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Abstract	

It	is	assumed	that	cancers	develop	upon	acquiring	a	particular	number	of	(epi)mutations	

in	 driver	 genes,	 but	 the	 law	 governing	 the	 kinetics	 of	 this	 process	 is	 not	 known.	 I	 have	

recently	shown	that	the	age	distribution	of	incidence	for	20	most	prevalent	cancers	of	old	age	

is	best	approximated	by	the	Erlang	probability	distribution.	The	Erlang	distribution	describes	

the	probability	of	several	successive	random	events	occurring	by	the	given	time	according	to	

the	 Poisson	 process,	 which	 allowed	me	 to	 predict	 the	 number	 of	 critical	 driver	 events	 for	

these	cancer	 types.	Here	 I	 show	that	 the	Erlang	distribution	 is	 the	only	classical	probability	

distribution	 that	 can,	 in	 addition,	 adequately	model	 the	age	distribution	of	 incidence	 for	 all	

studied	 childhood	 and	 young	 adulthood	 cancers.	 This	 validates	 the	 Poisson	 process	 as	 the	

universal	 law	 describing	 cancer	 development	 at	 any	 age	 and	 the	 Erlang	 distribution	 as	 a	

useful	 tool	 to	predict	 the	number	of	driver	events	 for	any	cancer	 type.	The	Poisson	process	

signifies	the	fundamentally	random	timing	of	driver	events	and	their	constant	average	rate.	As	

waiting	 times	 for	 the	 occurrence	 of	 the	 required	 number	 of	 driver	 events	 are	 counted	 in	

decades,	 it	 suggests	 that	 driver	mutations	 accumulate	 silently	 in	 the	 longest-living	 dividing	

cells	in	the	body	–	the	stem	cells.	 	
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Introduction	

Since	 the	 discovery	 of	 the	 connection	 between	 cancer	 and	 mutations	 in	 DNA,	 in	 the	

middle	 of	 the	 XX	 century,	 there	 have	 been	 multiple	 attempts	 to	 deduce	 the	 law	 of	 driver	

mutation	 accumulation	 from	 the	 age	 distribution	 of	 cancer	 incidence	 or	mortality	 (1).	 The	

proposed	models,	however,	suffer	from	several	serious	drawbacks.	For	example,	early	models	

assume	that	cancer	mortality	 increases	with	age	according	to	the	power	law	(2-4),	which	at	

some	advanced	age	would	necessary	lead	to	the	mortality	surpassing	100	000	people	per	100	

000	 population.	 Moreover,	 already	 at	 that	 time	 it	 was	 known	 that	 many	 cancers	 display	

deceleration	of	mortality	growth	at	advanced	age,	which	is	to	be	expected	if	the	probability	of	

death	at	a	given	age	is	to	remain	under	100%.	Finally,	when	large-scale	incidence	data	have	

accumulated,	 it	became	clear	that	cancer	incidence	not	only	ceases	to	increase	with	age	but,	

for	at	least	some	cancers,	starts	to	decrease	(5,	6).	More	recent	models	of	cancer	progression	

are	 based	 on	 multiple	 biological	 assumptions,	 consist	 of	 complicated	 equations	 that	

incorporate	 many	 predetermined	 empirical	 parameters,	 and	 still	 have	 not	 been	 shown	 to	

describe	 the	decrease	 in	cancer	 incidence	at	an	advanced	age	(7-12).	 It	 is	also	clear	 that	an	

infinite	number	of	such	mechanistic	models	can	be	created	and	custom	tailored	to	fit	any	set	

of	data,	leading	us	to	question	their	explanatory	and	predictive	values.		

Recently	 I	 have	 proposed	 that	 the	 age	 distribution	 of	 cancer	 incidence	 is,	 in	 fact,	 a	

statistical	 distribution	 of	 probabilities	 that	 a	 required	 number	 of	 driver	 events	 occurs	

precisely	by	the	given	age,	i.e.	a	probability	density	function	(PDF)	(13).	I	then	tested	the	PDFs	

of	16	well-known	continuous	probability	distributions	for	fits	with	the	CDC	WONDER	data	on	

the	age	distribution	of	incidence	for	20	most	prevalent	cancers	of	old	age.	The	best	fits	were	

observed	 for	 the	gamma	distribution	and	 its	special	case	–	 the	Erlang	distribution,	with	 the	

average	R2	of	0.995	(13).	Notably,	these	two	distributions	describe	the	probability	of	several	

independent	random	events	occurring	precisely	by	 the	given	time,	according	to	 the	Poisson	

process.	This	allowed	me	to	estimate	the	number	of	driver	events,	the	average	time	interval	
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between	them	and	the	maximal	populational	susceptibility,	for	each	cancer	type.	The	results	

showed	 high	 heterogeneity	 in	 all	 three	 parameters	 amongst	 the	 cancer	 types	 but	 high	

reproducibility	between	the	years	of	observation	(13).	

However,	 4	 other	 probability	 distributions	 –	 the	 extreme	 value,	 normal,	 logistic	 and	

Weibull	 –	 also	 showed	 good	 fits	 to	 the	 data,	 although	 inferior	 to	 the	 gamma	 and	 Erlang	

distributions.	This	leaves	some	uncertainty	regarding	the	exceptionality	of	the	gamma/Erlang	

distribution	for	the	description	of	cancer	incidence.	Here	I	test	these	shortlisted	distributions	

on	the	CDC	WONDER	data	on	childhood	and	young	adulthood	cancers.	I	show	that	the	gamma	

and	Erlang	 distributions	 are	 the	 only	 distributions	 that	 converge	 for	 all	 tested	 cancers	 and	

provide	close	fits.	This	result	validates	the	Poisson	process	as	the	fundamental	law	describing	

the	 age	 distribution	 of	 cancer	 incidence	 for	 any	 cancer	 type,	 which	 also	 allows	 to	 predict	

important	parameters	of	cancer	development,	including	the	number	of	driver	events.		

	

Results	

To	 test	 the	 universality	 of	 the	 gamma/Erlang	 distribution,	 the	 publicly	 available	 USA	

incidence	data	 on	 childhood	 and	 young	 adulthood	 cancers	were	downloaded	 from	 the	CDC	

WONDER	 database	 (see	 Materials	 and	 Methods).	 The	 PDFs	 for	 the	 general	 forms	 of	 the	

following	 continuous	 probability	 distributions	 were	 tested	 for	 fit	 with	 least	 squares	 non-

weighted	nonlinear	regression	analysis:	extreme	value,	gamma,	 logistic,	normal	and	Weibull	

(see	Materials	 and	Methods).	 Only	 the	 gamma	 distribution	 converged	 for	 all	 tested	 cancer	

types	and	provided	good	fits	(Fig.	1,	Table	1).		

Importantly,	 the	gamma	distribution	and	the	Erlang	distribution	derived	from	it	are	the	

only	classical	continuous	probability	distributions	that	describe	the	cumulative	waiting	time	

for	k	successive	random	events,	with	the	Erlang	distribution	differing	only	in	counting	events	

as	integer	numbers.	Because	these	properties	suit	excellently	to	describe	the	waiting	time	for	

real	 discrete	 random	 events	 such	 as	 driver	mutations,	 the	 Erlang	 distribution	 provides	 the	
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opportunity	 to	 get	 unique	 insights	 into	 the	 carcinogenesis	 process.	 I	 have	 previously	

proposed	that	the	shape	parameter	k	of	the	Erlang	distribution	indicates	the	average	number	

of	 driver	 events	 that	 need	 to	 occur	 in	 order	 for	 a	 cancer	 to	 develop	 to	 a	 stage	 that	 can	 be	

detected	during	clinical	screening;	the	scale	parameter	b	 indicates	the	average	time	interval	

(in	years)	between	such	events;	and	 the	amplitude	parameter	A	divided	by	1000	estimates	

the	maximal	susceptibility	(in	percent)	of	a	given	population	to	a	given	type	of	cancer	(13).	

To	 obtain	 these	 parameter	 values,	 the	 Erlang	 distribution	 was	 fitted	 individually	 to	

incidence	 of	 each	 of	 10	 childhood/young	 adulthood	 cancer	 types	 (Fig.	 2,	 Table	 2).	 The	

goodness	of	 fit	varied	 from	0.6263	(due	to	an	outlier),	 for	 intracranial	and	 intraspinal	germ	

cell	 tumours,	 to	 0.9999,	 for	 extracranial	 and	 extragonadal	 germ	 cell	 tumours	 of	 childhood,	

with	 the	 average	 of	 0.9476.	 The	 predicted	 number	 of	 driver	 events	 varied	 from	 1,	 for	

extracranial	 and	 extragonadal	 germ	 cell	 tumours	 of	 childhood,	 neuroblastoma	 and	

ganglioneuroblastoma,	retinoblastoma,	and	 intracranial	and	 intraspinal	embryonal	 tumours,	

to	9,	for	malignant	gonadal	germ	cell	tumours.	The	predicted	average	time	between	the	events	

varied	 from	 1	 year,	 for	 extracranial	 and	 extragonadal	 germ	 cell	 tumours	 of	 childhood	 and	

hepatoblastoma,	 to	 15	 years,	 for	 intracranial	 and	 intraspinal	 embryonal	 tumours.	 The	

predicted	 maximal	 populational	 susceptibility	 varied	 from	 0.02%,	 for	 extracranial	 and	

extragonadal	germ	cell	tumours	of	childhood,	to	2%,	for	malignant	gonadal	germ	cell	tumours.		

Overall,	 the	 data	 confirm	 high	 heterogeneity	 in	 carcinogenesis	 patterns	 revealed	 in	 the	

previous	study	(13).		

	

Discussion	

I	 have	 previously	 shown	 that	 5	 probability	 distributions	 –	 the	 extreme	 value,	

gamma/Erlang,	normal,	 logistic	and	Weibull	–	approximate	the	age	distribution	of	 incidence	

for	 20	 most	 prevalent	 cancers	 of	 old	 age	 (13).	 The	 shape	 of	 those	 incidence	 distributions	

resembles	the	bell	shape	of	the	normal	distribution,	with	some	asymmetry,	or	at	least	the	left	
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part	 of	 it.	 However,	 many	 cancers	 of	 childhood	 have	 a	 radically	 different	 shape	 of	 the	

incidence	distribution,	the	shape	of	the	exponential	distribution	(Fig.	2).	Of	the	5	shortlisted	

distributions,	 only	 the	 gamma/Erlang	 and	Weibull	 distributions	 can	 assume	 that	 shape,	 i.e.	

reduce	 to	 the	 exponential	 distribution	when	 the	 parameter	k	 equals	 1.	 Of	 the	 remaining	 2	

distributions,	gamma/Erlang	provides	superior	fit	compared	to	Weibull.	In	fact,	for	cancers	of	

old	age,	the	average	R2	for	the	Weibull	distribution	is	0.9938,	whereas	for	the	gamma/Erlang	

distribution	is	0.9954	(13).	For	cancers	of	childhood	and	young	adulthood,	the	average	R2	for	

the	Weibull	distribution	 is	0.6576,	whereas	 for	 the	gamma	distribution	 is	0.9490	 (Table	1).	

Most	 importantly,	 the	 Weibull	 distribution	 failed	 to	 converge	 for	 extracranial	 and	

extragonadal	 germ	 cell	 tumours	 of	 childhood	 and	 for	 retinoblastoma,	 whereas	 the	

gamma/Erlang	 distribution	 provided	 the	 perfect	 fit	 (R2=1.000).	 Thus,	 it	 appears	 that	 the	

gamma/Erlang	distribution	 is	 the	only	 classical	probability	distribution	 that	 fits	universally	

well	to	cancers	of	childhood,	young	adulthood	and	old	age.			

I	 have	 proposed	 that	 the	 parameter	k	 of	 the	 Erlang	 distribution	 indicates	 the	 average	

number	of	driver	events	that	need	to	occur	in	order	for	a	cancer	to	develop	to	a	stage	that	can	

be	 detected	 during	 clinical	 screening	 (13).	 	 As	 mentioned	 above,	 the	 Erlang	 distribution	

reduces	to	the	exponential	distribution	when	k	equals	1,	because	the	exponential	distribution	

describes	 the	waiting	time	 for	a	single	random	event.	 It	would	thus	mean	that	cancers	with	

the	exponential	shape	of	 the	age	distribution	of	 incidence	require	only	a	single	driver	event	

with	random	time	of	occurrence,	most	 likely	a	somatic	driver	mutation	(14)	or	epimutation	

(15).	This	explains	their	maximal	prevalence	in	the	early	childhood.		

In	his	seminal	paper	(16),	Alfred	Knudson	has	proposed	that	hereditary	retinoblastoma,	a	

childhood	 cancer	 with	 the	 exponential	 age	 distribution	 of	 incidence,	 is	 caused	 by	 a	 single	

somatic	 mutation	 in	 addition	 to	 one	 heritable	 mutation.	 He	 also	 proposed	 that	 in	 the	

nonhereditary	form	of	the	disease,	both	mutations	should	occur	in	somatic	cells.	As	hereditary	

form	 is	 estimated	 to	 represent	 about	 45%	 of	 all	 cases	 (16,	 17),	 the	 number	 of	 driver	
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mutations	 predicted	 from	 combined	 incidence	 data	 should	 be	 around	 1.55.	 Interestingly,	

whilst	 the	 gamma	 distribution	 fits	 the	 incidence	 data	 excellently,	 with	 R2=1.0,	 it	 predicts	

1.325	driver	events.	This	yields	the	estimate	of	the	hereditary	form	prevalence	at	67.5%.	This	

higher	 value	 may	 point	 to	 the	 general	 underestimation	 of	 the	 hereditary	 component	 in	

unilateral	 retinoblastoma,	 perhaps	 due	 to	 limitations	 of	 routine	 genetic	 screening	 and	 the	

influence	 of	 genetic	 mosaicism	 (18).	 In	 contrast	 to	 retinoblastoma,	 the	 hereditary	 form	 of	

neuroblastoma	 is	 estimated	 to	 comprise	only	1-2%	of	 all	 cases	 (19),	 hence	 the	 exponential	

age	distribution	of	incidence	would	mean	that	only	one	somatic	mutation	is	required.	Indeed,	

the	gamma	distribution	predicts	0.9816±0.0295	driver	events	(R2=0.9998).		

The	prediction	of	a	single	driver	event	in	cancers	with	the	exponential	age	distribution	of	

incidence	does	not	mean	that	only	a	single	driver	gene	can	be	discovered	in	such	cancer	types.	

In	 fact,	 many	 driver	 genes	 are	 redundant	 or	 even	 mutually	 exclusive,	 e.g.	 when	 the	

corresponding	 proteins	 are	 components	 of	 the	 same	 signalling	 pathway	 (20).	 Thus,	 each	

tumour	in	such	cancer	types	is	expected	to	have	a	mutation	in	one	driver	gene	out	of	a	set	of	

several	possible	ones,	in	which	all	genes	most	likely	encode	members	of	the	same	pathway	or	

are	 responsible	 for	 the	 same	 cellular	 function.	 For	 example,	 in	 each	neuroblastoma	 tumour	

sample,	 a	 mutation	 was	 present	 in	 only	 one	 out	 of	 5	 putative	 driver	 genes	 –	 ALK,	 ATRX,	

PTPN11,	MYCN	or	NRAS	(21).		

Another	aspect	to	consider	is	that	while	one	mutation	is	usually	sufficient	to	activate	an	

oncogene,	 two	 mutations	 are	 typically	 required	 to	 inactivate	 both	 alleles	 of	 a	 tumour	

suppressor	 gene.	 Therefore,	 cancers	with	 the	 exponential	 age	 distribution	 of	 incidence	 are	

predicted	 to	 have	 either	 a	 single	 somatic	 mutation	 in	 an	 oncogene,	 or	 a	 single	 somatic	

mutation	 in	 a	 tumour	 suppressor	 gene	 plus	 an	 inherited	 mutation	 in	 the	 same	 gene.	 The	

former	is	the	case	for	neuroblastoma,	where	an	amplification	or	an	activating	point	mutation	

in	 ALK	 is	 often	 present	 (22-24).	 The	 latter	 is	 the	 case	 for	 retinoblastoma,	 where	 an	
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inactivating	 mutation	 in	 one	 allele	 of	 RB1	 is	 usually	 inherited,	 whereas	 an	 inactivating	

mutation	in	the	other	RB1	allele	occurs	in	a	somatic	cell	(25).	

Finally,	 the	 number	 of	 driver	 events	 predicted	 by	 the	 Erlang	 distribution	 refers	

exclusively	 to	 rate-limiting	 events	 responsible	 for	 cancer	 progression.	 For	 example,	 it	 was	

shown	that	 inactivation	of	both	alleles	of	RB1	 leads	 first	 to	retinoma,	a	benign	tumour	with	

genomic	 instability	 that	 easily	 transforms	 to	 retinoblastoma	 upon	 acquiring	 additional	

mutations	 (26).	 In	 this	 case,	 two	mutations	 in	RB1	 are	 rate-limiting,	whereas	mutations	 in	

other	 genes	 are	 not,	 because	 genomic	 instability	 allows	 them	 to	 occur	 very	 quickly.	 In	

neuroblastoma,	 frequent	MYCN	 amplification	 and	 chromosome	 17q	 gain	 are	 found	 only	 in	

advanced	stages	of	the	disease	(27,	28),	so	they	are	unlikely	to	be	the	initiating	rate-limiting	

events.		

Overall,	application	of	the	gamma/Erlang	distribution	to	childhood	and	young	adulthood	

cancers	showed	its	exceptionality	amongst	other	probability	distributions.		The	fact	that	it	can	

successfully	describe	the	radically	different	age	distributions	of	 incidence	for	cancers	of	any	

age	 and	 any	 type	 allows	 to	 call	 the	underlying	Poisson	process	 the	universal	 law	of	 cancer	

development.	The	Poisson	process	signifies	the	fundamentally	random	timing	of	driver	events	

and	 their	 constant	 average	 rate	 (13).	 The	 Erlang	 distribution	 allows	 to	 calculate,	 by	

multiplying	the	number	of	driver	events	by	the	average	time	interval	between	them,	that	an	

average	 person	 needs	 from	 73	 to	 324	 years	 to	 accumulate	 the	 required	 number	 of	 driver	

alterations,	 depending	 on	 the	 cancer	 type	 (13).	 This	 finding	 is	 consistent	 with	 the	 silent	

accumulation	of	driver	mutations	in	stem	cells	before	the	terminal	clonal	expansion	(29-31),	

because	this	is	the	only	type	of	dividing	cells	surviving	for	so	long	in	the	body,	and	mutations	

require	cellular	division	to	be	fixed	in	the	DNA.	For	childhood	and	young	adulthood	cancers,	

these	estimates	range	from	1	to	35	years	(see	Table	2),	but	the	mechanism	is	likely	the	same.	

Finally,	as	 the	Erlang	distribution	allows	 to	predict	 the	number	and	rate	of	driver	events	 in	

any	 cancer	 subtype	 for	which	 the	data	 on	 the	 age	distribution	of	 incidence	 are	 available,	 it	
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may	 help	 to	 optimize	 the	 algorithms	 for	 distinguishing	 between	 driver	 and	 passenger	

mutations	(32),	leading	to	the	development	of	more	effective	targeted	therapies.		

	

Materials	and	Methods	

Data	acquisition	

United	 States	 Cancer	 Statistics	 Public	 Information	 Data:	 Incidence	 1999	 -	 2012	 were	

downloaded	 via	 Centers	 for	 Disease	 Control	 and	 Prevention	Wide-ranging	 OnLine	Data	 for	

Epidemiologic	 Research	 (CDC	 WONDER)	 online	 database	 (http://wonder.cdc.gov/cancer-

v2012.HTML).	 	The	United	States	Cancer	Statistics	(USCS)	are	the	official	 federal	statistics	on	

cancer	 incidence	 from	 registries	 having	 high-quality	 data	 for	 50	 states	 and	 the	 District	 of	

Columbia.	 Data	 are	 provided	 by	 The	 Centers	 for	 Disease	 Control	 and	 Prevention	 National	

Program	 of	 Cancer	 Registries	 (NPCR)	 and	 The	 National	 Cancer	 Institute	 Surveillance,	

Epidemiology	and	End	Results	(SEER)	program.	Results	were	grouped	by	5-year	Age	Groups,	

Crude	Rates	were	 selected	 as	 output	 and	All	 Ages	were	 selected	 in	 the	 Age	 Group	 box.	 All	

other	parameters	were	 left	 at	default	 settings.	Crude	Rates	are	expressed	as	 the	number	of	

cases	reported	each	calendar	year	per	100	000	population.	A	single	person	with	more	 than	

one	primary	cancer	verified	by	a	medical	doctor	is	counted	as	a	case	report	for	each	type	of	

primary	cancer	 reported.	The	population	estimates	 for	 the	denominators	of	 incidence	 rates	

are	a	slight	modification	of	 the	annual	time	series	of	 July	1	county	population	estimates	(by	

age,	 sex,	 race,	 and	 Hispanic	 origin)	 aggregated	 to	 the	 state	 or	metropolitan	 area	 level	 and	

produced	 by	 the	 Population	 Estimates	 Program	 of	 the	 U.S.	 Bureau	 of	 the	 Census	 (Census	

Bureau)	 with	 support	 from	 the	 National	 Cancer	 Institute	 (NCI)	 through	 an	 interagency	

agreement.	 These	 estimates	 are	 considered	 to	 reflect	 the	 average	 population	 of	 a	 defined	

geographic	area	 for	a	calendar	year.	The	data	were	downloaded	separately	 for	each	specific	

cancer	type,	upon	its	selection	in	the	Childhood	Cancers	tab.		

	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2018. ; https://doi.org/10.1101/231027doi: bioRxiv preprint 

https://doi.org/10.1101/231027
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

Data	selection	and	analysis	

For	 analysis,	 the	 data	 were	 imported	 into	 GraphPad	 Prism	 5.	 Only	 cancers	 that	 show	

childhood/young	adulthood	incidence	peaks	and	do	not	show	middle/old	age	incidence	peaks	

were	analysed	further.	The	middle	age	of	each	age	group	was	used	as	the	x	value,	e.g.	17.5	for	

the	 “15-19	years”	age	group.	 	Data	were	analysed	with	Nonlinear	 regression.	The	 following	

User-defined	equations	were	created	for	the	statistical	distributions:	

	

Gamma:	

Y=A*(x^(k-1))*(exp(-x/b))/((b^k)*gamma(k))	

Extreme	value:	

Y=A*(exp(-((x-t)/b)))*(exp(-exp(-((x-t)/b))))/b	

Logistic:	

Y=A*(exp((x-t)/b))/(b*((1+exp((x-t)/b))^2))	

Normal:	

Y=A*(exp(-0.5*(((x-t)/b)^2)))/(b*((2*pi)^0.5))	

Weibull:	

Y=A*(k/(b^k))*(x^(k-1))*exp(-((x/b)^k))	

	

The	parameter	A	was	constrained	to	“Must	be	between	zero	and	100	000.0”,	parameter	t	

to	 “Must	 be	 between	 zero	 and	 150.0”,	 parameters	 b	 and	 k	 to	 “Must	 be	 greater	 than	 0.0”.	

“Initial	 values,	 to	 be	 fit”	 for	 all	 parameters	 were	 set	 to	 1.0.	 All	 other	 settings	 were	 left	 by	

default,	e.g.	Least	squares	fit	and	No	weighting.		

For	 the	Erlang	distribution,	 the	parameter	k	 for	each	cancer	 type	was	estimated	by	 the	

fitting	of	the	Gamma	distribution,	rounded	to	the	nearest	integer	and	used	as	“Constant	equal	

to”	in	the	second	round	of	the	Gamma	distribution	fitting,	which	provided	the	final	results.		
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Figure	Legends	

	

Figure	1.	Comparison	of	different	statistical	distributions	with	actual	distributions	

of	childhood/young	adulthood	cancer	incidence	by	age.	

Dots	indicate	crude	incidence	rates	for	5-year	age	groups,	curves	indicate	PDFs	fitted	to	

the	data	(see	Table	1	for	R2	comparison).	Error	bars	represent	95%	confidence	intervals	for	

crude	incidence	rates.	The	middle	age	of	each	age	group	is	plotted.		

	

Figure	 2.	 The	 Erlang	 distribution	 approximates	 cancer	 incidence	 by	 age	 for	 10	

childhood/young	adulthood	cancer	types.	

Dots	indicate	crude	incidence	rates	for	5-year	age	groups,	curves	indicate	the	PDF	of	the	

Erlang	 distribution	 fitted	 to	 the	 data	 (see	 Table	 2	 for	 R2	 and	 estimated	 parameters).	 Error	

bars	represent	95%	confidence	intervals	for	crude	incidence	rates.	The	middle	age	of	each	age	

group	 is	 plotted.	 Extracranial	 and	 extragonadal	 germ	 cell	 tumours	 of	 childhood	 and	 young	

adulthood	are	shown	on	the	same	plot.	
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Table	1.	Comparison	of	the	goodness	of	fit	(R2)	of	different	statistical	distributions	

to	actual	distributions	of	childhood/young	adulthood	cancer	incidence	by	age.	

	

Cancer	type	 Gamma		
Extreme	

value	
Logistic	 Normal	 Weibull	

Malignant	gonadal	germ	cell	tumours	 0.9922	 0.9967	 0.9606	 0.9595	 0.9547	

Extracranial	and	extragonadal	germ	

cell	tumours	of	childhood*	
1.000	 NC	 NC	 NC	 NC	

Extracranial	and	extragonadal	germ	

cell	tumours	of	young	adulthood	
0.9495	 0.9680	 0.8725	 0.8577	 0.8689	

Intracranial	and	intraspinal	germ	cell	

tumours	
0.6263	 0.6565	 0.7564	 NC	 0.6146	

Neuroblastoma	and	

ganglioneuroblastoma*	
0.9998	 0.9984	 NC	 0.9962	 0.9998	

Retinoblastoma*	 1.000	 NC	 NC	 NC	 NC	

Intracranial	and	intraspinal	

embryonal	tumours*	
0.9740	 0.9518	 0.9413	 0.9200	 0.9738	

Nephroblastoma	and	other	

nonepithelial	renal	tumours	
0.9971	 NC	 0.0238	 0.9963	 0.9969	

Hepatoblastoma	 0.9996	 0.9996	 0.9996	 NC	 0.2193	

Ewing	tumour	and	related	sarcomas	

of	bone	
0.9516	 0.9670	 0.9554	 0.9436	 0.9476	

Average	(NC	=	0)	 0.9490	 0.6538	 0.5510	 0.5673	 0.6576	

Average	(NC	not	included)	 0.9490	 0.9340	 0.7871	 0.9456	 0.8220	

	

The	best	fit	for	each	cancer	type	is	highlighted	in	bold.	NC	–	not	converged.	Cancer	types	

with	the	exponential	age	distribution	of	incidence	are	marked	by	an	asterisk.	See	Fig.	1	for	

graphical	representation.	
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Table	2.	 Estimated	 carcinogenesis	 parameters	 for	10	 childhood/young	 adulthood	

cancer	types.	

	

Cancer	type	

k b A/1000 R2 

Number	of	

driver	

events		

±	s.e.m. 

Average	time	

between	

events, 
years	±	s.e.m. 

Maximal	

populational	

susceptibility,	

%	±	s.e.m. 

Goodness	

of	fit 

Malignant	gonadal	germ	cell	

tumours	
9±1	 3.87±0.03	 1.96±0.03	 0.9922	

Extracranial	and	extragonadal	

germ	cell	tumours	of	

childhood*	

1±1	 1.17±0.04	 0.02±0.00	 0.9999	

Extracranial	and	extragonadal	

germ	cell	tumours	of	young	

adulthood	

7±1	 4.87±0.11	 0.11±0.00	 0.9476	

Intracranial	and	intraspinal	

germ	cell	tumours	
5±1	 3.49±0.34	 0.04±0.01	 0.6231	

Neuroblastoma	and	

ganglioneuroblastoma*	
1±0	 2.50±0.03	 0.18±0.00	 0.9998	

Retinoblastoma*	 1±1	 2.06±0.10	 0.07±0.00	 0.9994	

Intracranial	and	intraspinal	

embryonal	tumours*	
1±0	 14.83±1.03	 0.18±0.01	 0.9738	

Nephroblastoma	and	other	

nonepithelial	renal	tumours	
2±1	 1.67±0.05	 0.12±0.00	 0.9903	

Hepatoblastoma	 2±1	 0.97±0.02	 0.03±0.00	 0.9990	

Ewing	tumour	and	related	

sarcomas	of	bone	
4±1	 4.60±0.15	 0.09±0.00	 0.9504	

	

The	 parameters	 are	 determined	 for	 the	 Erlang	 distribution	 fitted	 to	 actual	 cancer	

incidence	data	(see	Fig.	2).	Cancer	types	with	the	exponential	age	distribution	of	incidence	are	

marked	by	an	asterisk.	
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