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Spatial heterogeneity plays an important role in the evolution of drug resistance. While recent
studies have indicated that spatial gradients of selection pressure can accelerate resistance evolution,
much less is known about evolution in more complex spatial profiles. Here we use a stochastic toy
model of drug resistance to investigate how different spatial profiles of selection pressure impact
the time to fixation of a resistant allele. Using mean first passage time calculations, we show that
spatial heterogeneity accelerates resistance evolution when the rate of spatial migration is sufficiently
large relative to mutation but slows fixation for small migration rates. Interestingly, there exists an
intermediate regime—characterized by comparable rates of migration and mutation—in which the
rate of fixation can be either accelerated or decelerated depending on the spatial profile, even when
spatially averaged selection pressure remains constant. Finally, we demonstrate that optimal tuning
of the spatial profile can dramatically slow the spread and fixation of resistant subpopulations, even
in the absence of a fitness cost for resistance. Our results may lay the groundwork for optimized,
spatially-resolved drug dosing strategies for mitigating the effects of drug resistance.

Drug resistance is a rapidly growing public health
threat and a central impediment to the treatment of can-
cer, viruses, and microbial infections [1–4]. The battle
against resistance has been largely fought at the molecu-
lar level, leading to an increasingly mature understanding
of its underlying biochemical and genetic roots. At the
same time, evolutionary biologists have long recognized
resistance as a fundamentally stochastic process governed
by the complex interplay between microbial ecology and
evolutionary selection. The last decade, in particular,
has seen a significant surge in efforts to develop and un-
derstand evolution-based treatment strategies to forestall
resistance [5–16]. While the vast majority of this work fo-
cuses on spatially homogeneous environments, a number
of recent studies, both theoretical and experimental, have
demonstrated that spatial heterogeneity in drug concen-
tration can dramatically alter the evolutionary dynamics
leading to resistance [16–24]. On a practical level, the
picture that emerges is somewhat bleak, as resistance
evolution is dramatically accelerated in the presence of
spatial gradients in drug concentration [18–20, 22–24] or
heterogeneous drug penetration [17, 21]. Interestingly,
however, recent work shows that this acceleration can be
tempered or even reversed when the mutational pathway
(i.e. the genotypic fitness landscape) leading to resis-
tance contains fitness valleys [18], which are known to
inhibit evolution [25–28]. Unfortunately, because the fit-
ness landscape is a genetic property of the cells them-
selves, the potential for accelerated evolution appears to
be “built in”, making it difficult to combat in a treat-
ment setting. However, these results raise the question of
whether non-monotonic profiles of tunable properties of
the system—for example, the spatial selection pressure—
might also have the potential to slow evolution, even
when the mutational pathway lacks the requisite fitness
valleys.

Evolution in natural or clinical settings takes place

in heterogeneous environments characterized by spatial
fluctuations in multiple factors, including drug concen-
trations, nutrients, temperature, and pH, all of which po-
tentially affect cellular growth. Understanding evolution
and ecology in such spatially extended systems is a chal-
lenging and long-studied problem [29–33]. Recent stud-
ies have demonstrated rich dynamics when inter-cellular
interactions are defined on heterogeneous complex net-
works [34–36], where spatial structure can (for example)
promote invasive strategies in tumor models [35] or mod-
ulate fixation times on random landscapes [34]. Remark-
ably, in the weak selection limit, evolutionary dynam-
ics can be solved for any population structure [36], pro-
viding extensive insight into game-theoretic outcomes on
complex networks. In addition, theoretical tools from
statistical physics have proven useful for understanding
spatiotemporal dynamics in spatially structured popula-
tions in a wide range of contexts, including biologically-
inspired Monte Carlo models [18], toy models of source-
sink dynamics [19], stepping-stone models of spatial pat-
tern formation [37], models of dispersion [38–42], and
Moran meta-population models [43–45]. In a similar
spirit, here we use stochastic models of evolution along
with theoretical tools from statistical physics to inves-
tigate the effects of spatially heterogeneous fitness pres-
sures on the evolution of resistance. In contrast to pre-
vious models defined on heterogeneous networks at the
single-cell level, here we consider meta-populations con-
nected via simple topologies and investigate the effects
of spatial structure imposed by arbitrary distributions
of selection pressure. While several elegant approaches
exist for studying these models in particular limits (e.g.
with a center manifold reduction) [43–45], here we in-
stead use a classical mean first passage time approach
based on adjoint equations to reduce the calculation of
mean fixation times to a simple collection of linear equa-
tions that can be easily solved for arbitrary spatial distri-
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butions of selection pressures. This method also allows
us to find the fixation times from arbitrary initial states,
which are often difficult to compute using other meth-
ods. Using this approach, we show that resistance evo-
lution can be either accelerated or decelerated by spatial
heterogeneities in selection pressure, even when the spa-
tially averaged selection pressure remains constant. In
addition, we demonstrate that tuning the spatial distri-
bution of selection pressure can dramatically slow fixa-
tion when the subpopulations of resistant mutants are
not uniformly distributed in space.

To investigate resistance evolution on a spatially het-
erogeneous landscape, we consider a stochastic Moran-
like model [46] of a finite population (N) consisting of
(N −n∗) wild-type cells with fitness r0 ≤ 1 and n∗ drug-
resistant mutants with fitness r∗, which we set to unity
without loss of generality. Note that this model does not
include a fitness cost to resistance (i.e. r∗ ≥ r0 for all
conditions). At each time step, cells are randomly se-
lected for birth and death, with cells of higher fitness (in
this case, resistant cells) chosen preferentially for divi-
sion (see SI for full model with transition rates). Wild-
type cells can mutate to become drug resistant at rate
µ; we neglect reverse transitions to the drug-sensitive
state. To incorporate spatial heterogeneity, we consider
a simple spatially extended system with M distinct mi-
crohabitats, each containing N cells; cells are allowed
to migrate at rate β between connected microhabitats
(Fig. 1a). At each time t, the state of the system is char-
acterized by the vector n∗(xi) whose components corre-
spond to the number of mutants in each discrete micro-
habitat xi = 0, 1, ...,M−1. The system evolves according
to a continuous time master equation

dPm

dt
=

∑

m′

Ωmm′Pm′ , (1)

where m and m′ denote different states of the system
and Ω is a NM × NM matrix whose entries depend on
the wild-type fitness value r0(xi) at each spatial loca-
tion xi (see SI). For tractability, we restrict our analysis
to M = 3, which is the simplest model that allows for
potentially non-monotonic fitness landscapes, such as fit-
ness peaks and fitness valleys. In what follows, we refer
to the vector s(xi) ≡ 1 − r0(xi) as the spatial profile of
selection pressure, as it measures the difference in fitness
between resistant and wild-type cells in each microhabi-
tat (xi). Intuitively, large values of s(xi) correspond to
regions where the resistant mutant has a significant evo-
lutionary advantage over the wild-type cells (e.g. regions
of high drug concentration).

While Equation 1 is difficult to solve explicitly, it is
straightforward to calculate quantities that describe the
evolution of resistance in various spatial profiles. The
model consists of a single absorbing state—the fully re-
sistant state (n∗(xi) = N for all xi)—and the system

will asymptotically approach this state. To characterize
the speed of fixation in the presence of different spatial
profiles s(xi), we calculate the mean first passage times
(MFTPs) between states, which obey [47, 48]

−1 =
∑

m′ 6=mf

T (mf |m
′)Ωm′,mi

(2)

where T (mf |mi) is the mean time required for a system
initially in state mi to first reach state mf . We take mf

to be the fully resistant state and solve the coupled set
of linear equations for τ jf ≡ T (mf |j), where j is an index
that runs over all initial states. In particular, when j is
the fully wild-type population (n∗(xi) = 0 for all xi), we
refer to the MFPT as the mean fixation time τf .

In the case of a single microhabitat, the mean fixa-
tion time τf increases as selection pressure decreases (see
SI). In the spatially extended case, τf would also be ex-
pected to increase when the selection pressure is globally
decreased, though it should also depend on the spatial
structure of the specific selection profile s(xi). To in-
vestigate the impact of spatial structure alone, we com-
pared τf across different selection profiles s(xi), all of
which were characterized by the same spatially averaged
selection pressure, 〈s〉 =

∑
i s(xi)/M . For simplicity, we

begin with a symmetric profile characterized by a back-
ground selection pressure s0 in the edge habitats and a
relative peak of height δs in the center habitat (Fig. 1a).
This toy landscape has an average selection pressure of
〈s〉 = s0 + δs/M , and the parameters s0 and δs are con-
strained by the fact that 0 ≤ s(xi) ≤ 1 at all spatial
locations. We vary δs systematically to explore differ-
ent selection profiles, which can include a single selec-
tion pressure valley (δs < 0), a homogeneous landscape
(δs = 0), or a single selection pressure peak (δs > 0).

Interestingly, we find that modulating heterogeneity
(δs) can increase or decrease τf for certain choices of
migration and mutation rates, even when 〈s〉 is held con-
stant (Fig. 1b). More generally, we find that the β − µ
plane can be divided into three non-overlapping regions
where the homogeneous landscape 1) leads to the small-
est value of τf , 2) leads to the largest value of τf , or 3)
does not correspond to an extremum τf (Fig. 2a-b). In
the latter region, heterogeneity often modulates the fix-
ation time by only a few percent, but we do find larger
effects in the high and low migration limits (i.e. on the
edges) of the intermediate regime (Fig. S1). In addition,
as we increase β for a fixed value of µ, τf smoothly tran-
sitions from being minimized at δs = 0 to being maxi-
mized near δs = 0 (Fig. S1). We find empirically that
the fixation time can be dominated by τ1, the time re-
quired to achieve a small population of mutants (Fig. 2c,
rightmost panel) or τ2, the time required for this small
population to achieve fixation (Fig. 2c, leftmost panel).
However, in many cases—particularly those close to the
intermediate region where fixation can be accelerated or
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FIG. 1. (a) Stochastic model for emergence and spread of
resistant cells (red) in a spatially extended population of sen-
sitive cells (green). Each spatial habitat (xi) contains N total
cells. Cells migrate at a rate β between neighboring habitats,
and sensitive cells mutate at a rate µ to resistant cells. The
spatial distribution of selection pressure is characterized by a
background value (s0) and a peak height (δs). (b) Example
plot of the mean fixation time for different landscapes with
µ = 5 × 10−3, β = 0.08, N = 25, and 〈s〉 = 0.167. The
time to fixation can be either faster (green) or slower (red)
than the spatially homogeneous landscape with δs = 0. Inset:
selection landscapes for δs = −0.2 and δs = 0.5.

slowed by heterogeneity—both timescales contribute to
the dynamics. While we restrict ourselves primarily to
N = 25, 〈s〉 = 1/6, and to symmetric landscapes, we
find qualitatively similar results (i.e. 3 distinct regions)
for other values of 〈s〉 (Fig. S2), N (Fig. S3), as well as
for permuted selection profiles (Fig. S4), globally coupled
profiles (Fig. S4), and monotonic (gradient) selection pro-
files (Fig. S5).

To intuitively understand these results, we developed
a simple analytical approximation for τf (see SI, Equa-
tion S16) valid in the limit µ, β ≪ 1, where the fixa-
tion time is dominated by the arrival times of individ-
ual mutants (either from de novo mutation or from mi-
gration from a neighboring vial that has achieved fix-
ation). In this limit, the three habitats achieve fix-
ation one at a time, and fixation in a single habitat
is approximated as an exponential process with rate
λ(s, nfix) = N(µ+βnfix)Pfix(s), where nfix is the num-
ber of neighboring vials that have already achieved fixa-
tion and Pfix = s(1 − (1 − s)N )−1 is the probability of
a single mutant fixing in a habitat with selection pres-
sure s (see SI). The approximation captures the quali-

tative features of fixation over a wide range of µ and β
(Fig. S7) and, in many cases, provides excellent quanti-
tative agreement as well (see, for example, Fig. 2b, left
panel and Fig. S7).

In general, the analytical approximation for τf is alge-
braically cumbersome. However, in the limit β ≪ µ, the
approximation reduces to the expected maximum of three
independent exponential random variables, leading to
τf ≈ τmax = λ−1

0 +λ−1
1 +λ−1

2 −(λ0+λ1)
−1−(λ0+λ2)

−1−
(λ1 + λ2)

−1 + (λ0 + λ1 + λ2)
−1, with λi ≡ λ(s(xi), 0)

(see SI for details). In this limit, the three-vial system
acts effectively as three independent systems, with the
overall fixation time corresponding to the slowest fixa-
tion. After rewriting τmax in terms of 〈s〉 and δs, it
is straightforward to show that (∂τmax/∂δs)|δs=0 = 0
and (∂2τmax/∂δs

2)|δs=0 > 0, indicating that the ho-
mogeneous landscape (δs = 0) minimizes the fixation
time, consistent with results of the exact calculation
(Fig. 2b, left panel). Intuitively, increasing heterogeneity
reduces the minimum selection pressure in the spatial ar-
ray, which in turn slows the expected maximum fixation
time among the three habitats.

By contrast, in the limit µ ≪ β, τf reduces to the ex-
pected minimum of three independent exponential pro-
cesses, leading to τf ≈ τmin = (λeff )

−1, where λeff ≡
λ0+λ1+λ2. In this limit, the fixation time is dominated
by dynamics in the vial that first achieves fixation; the
remaining vials then rapidly achieve fixation due to fast
migration. For large but finite N , the fixation time τmin

is maximized at δs = 0, indicating that heterogeneity al-
ways accelerates fixation, again consistent with the exact
calculation (Fig. 2b, right panel). In this limit, the ef-
fective rate of fixation λeff is increased for all δ 6= 0, as
heterogeneity decreases fixation time in the vial with the
fastest average fixation.

Our results indicate that a judicious choice of selec-
tion pressure profile can potentially slow fixation of de
novo mutants. In addition, selection pressure profiles
can be optimized to mitigate the effects of resistance
once it has emerged. One advantage of the MFPT ap-
proach (i.e. solving Equation 2) is that it provides fixa-
tion times starting from all possible initial states, mak-
ing it straightforward to apply to cases where a resistant
subpopulation already exists. Specifically, consider a sit-
uation where a resistant subpopulation has arisen at a
particular spatial location. Is it possible to choose the
spatial distribution of selection pressure—for example,
by spatially dosing the drug—to minimize the time to
fixation from this state? Intuitively, the goal is to delay
the onset of treatment failure as long as possible. As an
illustrative example, we consider a population consisting
of N/2 mutants in the center microhabitat and calculate
the mean time to fixation for different spatial profiles of
selection pressure. We then find the optimal value for
δs—that is, the heterogeneity corresponding to the spa-
tial landscape with the slowest fixation time—in different
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FIG. 2. Spatial heterogeneity can speed or slow fixation de-
pending on the rates of migration (β) and mutation (µ). (a)
Phase diagram illustrates region of parameter space where
the homogeneous landscape leads to a maximum (light blue),
minimum (dark blue) or intermediate (medium blue) value
of the in fixation time. MFPT calculations were performed
for the indicated values of β and µ and for −0.2 ≤ δs ≤ 0.5
in steps of 0.1. (b) Sample fixation curves in the regions
where heterogeneity slows fixation (left panel, diamonds;
β = 10−4, µ = 10−4) or accelerates fixation (right panel,
squares; β = 5× 10−2, µ = 10−4). Solid curves indicate ana-
lytical approximations. (c) Gray shaded region indicates fix-
ation time τf from every initial state (n∗(x0), n

∗(x1), n
∗(x2)),

where n∗(xi) is the initial number of mutants at position xi.
Red curves show mean fixation time over all initial states with
a given total mutant fraction. Vertical arrows represent time
to achieve a total mutant fraction of 1/5 (τ1, blue) and time
to go from that fraction to fixation (τ2, green). Left to right
panels: increasing β at a fixed value of µ = 10−4; plots cor-
respond to symbols on phase diagram in panel (a). N = 25
and 〈s〉 = 0.167 in all panels.

regions of parameter space (Fig. 3a). The specific choice
of spatial profile significantly impacts the time to fixa-
tion from the initial resistant subpopulation (Fig. 3b).
We observe two distinct regions of parameter space that
lead to two very different dosing regimes (Fig. 3c). For
µ sufficiently large relative to β, slowest fixation occurs
when we maximize the amount of drug in the center mi-
crohabitat (δs = 0.5, white region). On the other hand,

FIG. 3. (a) Schematic: a subpopulation of resistant mutants
(red) arises at a particular spatial location. How can one
choose the spatial distribution of selection pressure (i.e. drug
concentration) to maximize the time to fixation? (b) Hetero-
geneity can significantly speed or slow fixation starting from
an initial resistant subpopulation consisting of N/2 cells in
the center habitat (µ = 10−5, β = 8 × 10−3). (c) The op-
timal spatial heterogeneity (δs) leading to the slowest mean
fixation time from an initial state of (0, N/2, 0). Depending
on the specific parameter regime, the optimal selection pres-
sure profile is the one with the largest possible valley consis-
tent with 〈s〉 (black) or the one having the largest possible

peak (white). (d) Relative magnitude of τ δsmax
f (mean fixa-

tion time at maximum value of δs) and τ δsmin
f (mean fixation

time at minimum value of δs) as mutation rate decreases at
constant migration rate (green arrow, panel (c)). N = 25 and
〈s〉 = 0.167 in all panels.

at large migration rates fixation is optimally slowed by
maximizing the amount of drug in the two microhabitats
without any initial mutants (δs = −0.2). In contrast to
the case with no initial mutants (e.g. Figure 2), fixa-
tion time is never maximized by choosing the homoge-
neous profile. To further characterize these two regimes,
we compare the fixation times from a maximally peaked
landscape (δs is maximized) to that from a landscape
with a large valley (δs is minimized). The selection land-
scape that leads to the slowest fixation rapidly becomes
sub-optimal as mutation rate is decreased at constant β
(Fig. 3d).

Our model is a dramatic oversimplification of the bi-
ological dynamics leading to drug resistance. Practical
applications will require analysis of more realistic mod-
els and may call for spatial optimizations with different
constraints–for example, limits on the maximum allow-
able local selection pressure. Nevertheless, the simplicity
of our model allows for a thorough characterization of
fixation time over a wide range of parameters, and its
behavior is surprising rich. Importantly, our results do
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not require a fitness cost of resistance or a genetic fit-
ness valley, and they predict that spatial heterogeneity in
drug concentrations would impact populations of motile
and non-motile cells in opposing ways, even when mu-
tations rates are relatively similar. While heterogeneity
is likely to accelerate evolution for populations of motile
bacteria, similar to what is observed in experiments with
E. coli [22, 24], our results predict slowed evolution for
less motile cells (e.g. the nosocomial pathogen E. fae-

calis [49]) or cells with rapid mutation rates. Perhaps
most interestingly, our results suggest counter-intuitive,
spatially optimal profiles for slowing the spread of re-
sistance sub-populations. In the long term, these results
may lay the groundwork for optimized, spatially-resolved
drug dosing strategies for mitigating the effects of drug
resistance.
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