Two transfor-
mations available in ALDEx2 are the centered log-ratio (clr) [1] and inter-quartile log-ratio (iqlr) transformations
[12]. For D genes (or transcripts), the clr-transformation is defined as the logarithm of the transcript counts
for the i-th sample, x, divided by the geometric mean of all counts for that sample, g(x):

clr(x) =

[
ln

x1

g(x)
; ...; ln

xD

g(x)

]
(1)
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The iqlr-transformation replaces the g(x) denominator term with the geometric mean of those transcripts
within the inter-quartile range of variability (i.e., prior to transformation), g(xiqr):

iqlr(x) =

[
ln

x1

g(xiqr)
; ...; ln

xD

g(xiqr)

]
(2)

In the analysis of the simulated data, we also use what we call the multi-additive log-ratio (malr) transforma-
tion. This uses the identity of all equally expressed transcripts as a reference set. Although this transformation
is only feasible here because we already know a priori which transcripts are differentially expressed, it provides
a “best case scenario” for normalization against which to compare other transformations. This transformation
replaces the g(x) denominator term with the geometric mean of equally expressed transcripts, g(xeq):

malr(x) =

[
ln

x1

g(xeq)
; ...; ln

xD

g(xeq)

]
(3)

In addition, we introduce a novel transformation called the iterative iqlr (iilr) transformation. The iilr-
transformation begins with the familiar iqlr-transformation, but then uses the results of a complete ALDEx2
analysis to inform a subsequent iteration of ALDEx2. After the initial iqlr-transformation, each new ALDEx2 run
uses the geometric mean of the equally expressed transcripts identified by the prior ALDEx2 run. In principle, the
equally expressed transcripts identified by each new iteration of ALDEx2 should more closely approximate the
idealized xeq used by the malr. We trial a single iteration of the iilr-transformation (ii1) as well as an approach
using five iterations (ii5). In preparing this manuscript, we also contributed code to the ALDEx2 package to
make the iilr transformation available by providing the argument test = “iterative” to the aldex function.

Differential expression analysis
For each dataset, and for each alignment and quantification protocol, we performed differential expression
using the edgeR package (available for the R programming language) [30] and the ALDEx2 package [12]. For
the simulated data, we evaluated the performance of all differential expression methods using transcript-level
abundances. For the real data, we also used gene-level abundances.

When applying ALDEx2 to the simulated data, we performed DE analysis with each combination of param-
eters: non-filter versus filter (i.e., the removal of transcripts without at least 10 counts in at least 20 samples),
8 versus 128 Monte Carlo instances, and clr versus iqlr versus malr versus iilr transformation. Immediately, it
became obvious that the removal low counts impaired ALDEx2 precision (p < 0.01) for the low variance data.
We also observed a non-significant trend in favor of the default recommended 128 MC instances. For clarity
of visualization, we prepared figures using only results from “non-filter” runs with 128 Monte Carlo instances.
When applying ALDEx2 to the real data, we used the “non-filter” procedure with 128 Monte Carlo instances.
For ALDEx2, we considered an expected Benjamini-Hochberg (FDR) adjusted p-value of the Wilcoxon Rank
Sum test (i.e., column “wi.eBH") less than 0.05 significant.

When applying edgeR to the simulated data, we performed DE analysis by applying these functions in order:
calcNormFactors, estimateCommonDisp, estimateTagwiseDisp, and exactTest. When applying edgeR to Williams
data, we used the edgeR protocol used in Williams et al. [43]. For edgeR, we considered an FDR-adjusted
p-value of the exact test less than 0.05 significant.

Performance estimates
For the simulated data, we calculated precision and recall from a contingency table of the simulated state of
differential expression (as a binary) compared with the predicted state of differential expression (as a binary).
For the real data, consistent with the original publication, we calculated precision and recall for each of the
four microarray “truth sets” (available from the supplemental materials of [43]) separately, then reported the
average precision and average recall [43].

Since the microarray “truth sets” were based on HGNC symbols, we needed to convert the aligned and
quantified transcript-level and gene-level counts to HGNC-level counts; for this, we used code adapted from the
Williams et al. methods in conjunction with a conversion table provided by the authors [43]. Using microarray
“truth sets” also required an additional filter step to remove HGNC symbols detected by the microarray plat-
form but not RNA-Seq (and vice versa). For this, we referenced the hgu133plus2.db, illuminaHumanv4.db, and
illuminaHumanv2.db databases (from Bioconductor) to build an HGNC-level “gene universe” for each microarray
platform [24]. We then performed a simple set intersection between the microarray “gene universe” with the
RNA-Seq HGNC-level “gene universe” prior to calculating precision and recall. Note that our “gene universes”
likely differ from those used by Williams et al. (which are not available from their supplemental materials) [43].
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Figure 1: Differential expression analysis of low-variance simulated data. This figure shows the per-
formance (y-axis) of a complete differential expression analysis, organized by differential expression method
(x-axis). The acronyms clr, iqlr, malr, ii1, and ii5 describe log-ratio transformations (see Methods). The
acronyms slFMD, slQUASI, and stsl describe alignment and quantification procedures (see Methods). Precision
(top-panel) is high for ALDEx2 regardless of log-ratio transformation used. However, edgeR has much better
recall (bottom-panel) than ALDEx2 for small sample sizes.

Results

Benchmark using simulated data
In order to evaluate the performance of ALDEx2 as a differential expression (DE) method for RNA-Seq data,
we tested its performance on three data sets using several combinations of run-time parameters. For the
simulated data, we assessed how changes in the alignment and quantification process, sample size, and log-ratio
transformation affect the precision and recall of DE analysis. In each comparison, we also performed a DE
analysis using edgeR to provide an external point of reference.

ALDEx2 performance on a simulated data set
Figure 1 shows the precision (top panel) and recall (bottom panel) for a DE analysis of the low variance
simulated data set as plotted as a function of software method and log-ratio transformation. Compared with
edgeR, clr-based and iqlr-based ALDEx2 performs just as well in terms of precision. Interestingly, we see that
a single iteration of the iilr transformation (i.e., ii1) causes ALDEx2 to outperform edgeR in terms of precision.
However, regardless of transformation, the recall is very poor with 10 samples (i.e., 5 per group) and still
impaired with 20 samples (i.e., 10 per group). Figure 2 shows another projection of these data, plotted against
the alignment and quantification procedure. Here, it becomes clear that the choice between STAR and Salmon
alignment has no apparent impact on the results of DE analysis. Note that Figures 1 and 2 show results from
a transcript-level, not gene-level, analysis.

Figure 3 reproduces Figure 1 for a DE analysis of the high variance simulated data. Here, precision remains
high regardless of the approach taken to identify DE transcripts. Recall rates less than 0.25 (even with 40
samples) suggest that the data set is extremely variable. Still, edgeR clearly outperforms ALDEx2 in terms of
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Figure 2: Differential expression analysis of low-variance simulated data. This figure shows the per-
formance (y-axis) of a complete differential expression analysis, organized by alignment and quantification pro-
cedure (x-axis). The acronyms clr, iqlr, malr, ii1, and ii5 describe log-ratio transformations (see Methods). The
acronyms slFMD, slQUASI, and stsl describe alignment and quantification procedures (see Methods). Precision
(top-panel) and recall (bottom-panel) appear largely unaffected by choice in the alignment and quantification
procedure.
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Figure 3: Differential expression analysis of high-variance simulated data. This figure shows the
performance (y-axis) of a complete differential expression analysis, organized by differential expression method
(x-axis). The acronyms clr, iqlr, malr, ii1, and ii5 describe log-ratio transformations (see Methods). The
acronyms slFMD, slQUASI, and stsl describe alignment and quantification procedures (see Methods). Precision
(top-panel) is high for ALDEx2 regardless of log-ratio transformation used. Recall (bottom-panel) is poor for
all differential expression method. Again, edgeR outperforms ALDEx2 in terms of recall.

recall. Implicit in this figure is evidence that, again, the choice between STAR and Salmon alignment has no
apparent impact on the results of DE analysis. Note that Figure 3 shows results from a transcript-level, not
gene-level, analysis.

ALDEx2 performance on a real data set
Figure 4 shows precision (y-axis) versus recall (x-axis) for a gene-level (top panel) and transcript-level (bottom
panel) DE analysis of the Williams et al. RNA-Seq data (that uses pooled microarray data as a “truth set”) [43].
Here, the smear of lightly colored transparent points indicate the precision and recall recorded by the original
Williams et al. publication (sourced from their supplemental materials) [43]. Meanwhile, the dark opaque dots
indicate the precision and recall measured during our replication of their procedure. Compared with a myriad
of other alignment, quantification, and DE method combinations, ALDEx2 performs as well as other methods.
Interestingly, differences between the choice of log-ratio transformation appear unimportant for these data. Note
that the multiplicity of points for each DE method represent different alignment and quantification procedures.

Discussion

ALDEx2 has high precision and variable recall for RNA-Seq data
The ALDEx2 package, most often used to detect differential abundance in 16S rRNA data, has received extensive
use for that purpose (e.g., [38] [5]). In previous studies, ALDEx2 was shown to produce low false discovery rates
(FDR) for highly sparse compositional data [36] (FDR = 1− precision). However, we have not yet encountered
a study that independently evaluates ALDEx2 as a differential expression (DE) analysis method for RNA-Seq
data (excepting a manuscript by the ALDEx2 authors which defended its use for RNA-Seq data [13]).
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Figure 4: Differential expression analysis of real data. This figure shows the precision (y-axis) versus
the recall (x-axis) of a complete differential expression analysis applied to real RNA-Seq data. The “truth
set” is established using a microarray reference (see Methods). The acronyms clr, iqlr, and ii1 describe log-
ratio transformations (see Methods). The acronyms slFMD, slQUASI, stsl, and stst describe alignment and
quantification procedures (see Methods). Translucent data points show performance calculated from a previously
published systematic benchmark. ALDEx2, regardless of log-ratio transformation, performs as well as most
methods for gene (top-panel) and transcript (bottom-panel) level analyses. Again, edgeR outperforms ALDEx2
in terms of recall.
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In general, our analysis of simulated and real data agrees with Fernandes et al. [13]: ALDEx2 can accurately
identify differentially expressed genes (and transcripts) in RNA-Seq data. Specifically, ALDEx2 identifies differ-
entially expressed genes with high precision (i.e., few false positives), but can suffer from low recall (i.e., many
false negatives) in the setting of small sample sizes. We offer two explanations for the low recall. First, ALDEx2
uses non-parametric statistical modeling which tend to have reduced power for small RNA-Seq studies [32] [43]
(though, the package authors note that log-ratio transformed data do not necessarily adhere to a normal distri-
bution [13]). Second, methods like edgeR use an empiric Bayes method that “shares information between genes”
to shrink per-gene variance estimates and improve power [30]. Presumably, ALDEx2 would perform better if
one could extend moderation to its transformation-based analysis.

Throughout this benchmarking exercise, we had the opportunity to see how two run-time parameters affect
ALDEx2 performance. First, we noted that the removal of lowly abundant counts reduces the precision of
ALDEx2 (p < 0.01) (see Supplemental Tables). We suspect that this is because ALDEx2 can correctly identify
differentially expressed transcripts that are all near zero in one of the two groups. Second, we noted that ALDEx2
performs almost as well using only 8 Monte Carlo instances when compared with using 128 Monte Carlo instances
(see Supplemental Tables). Although the package vignette recommends “128 or more mc.samples for the t-test”,
this change decreases run-time 16-fold.

ALDEx2 performance does not depend on alignment and quantification used
The several alignment and quantification procedures used did not change the overall performance of differential
expression analysis for edgeR or ALDEx2 (regardless of the log-ratio transformation used). This even holds true
for the Salmon “quasi-mapping” method that runs many-fold times faster than other quantification algorithms
[35]. Although the computational basis of “quasi-mapping” differs from other approaches, this method produces
(pseudo-)counts that appear to work well for trimmed M of means (TMM) normalization (used by edgeR)
and log-ratio transformation (used by ALDEx2). Broadly speaking, our results agree with the Williams et al.
paper in that the choice in differential expression method matters more than the choice in the alignment and
quantification method [43].

ALDEx2 performance depends on log-ratio transformation used
First of all, it is necessary to emphasize that, although log-ratio transformations can be used in lieu of nor-
malization, such transformations do not formally reclaim absolute abundances from relative abundances (see
[27]). Yet, benchmarking a transformation-based analysis against a “truth set” implies that the transformation
is interpreted as if it were a normalization (i.e., that the reference denominator used for the transformation
has rescaled the data to absolute terms [27]). In other words, the more that the reference approximates a fea-
ture with fixed abundance across all samples, the more that the transformed data resemble the absolute data.
Therefore, the benchmarked performance of a log-ratio transformation-based analysis depends on whether the
reference denominator of the transformation is an ideal reference with fixed abundance.

When interpreting the clr transformation as if it were a normalization, there is an implicit assumption that
the majority of genes (or transcripts) are not differentially expressed [11]. Meanwhile, the iqlr transformation
would assume that a portion of genes (i.e., those with their variances within the inter-quartile range) are not
differentially expressed. Likewise, the iterative transformation assumes that the results of an ALDEx2 analysis
selects (non-)differentially expressed genes more accurately than a simpler transformation. Therefore, all else
being equal, one can interpret the performance of each transformation as a proxy for how well it reclaims
absolute information (i.e., how well it approximates an ideal reference with fixed abundance).

For simulated data, some transformations perform better than others. First, the iqlr transformation is more
precise than the clr transformation. This is expected because the iqlr transformation should be more robust
to imbalances in up- or down- regulation [44]. Second, the iterative transformations is more precise than the
iqlr, suggesting that novel log-ratio transformations could improve performance beyond those routinely used.
Perhaps surprisingly, this trend was not apparent among the real data. This could be due to either the absence
of any imbalance in this data set (such that iqlr and others offer no clear benefit over clr) or limitations in
the microarray-based “truth set” (which may not have controlled for a systematic imbalance in the biological
samples).

Limitations of ALDEx2 and other transformation-based methods
Users may encounter some practical limitations with ALDEx2 as it is currently implemented. First, owing to the
replication of non-parametric analyses across multiple Monte Carlo instances, ALDEx2 runs much slower than
edgeR and other methods (though in preparing this manuscript we submitted code to speed up the software).
Second, ALDEx2 does not contain a generalization to mixed models. Although this package does have an
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ANOVA-like procedure (i.e., using Kruskal-Wallis), it takes even longer to run than the standard two-group
comparisons.

There are also limitations that come with interpreting the log-ratio transformation as a kind of normalization.
As mentioned above, using the clr in this way assumes that the majority of genes (or transcripts) are not
differentially expressed [11], the same assumption held by the trimmed mean of M (TMM) normalization [31].
When this assumption does not hold, it is not possible to infer absolute differences in expression between
samples. As such, both will fail if one of the experimental groups has massively more up-regulation than down-
regulation (or vice versa). This scenario is exemplified by a cell line with high levels of c-Myc, a protein with
widely variable expression in tumors that can amplify gene expression to produce 2-3 times more total RNA
[21]. When comparing high c-Myc cells against low c-Myc cells, a standard RNA-Seq analysis would conclude
that there is both up- and down-regulation, even though the cells actually only have up-regulation (i.e., based
on using spike-in controls normalized to cell number) [21]. A transformation-based approach would not fair any
better here, unless one was exclusively interested in identifying transcripts that were differentially expressed
relative to a reference [27].

Finally, ALDEx2may suffer from another limitation based on how it uses the Dirichlet distribution to generate
Monte Carlo instances. Weiss et al. note, “this formulation assumes a Dirichlet-multinomial framework, which
imposes a negative correlation structure on every pair of [features]” [42]. In fact, Hawinkel et al. showed that,
when simulating 16S abundance data to have a positive correlation structure, ALDEx2 results depart from
the uniformity of the p-value distribution (in the liberal direction) and show an increase in the nominal false
discovery rate (FDR) (although FDR-adjustment still brought FDR below the 0.05 threshold) [17]. However,
this publication also found that a positive correlation structure negatively impacted the performance of popular
differential expression analysis methods like DESeq2 and edgeR (the latter of which had very high FDR-adjusted
FDR rates) [17].

Conclusions
Across all applications, the ALDEx2 package has high precision in identifying differentially expressed genes
(and transcripts) from simulated and real RNA-Seq data. With sufficient sample sizes, it also has good recall.
Across all log-ratio transformations, the removal of lowly abundant counts before differential expression analysis
impedes ALDEx2 performance. Meanwhile, the choice in alignment and quantification procedure does not seem
to affect the results of an ALDEx2 analysis. However, at least when interpreting log-ratio transformations as if
they were normalizations, some transformations may work better than others. Nevertheless, our results suggest
that log-ratio transformation-based methods can work to measure differential expression from sequencing data,
provided that certain assumptions are met.

Additional Files

Additional file 1 — Analysis scripts
This file contains all the scripts used to generate the simulated data, benchmark methods on the simulated
data, benchmark methods on the real data, parse the results, and make the figures.

Additional file 2 — Simulated data (low variance) benchmark performance
This table contains the precision and recall estimates for several methods as applied to the low variance simulated
data. This table is used to make figures.

Additional file 3 — Simulated data (high variance) benchmark performance
This table contains the precision and recall estimates for several methods as applied to the high variance
simulated data. This table is used to make figures.

Additional file 4 — Real data benchmark performance
This table contains the precision and recall estimates for several methods as applied to the real data. This table
is used to make figures.
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