
1 
 

 
 

White Matter Hyperintensities and Cognitive Decline in de Novo 

Parkinson’s Disease Patients 

Mahsa Dadar (MSc)      mahsa.dadar@mail.mcgill.ca 

Yashar Zeighami (MSc)    yashar.zeighami@mail.mcgill.ca 

Yvonne Yau (MSc)     yvonne.yau@mail.mcgill.ca 

Seyed-Mohammad Fereshtehnejad (PhD)  sm.fereshtehnejad@mail.mcgill.ca 

Josefina Maranzano (MD)    jmaranzano@mrs.mni.mcgill.ca 

Ronald B. Postuma (MD)    ron.postuma@muhc.mcgill.ca 

Alain Dagher (MD)     alain.dagher@mcgill.ca 

D. Louis Collins (PhD)    louis.collins@mcgill.ca 

Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada. 

Word counts: 

Abstract: 250 words 

Introduction: 378 words 

Discussion: 1164 words 

Main text: 3296 words 

Character count for the title: 

91 characters 

Number of figures: 4 

Number of color figures: 4 

Number of tables: 2 

Running head: 

WMHs and Cognitive Decline in Parkinson’s Disease 

Corresponding Author Information: 

D. Louis Collins, Magnetic Resonance Imaging (MRI), Montreal Neurological Institute, 

3801 University Street, Room WB315, Montréal, QC, H3A 2B4             

Email: louis.collins@mcgill.ca                                                        Tel: +1-514-398-4227  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/230896doi: bioRxiv preprint 

mailto:mahsa.dadar@mail.mcgill.ca
mailto:yashar.zeighami@mail.mcgill.ca
mailto:yvonne.yau@mail.mcgill.ca
mailto:sm.fereshtehnejad@mail.mcgill.ca
mailto:jmaranzano@mrs.mni.mcgill.ca
mailto:ron.postuma@muhc.mcgill.ca
mailto:alain.dagher@mcgill.ca
mailto:louis.collins@mcgill.ca
mailto:louis.collins@mcgill.ca
https://doi.org/10.1101/230896


2 
 

 
 

Abstract: 

Objective: White Matter Hyperintensities (WMHs) are associated with cognitive 

decline in normative aging and Alzheimer’s disease. However, the pathogenesis of 

cognitive decline in Parkinson’s disease (PD) is not directly related to vascular causes, 

and therefore the role of WMHs in PD remains unclear. If WMH has a higher impact on 

cognitive decline in PD, vascular pathology should be assessed and treated with a higher 

priority in this population. Here we investigate whether WMH leads to increased 

cognitive decline in PD, and if these effects relate to cortical thinning 

Methods: To investigate the role of WMHs in PD, it is essential to study recently-

diagnosed/non-treated patients. De novo PD patients and age-matched controls 

(NPD=365,NControl=174) with FLAIR/T2-weighted scans at baseline were selected from 

Parkinson’s Progression Markers Initiative (PPMI). WMHs and cortical thickness were 

measured to analyse the relationship between baseline WMHs and future cognitive 

decline (follow-up:4.09±1.14 years) and cortical thinning (follow-up:1.05±0.10 years). 

Results: High WMH load (WMHL) at baseline in PD was associated with increased 

cognitive decline, significantly more than i) PDs with low WMHL and ii) controls with 

high WMHL. Furthermore, PD patients with higher baseline WMHL showed more 

cortical thinning in right frontal lobe than subjects with low WMHL. Cortical thinning 

of this region also predicted decline in performance on a cognitive test. 

Interpretation: Presence of WMHs in de novo PD patients predicts greater future 

cognitive decline and cortical thinning than in normal aging. Recognizing WMHs as a 

potential predictor of cognitive deficit in PD provides an opportunity for timely 

interventions. 
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Introduction: 

While Parkinson’s disease (PD) is typically characterized by motor symptoms, cognitive 

deficits occur in approximately 15% of patients in early drug-naïve stages1. Two 

decades after disease onset, this prevalence increases to over 80%2. Early mild cognitive 

impairment (MCI) is a strong predictor of later development of dementia3,4, which is a 

key determinant of mortality and poorer quality of life in PD5. Cognitive impairment in 

PD is related to subcortical dysfunction in early stages, followed by cortical α-synuclein 

pathology and loss of neurotransmitters. However, it remains unclear to what degree 

white matter changes, historically described as leukoaraiosis6 which are major signs of  

small-vessel disease (SVD)7,8 may contribute to  cognitive dysfunction in PD. 

White matter hyperintensities (WMHs) or leukoaraiosis are areas of increased signal in 

T2-weighted and FLAIR structural MRI. The neuropathologic correlates of WMHs are 

varied: loss of axons and glial cells, myelin rarefaction, spongiosis, perivascular 

demyelination, gliosis, subependymal glial accumulation and loss of the ependymal 

lining8. Despite the various findings, consensus exists regarding the association of 

WMHs and SVD9. The term SVD is mainly related to two etiologies: 1) age-related 

vascular disease, also referred as arteriolosclerosis, or vascular-risk-factor related 

SVD10,11, and 2) cerebral amyloid angiopathy12. These two play a crucial role in stroke, 

dementia and aging, and could also be relevant in PD.  Therefore, early detection of 

WMHs and treatment of cardiovascular risk factors could have a positive impact on 

cognitive decline in PD13–16.  In AD, WMHs have been extensively studied and strongly 

predict rapid cognitive decline in individuals with MCI17,18. In PD, the pathogenic role 

of vascular risk factors is less clear5 and results have been contradictory16. The WMHs 
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might cause cognitive decline independent of PD, or the synergy between the two 

mechanisms may accelerate cognitive impairment16. Alternatively, the WMHs might 

aggravate the pathologic spread of misfolded α-synuclein or amyloid-β proteins. Of the 

few studies that have investigated WMHs and cognitive decline in PD, most are cross-

sectional, include patients that are on dopaminergic medication, and are typically from 

cohorts that are at later stages of disease19–21. Additionally, different groups implement 

different tests to assess cognition and many do not perform a comprehensive 

neuropsychological battery. 

Capitalizing on the longitudinal assessment of cognitive abilities and imaging 

biomarkers in the multi-centre cohort of de novo PD patients from the Parkinson’s 

Progression Markers Initiative22, we investigated the relationship between WMH burden 

and: 1) cognitive decline over time and 2) cortical grey matter changes over time (as 

indexed by cortical thinning) in early stages of PD.  

Methods:  

Patients: The Parkinson’s Progression Markers Initiative (PPMI) is a longitudinal 

multi-site clinical study of de novo PD patients and age-matched healthy controls (HC)22 

(http://www.ppmi-info.org). The study was approved by the institutional review board 

of all participating sites and written informed consent was obtained from all participants 

before inclusion in the study. In the present study, we included all subjects that had 

either FLAIR or T2-weighted MR images at their baseline visit and had follow-up visits 

for at least one year after the baseline scan (NPD=365, NHC=174). All subjects were 

regularly assessed (yearly follow-ups, mean total follow-up period of 4.09±1.14 years) 
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for clinical characteristics (motor, non-motor and neuropsychological performance) by 

site investigators, including Montreal Cognitive Assessment (MoCA), Hopkins Verbal 

Learning Test–Revised (HVLT), Benton judgement of line orientation test for 

visuospatial skills, Letter-Number Sequencing test for verbal working memory, and 

semantic fluency test to detect cognitive decline (Table1). The executive function score 

is calculated as the sum of letter number sequencing and semantic fluency scores23. To 

validate the correlation between these two components, we verified their relationship in 

the PD population (r=0.56, p<0.0001).  

Table 1- Descriptive statistics for the PPMI subjects enrolled in this study. Data are number of 

participants in each category (N), percentage of the total population (%), and mean (SD) of key variables. 

PPMI=Parkinson’s Progression Marker Initiative. FLAIR= Fluid Attenuated Inversion Recovery. MoCA= 

Montreal Cognitive Assessment Score. HVLT= Hopkins Verbal Learning Test Revised Total Score. 

Benton= Benton Judgement of Line Orientation Score. WMH= White Matter Hyperintensity. 

 Control De novo PD 

Participants (NTotal) 174 365 

Female (N) 57 (33%) 114 (32%) 

T1-weighted and FLAIR Scans (NBaseline) 79 (45%) 167 (46%) 

T1-weighted and T2-weighted Scans (NBaseline) 95 (55%) 198 (54%) 

Follow-up 3T T1-weighted scans (NFollow-up) 55 (32%) 100 (27%) 

Age at Baseline (years) 60.07 (±11.34) 60.51 (±9.86) 

MoCA at Baseline 28.25 (±1.12) 27.24 (±2.22) 

HVLT at Baseline 35.05 (±6.78) 32.01 (±7.95) 

Benton at Baseline 26.13 (±4.12) 25.60 (±4.07) 

Executive Function at Baseline 20.94 (±4.73) 22.29 (±4.58) 

WMH Load at Baseline (cm3) 7.66 (±10.38) 6.93 (±8.03) 

 

Procedures: All MR images were preprocessed using our standard pipeline24 in three 

steps: noise reduction, intensity non-uniformity correction, and intensity normalization. 

T2-weighted and FLAIR images were linearly co-registered to the T1-weighted images 

using a 6-parameter rigid registration. The T1-weighted images were first linearly and 
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then nonlinearly registered to the standard template (MNI-ICBM-152). The WMHs 

were segmented using a previously validated automatic multi-modality segmentation 

technique in the native space of FLAIR or T2-weighted scans to avoid further blurring 

caused by resampling of the images25,26. This technique uses a set of location and 

intensity features obtained from a library of manually segmented scans in combination 

with a random forest classifier to detect the WMHs in new images. The libraries used in 

this study were obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) 

dataset since the T2-weighted and FLAIR sequences for the PPMI images follow the 

same acquisition protocol as ADNI. The quality of the registrations and segmentations 

was visually assessed and cases that did not pass this quality control were discarded 

(n=43). WMH load was defined as the volume (in cm3) of all segmented WMH voxels 

in the standard space, i.e. the WMH volumes were corrected for total intracranial 

volume (ICV). All MRI processing and segmentation steps were blinded to clinical 

outcomes. 

For voxel-wise analysis of WMHs, the WMH probability maps generated by the 

segmentation tool were nonlinearly transformed to the template space at 2×2×2 mm3 

resolution and blurred with a 3D Gaussian kernel with full width at half maximum of 5 

mm to compensate for the variability caused by differences in voxel sizes in the native 

FLAIR and T2-weighted images. Rates of cognitive decline were calculated for subjects 

that had at least one-year follow-up information as the change of the score per year 

(NPD=365, NHC=174), using a linear regression between time and the score values at 

different time points along with an intercept term. 
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Only subjects with T1-weighted 3T MRI data at both initial/baseline visit and at a one-

year follow-up MRI were included for cortical thickness analysis (NTotal=155, see Table 

1).  Cortical models were generated using the CIVET 2.1 preprocessing pipeline27, 

registered to MNI-ICBM-152 template, and analyzed using the SurfStat software 

package (http://www.math.mcgill.ca/keith/surfstat/). Distances between inner and outer 

cortical surfaces were evaluated to provide a measure of cortical thickness at each 

vertex. Changes in cortical thickness were calculated by subtracting the values 

(Δt = t1−t2) at the one-year follow-up (t2) from the baseline (t1). The average time 

between the baseline and follow-up visits was 1.05±0.11 and 1.05±0.09 years for the PD 

and control subjects, respectively. 

Statistical Analysis: We tested two major hypotheses: (1) greater WMH load will lead 

to more extensive and faster decline in cognition of the PD patients (2) patients with a 

higher WMH load (WMHL) will show more cortical thinning in their follow-up visit 

after one year. 

Survival analysis was used to investigate the relationship between WMH burden and 

decline in cognition. It has been previously shown that a threshold of WMHs should be 

present before cognitive deficits are observed28,29. The question of interest was whether 

there is a significant difference between the cognitive survival curves of subjects 

(normal controls and PD patients) with low versus high WMHL. The threshold for 

differentiating between high and low WMHL was set at 5 cm3 (median value, 0.7% of 

WM volume, 0.27% of brain volume). Similar to previous studies30–33, a stable 2-point 

drop in MoCA (a drop that persists over the follow-up visits) was considered as the 

terminal event in the survival analysis and the time from baseline MoCA measurement 
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to the visit where the 2-points drop was detected was considered as survival time. This 

was consistent with recommendations from our in-house clinical consultation. Drop in 

MoCA was selected as the main terminal event since MoCA has been previously 

validated as a sensitive measure for detecting and monitoring cognitive change over 

time34 in general and MCI or dementia in PD specifically35. Robustness of the results 

was verified for a WMHL threshold of 10 cm3 and 1 to 4 point drops in MoCA.  For 

survival analysis, the survdiff function from R package survival was used 

(ftp://centos.ustc.edu.cn/CRAN/web/packages/survival/survival.pdf). The function 

implements the two-sample G ρ statistics family of Harrington and Fleming, with 

weights on each event (2-point drop in MoCA) of S(t)ρ, where S(t) is the Kaplan-Meier 

estimate of survival, i.e. the probability that a subject survives longer than time t36. 

Furthermore, Longitudinal mixed-effects models were used to assess the association of 

WMHs with changes in cognition. MoCA, Benton, HVLT, and executive function 

scores were used as measures of cognition (dependent variables). The log-transformed 

WMH loads and age at each timepoint were used as continuous predictors for either PD 

or control cohorts. All continuous variables were z-scored prior to the analysis. All 

models contained first order interactions with age. Subject and contrast used for 

segmentation (T2-weighted versus FLAIR) were considered as categorical random 

effects in all the models. Models were fitted using fitlme in MATLAB version R2015b.  

Differences in cortical thickness between high and low WMHL classes [(highWMHLt1-

highWMHLt2)-(lowWMHLt1-lowWMHLt2)] were analyzed statistically based on 

Gaussian random field theory with a threshold of p<0.0537. Similar to the survival 

analysis, the threshold for differentiating between high and low WMHL was 5 cm3. 
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Observed differences in cortical thickness were then correlated to cognitive measures 

using Pearson partial correlations correcting for age. 

Results: 

Baseline WMH Load as a Predictor of Longitudinal Cognition 

Survival Analysis: 

Baseline WMH loads were not significantly different in control and PD populations 

(p>0.05). Controlling for age, the rate of decline in MoCA score was significantly 

correlated with baseline WMH load (r=-0.145, p=0.007) in the PD cohort, but not in 

controls (r=0.045, p=0.577). Figure 1 shows the Kaplan-Meier plot for the survival 

analysis for progression decline in MoCA. The 4-year survival rate (i.e. rate of patients 

maintaining MoCA stability) for the low and high WMHL groups were estimated as 

63% (95 CI=0.55-0.70) and 37% (95 CI=0.29-0.45) in PDs and 65% (95 CI=0.52-0.75) 

and 56% (95 CI=0.45-0.67) in controls, respectively (NPD-Low=186, NPD-High=174, NHC-

Low=79, NHC-High=83). In PD, the high WMHL cohort experienced a significantly lower 

survival rate than the low WMHL cohort (χ2=30.9, p<0.00001, hazard ratio= 2.42).  

There was no high vs low difference in controls (χ2=2.5, p=0.11, hazard ratio= 1.52). 

Furthermore, PD patients showed significantly lower survival rate compared to controls 

in the high WMHL group (χ2=6.7, p=0.009, hazard ratio=1.58) while the survival rate 

was not significantly different between two groups in low WMHL group (χ2=0.1, p = 

0.8, hazard ratio=1.0). Similar results were obtained with a threshold of 10 cm3 and 1-4 

point drops in MoCA, suggesting that WMH load-based dichotomization is sensitive to 

a range in the cognitive decline as measured by MoCA. 
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Fig. 1- Kaplan-Meier graph of survival showing the survival curves of control and PD patients with low 

versus high WMH loads demonstrating the compounded affect of PD and WMH load. A 2-point drop in 

MoCA was considered as the survival event and the time from baseline MoCA measurement to the visit 

where the 2-point drop occurred was considered as survival time. HC=Healthy Control. PD=Parkinson’s 

Disease. MoCA= Montreal Cognitive Assessment Score. 

Mixed-Effects Modelling: 

The mixed-effects modelling results based on age, baseline WMH, and their interaction 

(Table 2, Fig. 2) showed a significant negative relationship between MoCA, Benton, 

HVLT, and Executive function scores and age in both PD and HC cohorts. More 

importantly, in the PD cohort, there was a significant interaction between Age and 
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baseline WMH load for MoCA, Benton, and HVLT which was not observed in the HC 

cohort.  

Table 2- Summary of the mixed effects models of association between baseline WMH Load and cognition 

in HC and PD cohorts. Entries show the regression coefficients for the listed fixed effect followed by the 

associated p values. Baseline WMH load was log transformed and z-scored along with age, MoCA, 

HVLTRT, and Benton scores prior to analysis. WMHL=White Matter Hyperintensity Load. HC= Healthy 

Control. “:” indicates the interaction between two variables. Global Cognition= Montreal Cognitive 

Assessment Score (MoCA). Memory= Hopkins Verbal Learning Test Revised Total Score (HVLT). 

Visuospatial= Benton Judgement of Line Orientation Score. Executive= Executive Function Score (Letter 

Number Sequencing + Semantic Fluency). HC= Healthy Control. PD= Parkinson’s Disease. 

 Cognitive Score Global Cognition Memory Visuospatial Executive 

 Variable ß p-value ß p-value ß p-value ß p-value 

PD 

Intercept -0.063 0.180 -0.098 0.029 0.013 0.737 -0.086 0.059 

Age -0.413 <0.001 -0.341 <0.001 -0.164 <0.001 -0.374 <0.001 

WMHL 0.035 0.428 -0.029 0.485 -0.093 0.021 -0.049 0.236 

Age:WMHL 

Interaction 

-0.122 <0.001 -0.091 0.006 -0.062 0.059 -0.048 0.139 

HC 

Intercept 0.251 <0.001 0.263 <0.001 0.116 0.067 0.186 0.005 

Age -0.215 <0.001 -0.113 0.030 -0.131 0.019 -0.167 0.002 

WMHL -0.031 0.495 -0.093 0.083 -0.017 0.777 -0.088 0.113 

Age:WMHL 

Interaction 

-0.047 0.180 -0.043 0.330 -0.087 0.072 0.011 0.816 
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Fig. 2 – Density plots of longitudinal cognitive changes versus age and log transformed baseline WMH 

load. The colors indicate predicted cognitive scores by the mixed effects models, with warmer colors 

representing higher scores, and cooler colors representing lower scores. The transparency in the figures 

indicates the density of the data, i.e. areas of low transparency indicate regions where there are no subjects 

and the model is extrapolating (e.g. young subjects with high WMH loads, or old subjects with low WMH 

loads).  The contour lines imply the direction of changes (i.e. horizontal orientation indicates 

predominance of age effects and vertical orientation indicates predominance of WHM load effects). 

WMH=White Matter Hyperintensities. HC= Healthy Control. PD= Parkinson’s Disease. MoCA= 

Montreal Cognitive Assessment Score. HVLTRT= Hopkins Verbal Learning Test Revised Total Score. 

Benton= Benton Judgement of Line Orientation Score. Exec= Executive Function Score. 
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Cortical Thickness: 

Mean whole-brain cortical thickness decreased significantly among PD patients with 

both low (t1 = 3.3177mm ± 0.0993; t2 = 3.3087mm ± 0.1082) and high (t1 = 3.2932mm 

± 0.0996; t2 = 3.2786mm ± 0.0966) WMH at baseline.  Among PD patients, baseline 

WMH load did not correlate with whole-brain cortical thickness at baseline (r=-0.09, 

p>0.05) or at one-year follow-up (r=-0.19, p>0.05), but did correlate with cortical 

thickness change across the one-year period (r=0.26, p=0.01).  When comparing high 

and low WMH groups in PD, cortical thinning was greater in the high WMH group with 

a significant cluster observed in the right frontal lobe (NVertices=1523, resels=7.99, 

p<0.001) which covers the lateral precentral, superior frontal, and middle frontal gyri 

(Fig. 3). Cortical thinning of this cluster was not significantly correlated with poorer 

performance on the HVLT at baseline (r=-0.169, p>0.05), but was at one-year follow-up 

(r=-0.335, p<0.001) and with declining performance over the one-year period (r=0.196, 

p<0.05). No significant correlation or vertex/cluster-wise difference was observed in the 

HC cohort. No significant correlation was observed between MoCA, Benton, and 

executive function and cortical thickness in PD cohort.  
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Fig. 3- Differences in cortical thickness changes between high and low WMHL cohorts in PD subjects. T-

maps (left) and areas of significant cortical thickness decreases (right) covering the precentral, superior 

frontal, and middle frontal gyri. WMHL= White Matter Hyperintensity Load. PD= Parkinson’s Disease. 

Voxel-wise Analysis: 

Within the PD cohort, significant voxel-wise correlations were observed between WMH 

localization maps and the slope of MoCA and Benton scores, corrected for multiple 

comparisons using false discovery rate (FDR) adjustment and controlled for age and 

modality (Fig. 4). The significant regions include voxels in all lobes: frontal, temporal, 

parietal, occipital, and also insular subcortical WM bilaterally. No significant 

associations were found for the HC cohort. No significant associations were found for 

HVLT and Executive Function scores in the PD cohort. No significant differences were 

observed between the baseline voxel-wise WMH maps of PD and HC cohorts after FDR 

correction. 
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Fig. 4- Correlation between WMH location and slope of MoCA (top) and Benton (bottom) score in the PD 

cohort, controlled for age and modality. Correlation coefficients (left) and thresholded areas of significant 

correlations after FDR correction.  WMH=White Matter Hyperintensity. MoCA= Montreal Cognitive 

Assessment. PD=Parkinson’s Disease. FDR= False Discovery Rate. 

Discussion:  

High WMHL PD patients experienced significantly higher decline than i) low WMHL 

PD patients and ii) high WMHL control subjects. Additionally, WMHL was 

significantly associated with whole-brain cortical thinning after only one-year follow-up 

in PD patients, but not in controls.  Moreover, PD patients with a high WMHL at 

baseline showed significant cortical thinning of a frontal cluster compared to those with 

low WMHL.  Taken together, these findings suggest that measures of WMHL in de 
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novo PD patients can predict later cognitive decline, even in patients exhibiting no 

cognitive symptoms at baseline. 

As with previous studies38, cross-sectional WMHL at baseline in early PD was not 

significantly associated with baseline cognitive performance. Rather, WMHL at baseline 

was associated with future cognitive deterioration across multiple cognitive domains 

including visuospatial, memory, and global cognition corrected for age. This suggests 

that we can extend previous work on later stages of PD, where WMH burden was 

significantly associated with conversion to dementia in patients with MCI39,40, to the 

earliest stages of the disease. In line with these findings, post-mortem studies have 

shown that vascular lesions are common in idiopathic PD (Lewy body disease of the 

brainstem type)41.  

MoCA has been validated as a sensitive measure for detecting and monitoring cognitive 

change over time34. Controlling for age, MoCA decline was significantly correlated with 

baseline WMHL in the PD cohort, but not in controls. Additionally, PD subjects with 

high WMHLs were more likely to experience a 2-point drop in MoCA than (i) the low 

WMHL PD and (ii) the high WMHL HC subjects, as evaluated by the survival analysis. 

The driver for cognitive decline in controls and PD appear to differ in that the former is 

largely driven by age, while the latter is affected by both advancing age and greater 

baseline WMH load.  

While the literature on PD and WMH is scarce, there has been substantial progress in 

understanding the relationship between WMHs and cognitive impairment/dementia in 

AD, especially in the context of amyloid pathology. WMHs associated with vascular 

risk factors (e.g., hypoperfusion and inflammation) are thought to precede Aβ 
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aggregation. Previous work found significant associations between baseline WMHs and 

later progression of amyloid load42. This further supports the hypothesis of a chain of 

events; namely WMH impairs clearance of amyloid, which builds up and contributes to 

cognitive impairment and AD symptoms. While amyloid deposition strongly predicts 

progression to AD, WMH burden can provide additional independent information to this 

prediction43, suggesting that WMH is not solely related to amyloid pathology, but can 

directly impact cognitive impairment. Whether a similar interaction between vascular 

lesions and α-synuclein formation or deposition occurs in PD remains unclear. 

WMH burden can also precede irreversible neurological damage as indexed by cortical 

atrophy.  Previous studies have found higher WMHL to be correlated with lower cortical 

thickness in frontotemporal regions which in turn are related to cognitive decline44. 

Cortical thinning caused by direct or indirect effects of WMHs (tract-specific damage) 

might lead to cognitive decline and eventually dementia. Cortical thickness might be a 

sensitive measurement to detect regional grey matter micro-changes that are missed by 

conventional voxel-based techniques at the earlier stages of the neurodegeneration due 

to partial volume effect45,46. While we observed whole-brain cortical thinning among all 

PD patients, those with high WMH load showed greater cortical thinning of a frontal 

cluster, mostly encompassing the right dorsolateral prefrontal cortex (rDLPFC) which 

was further associated with decline in memory performance in HVLT over the one-year 

period. This is consistent with previous studies that have found significant associations 

between rDLPFC and HVLT scores47,48. Our results suggest that cortical changes in 

early PD are potentially moderated by WMH load, and might in turn presage cognitive 

decline. 
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Regardless of etiology, prevention and treatment of vascular risk factors associated with 

WMHs is a promising avenue to slow down cognitive deterioration, especially in de 

novo PD patients who are largely cognitively asymptomatic. The classical and most 

explored strategy regarding reduction of vascular disease risk and WMHs has been to 

control hypertension, which subsequently reduces the risk of cognitive 

deterioration10,11,49. In a randomized trial, active lowering of blood pressure was shown 

to stop or lower the progression of WMHs in patients with cerebrovascular disease over 

3 years of follow-up13. In the present cohort, we observed an association between WMH 

load and (systolic-diastolic) blood pressure for both PDs and controls (p<0.001). 

However, there is also evidence linking WMHs and dementia in PD to orthostatic 

hypotension, a common occurrence in PD which can be aggravated with anti-

hypertensive medication, especially as the disease progresses50. This further indicates 

the need for a tailored blood pressure management in PD patients, while extreme care 

should be taken to avoid overtreating hypertension. Finally, other small-vessel disease 

risk factors (some of which have been explored in the context of other pathologies, 

mainly AD, showing significant correlations with WMHs15,16) should be further 

explored to assess their relevance in WMHs severity and cognitive decline in PD. More 

importantly, most of these factors are potentially modifiable: percentage of small dense 

LDL cholesterol, triglycerides level, body mass index, tobacco consumption, type II 

diabetes, and insulin levels. More studies should focus on assessment of these risk 

factors in the context of PD and its WMHL. 

From a practical standpoint, WMHs can be quantified reliably and non-invasively on 

large samples and can be measured as a continuous trait, thus providing increased 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/230896doi: bioRxiv preprint 

https://doi.org/10.1101/230896


20 
 

 
 

statistical power to detect potential associations11. The image processing and WMH 

segmentation pipelines used in this study have been designed to process data from 

multi-center studies, are able to control biases due to multi-site MRI scanning (i.e. 

differences in acquisition parameters), and have been previously applied successfully to 

a number of multi-site projects51–53. The WMH segmentation pipeline has been trained 

and extensively validated on data from multiple scanners and different acquisition 

parameters to ensure inter-site and inter-scanner generalizability26. 

We acknowledge there are limitations to the present study. First, though their 

differences were accounted for in our analysis, segmentations were based on either T2-

weighted or FLAIR images, of which the latter has the better contrast for detecting 

WMHs. Second, subjects had these scans only at their baseline visit; therefore, we were 

not able to study the longitudinal changes of WMHs. Future studies investigating 

WMHs in PD during prodromal and pre-clinical stages are warranted, though there are 

inherent constraints in recruiting such a cohort. Also, the population under study 

included relatively cognitively intact individuals (none of the subjects met criteria for 

dementia), limiting the ability to detect important contributors. Longer follow-ups might 

further increase the observed differences. One potential confounding factor could be PD 

medication. However, previous studies have found no significant difference between PD 

patients on PD medications and PD patients off medications in MoCA and several other 

cognitive tasks54. Similarly, we found no relationship between MoCA and medication in 

PD patients. Another limitation is that we cannot identify the underlying mechanism. 

The WMHs might cause cognitive decline independent of PD, however the synergy 

between the two mechanisms may accelerate the cognitive decline. Alternatively, the 
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WMHs might aggravate the pathologic spread of misfolded α-synuclein proteins in PD. 

Another possibility is that WMHs in PD may promote amyloid propagation, similar to 

AD. 

In conclusion, our findings suggest that WMH burden is an important predictor of 

subsequent acceleration in cortical thinning and cognitive decline in early-stage de novo 

PD. Recognizing WMHs as early indicators of cognitive deficit, prior to onset of MCI or 

dementia, provides an opportunity for timely interventions22,51.  
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