bioRxiv preprint doi: https://doi.org/10.1101/230854; this version posted December 7, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

Tuning Spatial Profiles of Selection Pressure to Modulate the Evolution of Resistance

Maxwell G. De Jong' and Kevin B. Wood! 2

! Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
2 Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, US

Spatial heterogeneity plays an important role in the evolution of drug resistance. While recent
studies have indicated that spatial gradients of selection pressure can accelerate resistance evolution,
much less is known about evolution in more complex spatial profiles. Here we use a stochastic toy
model of drug resistance to investigate how different spatial profiles of selection pressure impact
the time to fixation of a resistant allele. Using mean first passage time calculations, we show
that spatial heterogeneity accelerates resistance evolution when the rate of spatial migration far
exceeds that of mutation but slows fixation when mutation dominates. Interestingly, there exists an
intermediate regime—characterized by comparable rates of migration and mutation—in which the
rate of fixation can be either accelerated or decelerated depending on the spatial profile, even when
spatially averaged selection pressure remains constant. Finally, we demonstrate that optimal tuning
of the spatial profile can dramatically slow the spread and fixation of resistant subpopulations, which
may lay the groundwork for optimized, spatially-resolved drug dosing strategies for mitigating the

effects of drug resistance.

Drug resistance is a rapidly growing public health
threat and a central impediment to the treatment of can-
cer, viruses, and microbial infections [IH4]. The battle
against resistance has been largely fought at the molecu-
lar level, leading to an increasingly mature understanding
of its underlying biochemical and genetic roots. At the
same time, evolutionary biologists have long recognized
resistance as a fundamentally stochastic process governed
by the complex interplay between microbial ecology and
evolutionary selection. The last decade, in particular,
has seen a significant surge in efforts to develop and un-
derstand evolution-based treatment strategies to forestall
resistance [5HI6]. While the vast majority of this work fo-
cuses on spatially homogeneous environments, a number
of recent studies, both theoretical and experimental, have
demonstrated that spatial heterogeneity in drug concen-
tration can dramatically alter the evolutionary dynamics
leading to resistance [16H24]. On a practical level, the
picture that emerges is somewhat bleak, as resistance
evolution is dramatically accelerated in the presence of
spatial gradients in drug concentration [I8-20] 22H24] or
heterogeneous drug penetration [I7, 21]. Interestingly,
however, recent work shows that this acceleration can be
tempered or even reversed when the mutational pathway
(i.e. the genotypic fitness landscape) leading to resis-
tance contains fitness valleys [18], which are known to
inhibit evolution [25H28]. Unfortunately, because the fit-
ness landscape is a genetic property of the cells them-
selves, the potential for accelerated evolution appears to
be “built in”, making it difficult to combat in a treat-
ment setting. However, these results raise the question
of whether non-monotonic profiles of tunable properties
of the system—for example, the spatial selection pres-
sure, which depends on the distribution of multiple envi-
ronmental factors—might also have the potential to slow
evolution, even when the mutational pathway lacks the
requisite fitness valleys.

Evolution in natural or clinical settings takes place
in heterogeneous environments characterized by spatial
fluctuations in multiple factors, including drug concen-
trations, nutrients, temperature, pH, and host immune
responses, all of which potentially affect cellular growth
and selection pressure. Understanding evolution and
ecology in such spatially extended systems is a chal-
lenging and long-studied problem [29H31]. Recent stud-
ies have demonstrated rich dynamics when inter-cellular
interactions are defined on heterogeneous complex net-
works [32H34], where spatial structure can (for example)
promote invasive strategies in tumor models [33] or mod-
ulate fixation times on random landscapes [32]. Remark-
ably, in the weak selection limit, evolutionary dynam-
ics can be solved for any population structure [34], pro-
viding extensive insight into game-theoretic outcomes on
complex networks. In addition, theoretical tools from
statistical physics have proven useful for understanding
spatiotemporal dynamics in spatially structured popula-
tions in a wide range of contexts, including biologically-
inspired Monte Carlo models [18], toy models of source-
sink dynamics [19], stepping-stone models of spatial pat-
tern formation [35], models of dispersion [36H38], and
Moran meta-population models [39H41]. In a similar
spirit, here we use stochastic models of evolution along
with theoretical tools from statistical physics to inves-
tigate the effects of spatially heterogeneous fitness pres-
sures on the evolution of resistance. In contrast to pre-
vious models defined on heterogeneous networks at the
single-cell level, here we consider meta-populations con-
nected via simple topologies and investigate the effects of
spatial structure imposed by arbitrary distributions of se-
lection pressure. While several elegant approaches exist
for studying these models in particular limits (i.e. with
a center manifold reduction when timescale separations
exist) [39H4T], here we instead use a classical mean first
passage time approach based on adjoint equations to re-
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duce the calculation of mean fixation times to a simple
collection of linear equations that can be easily solved
for arbitrary spatial distributions of selection pressures.
This method also allows us to find the fixation times from
arbitrary initial states, which are often difficult to com-
pute using other methods. Using this approach, we show
that resistance evolution can be either accelerated or de-
celerated by spatial heterogeneities in selection pressure,
even when the spatially averaged selection pressure re-
mains constant. In addition, we demonstrate that tuning
the spatial distribution of selection pressure can dramat-
ically slow fixation when the subpopulations of resistant
mutants are not uniformly distributed in space.

To investigate resistance evolution on a spatially het-
erogeneous landscape, we first consider a stochastic
Moran-like model [42] of a finite population (N) consist-
ing of (N —n*) wild-type cells with fitness 7y < 1 and n*
drug-resistant mutants with fitness r*, which we set to
unity without loss of generality. At each time step, cells
are randomly selected for birth and death, with cells of
higher fitness (in this case, resistant cells) chosen prefer-
entially for division (see SI for full model with transition
rates). Wild-type cells can mutate to become drug re-
sistant at rate p; we neglect reverse transitions to the
drug-sensitive state. To incorporate spatial heterogene-
ity, we consider a simple spatially extended system with
M distinct microhabitats, each containing N cells; cells
are allowed to migrate at rate 8 between connected mi-
crohabitats (Fig. . At each time ¢, the state of the
system is characterized by the vector n*(z;) whose com-
ponents correspond to the number of mutants in each
discrete microhabitat x; = 0,1,..., M — 1. The system
evolves according to a continuous time master equation

dP,,
W:ZQmm’Pm’a (1)

where m and m’' denote different states of the system
and © is a N™ x NM matrix whose entries depend on
the wild-type fitness value 7o(z;) at each spatial loca-
tion z; (see SI). For tractability, we restrict our analysis
to M = 3, which is the simplest model that allows for
potentially non-monotonic fitness landscapes, such as fit-
ness peaks and fitness valleys. In what follows, we refer
to the vector s(z;) = 1 — ro(z;) as the spatial profile of
selection pressure, as it measures the difference in fitness
between resistant and wild-type cells in each microhabi-
tat (z;). Intuitively, large values of s(x;) correspond to
regions where the resistant mutant has a significant evo-
lutionary advantage over the wild-type cells (e.g. regions
of high drug concentration).

While Equation [I] is difficult to solve explicitly, it is
straightforward to calculate quantities that describe the
evolution of resistance in various spatial profiles. First,
we note that the model consists of a single absorbing
state—the fully resistant state (n*(z;) = N for all z;)—
and the system will asymptotically approach this state.

To characterize the speed of fixation, we would like to
calculate moments of the first passage time distribution
for our system to reach this absorbing state in the pres-
ence of different spatial profiles s(x;). The mean first
passage for a system governed by Equation 1 obeys the
following equation [43], 44]

1= Z T(mys|m") Qs m, (2)

m’/#my

where T'(my|m;) is the mean time required for a system
initially in state m,; to first reach state my. When my is
chosen to be the fully resistant state (n*(z;) = N for all
x;), the coupled set of linear equations in Equation can
be solved for the mean time to fixation from all initial
states, which provides a wealth of information on the dy-
namics of resistance evolution (we note that similar equa-
tions also exist for higher moments of the first passage
time distribution). In particular, we are interested in the
mean fixation time 7y, defined as the mean first passage
time from a fully wild-type population (n*(z;) = 0 for
all x;) to a fully resistant population.

In the case of a single microhabitat, it is intuitively
clear that the mean fixation time 7; will increase as
selection pressure decreases. In the spatially extended
case, 7¢ would also be expected to increase when the
selection pressure is globally decreased by a constant
amount, though it should also depend on the spatial
structure of the specific selection profile s(z;). To in-
vestigate the impact of spatial structure alone, we com-
pared 7; across different selection profiles s(x;), all of
which were characterized by the same spatially averaged
selection pressure, (s) =Y. s(x;)/M. For simplicity, we
begin with a symmetric profile characterized by a back-
ground selection pressure sg in the edge habitats and a
relative peak of height s in the center habitat (Fig. .
This toy landscape has an average selection pressure of
(s) = sg 4+ ds/M, and the parameters sp and ds are con-
strained by the fact that 0 < s(x;) < 1 at all spatial
locations. We vary ds systematically to explore differ-
ent selection profiles, which can include a single selec-
tion pressure valley (ds < 0), a homogeneous landscape
(6s = 0), or a single selection pressure peak (s > 0).

The mean fixation time 7¢ for p = 5 x 107% and
B = 0.08 is shown in Fig. Interestingly, the mean fix-
ation time can take values that are higher or lower than
the spatially homogeneous landscape with ds = 0, even
though (s) is constant across all selection landscapes. To
understand the trade-offs that lead to accelerated or de-
celerated resistance, we repeated the calculation for a
broad range of 1 and 3 values. The parameter space can
be divided into three non-overlapping regions where the
homogeneous landscape 1) leads to the smallest value of
7r, 2) leads to the largest value of 7y, or 3) does not cor-
respond to an extremum 75 (Fig. . While we restrict
ourselves primarily to N = 25, (s) = 0.167, and to sym-
metric landscapes, we find qualitatively similar results
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FIG. 1. (a) Stochastic model for emergence and spread of
resistant cells (red) in a spatially extended population of sen-
sitive cells (green). Each spatial habitat (z;) contains N total
cells. Cells migrate at a rate 8 between neighboring habitats,
and sensitive cells mutate at a rate u to resistant cells. The
spatial distribution of selection pressure is characterized by a
background value (so) and a peak height (ds). (b) Example
plot of the mean fixation time for different landscapes with
p=>5x10"3% 8 = 0.08, N = 25, and (s) = 0.167. The
time to fixation can be either faster (green) or slower (red)
than the spatially homogeneous landscape with ds = 0. Inset:
selection landscapes for §s = —0.2 and ds = 0.5.

(i.e. 3 distinct regions) for other values of (s) (Fig. S1),
N (Fig. S2), as well as for permuted selection profiles
(Fig. S3), globally coupled profiles (Fig. S3), and mono-
tonic (gradient) selection profiles (Fig. S4).

These results can be intuitively understood as follows.
The dynamics leading to fixation are dominated by three
main timescales: 7q: the time to have a stable, small pop-
ulation of mutants; 75: the time required for this popu-
lation to grow to dominate the system; and 75: the time
required for this large mutant population to become fixed
in the population. The fixation time is thus the sum of
these three different timescales, which are set by the se-
lection pressure landscape as well as the parameters p
and S. In the limit 8 << pu, the three microhabitats are
essentially independent. Thus, the fixation time of the
system is simply the slowest of the three independent
fixation times. In Fig. we see that any spatial hetero-
geneity slows down the emergence of fixation in this limit.
Spatial heterogeneity necessarily results in a microhabi-
tat with a smaller wild-type selection pressure than would
be possible in the spatially homogeneous landscape. This

FIG. 2. Spatial heterogeneity can speed up or slow fixation
depending on the rates of migration and mutation. (a) Phase
diagram illustrates region of parameter space where the homo-
geneous landscape leads to a maximum (light blue), minimum
(dark blue) or intermediate (medium blue) value of the in fix-
ation time. Lower panels show sample fixation curves in the
regions where any heterogeneity slows fixation (b, § = 1074,
p = 1073) or accelerates fixation (c, 8 = 1072, u = 107°).
N =25 and (s) = 0.167 in all panels.

microhabitat consequently requires more time to reach
fixation, which is dominated by 73 in this regime.

In the limit p << B, any spatial heterogeneity leads to
faster fixation (Fig. 2c). In this limit of small mutation
rate, fixation is limited by the time it takes to acquire
resistant mutants—7; is dominated by 7. In this sense,
the initial seed mutants are evolutionarily “expensive”.
In microhabitats with a large selection pressure s(z;),
wild-type cells are less likely to replicate at the expense
of an existing mutant—that is, the mutant is less likely
to be lost by genetic drift—making these microhabitats
ideal for initial seed mutants. For this reason, spatial
heterogeneity speeds up evolution in this region (see also
SI, including Fig. S6 and Fig. S7).

In general, spatial heterogeneity produces two conflict-
ing influences on the fixation time. As spatial hetero-
geneity increases, the selection pressure of the highest
wild-type selection microhabitat further increases, which
allows mutants to safely emerge and decreases 7. But
the selection pressure of the minimum wild-type selec-
tion microhabitat necessarily decreases, which increases
73. In the two limiting cases of the parameters, one of
these timescales dominates the fixation time, resulting in
intuitive results. But outside of these limits, the fixation
time is not dominated by a single timescale, resulting
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FIG. 3. (a) Minimum fixation times (7/"") over different
selection pressure distributions (relative to fixation times in
homogeneous case, T}SS:O) in the intermediate parameter re-
gion where fixation can be both accelerated and decelerated.
N = 25 and (s) = 0.167. (b) Across a specific trajectory in
the intermediate region (arrow in panel (a)), the dependence
of 74 on heterogeneity (ds) transitions smoothly from a state
with a minimum at ds = 0 (lightest curve) to one with a
maximum at ds = 0 (darkest curve). For ease of comparison,
fixation times are scaled to arbitrary units between 0 and 1.

in non-trivial selection landscapes leading to the fastest
fixation. To further investigate evolution in the interme-
diate regime, we calculated the minimum fixation times
(T}’“") over different selection pressure distributions and
normalized them relative to fixation times in homoge-
neous case T}SS:O (Fig. . For many of the parameter
values resulting in intermediate behavior, we see little de-
viation from the behavior observed in the limit 5 << p,
where ds = 0 leads to the fastest fixation. However, we
observe that there are parameter values that show sig-
nificant deviation as we increase 3; for example, in the
high migration limit of the intermediate regime, fixation
times can be decreased by more than 14 percent. To
understand how the spatial 7; profiles change over this
intermediate region, we fix p and traverse across a tra-
jectory in 3 as shown by the arrow in Fig. [Ba] The re-
sulting spatial 7; profiles for each pair of parameters is
displayed in Fig. We observe that as we increase [3,
7 smoothly transitions from being minimized at ds = 0
to being maximized near §s = 0.

While fixation time from the purely wild-type to the
purely resistant state can be perturbed by varying the

spatial selection pressure profile, it is not clear how these
results would change given a subpopulation of resistant
cells. In practical terms, consider a situation where re-
sistance has arisen at some spatial location, but it has
not yet had time to spread uniformly over the popula-
tion. Is it possible to choose the spatial distribution of
selection pressure—for example, by spatially dosing the
drug—to minimize the time to fixation from this state?
To investigate this question, we consider a population
consisting of N/2 mutants in the center microhabitat and
calculate the mean fixation from this initial state for dif-
ferent spatial profiles of selection pressure. Specifically,
we calculate the optimal value for §s—that is, the het-
erogeneity corresponding to the spatial landscape with
the slowest fixation time—in different regions of param-
eter space (Fig. . We observe two distinct regions of
parameter space that lead to two very different dosing
regimes. In the region p >> f3, slowest resistance occurs
when we maximizing the amount of drug in the center
microhabitat (ds = 0.5). Interestingly, however, in the
regime 5 >> p fixation is optimally slowed by maximiz-
ing the amount of drug in the two microhabitats without
any initial mutants (§s = —0.2). This counter-intuitive
result suggests that the optimal strategy for slowing fix-
ation would be to maximally dose the drug in regions of
space that currently lack resistant mutants.

We can understand this behavior by fixing a value of 3
and changing p across the two different regimes. When
u is relatively large compared to B, fixation requires
mutations to emerge indepedently in each of the three
microhabitats. As a result, the optimal strategy is to
minimize selection pressure in the microhabitats without
mutants, thereby increasing the fixation times in those
spatial regions. As we decrease i, mutations become in-
creasingly “expensive” and the impact of migration is
increased. In this case, fixation is achieved most slowly
by minimizing the selection pressure in the microhabitat
with initial mutants, since losing this small initial pop-
ulation requires waiting for another random mutation,
which happens with a small probability in this param-
eter regime. To further understand these two regimes,
we can compare the fixation times with the largest val-
ues of §s to that obtained with the smallest value of ds
consistent with physical selection values. In Fig. we
see that the selection landscape that leads to the slowest
fixation rapidly becomes sub-optimal as mutation rate is
decreased at constant [3.

Our results demonstrate that spatial heterogeneity in
selection pressure can modulate the mean fixation time of
resistant mutants, with homogeneous profiles leading to
maximum, minimum, or intermediate fixation times de-
pending on the rates of mutation and migration. While
we have focused on symmetric spatial profiles, similar
qualitative results appear to hold for a wide range of
spatial profiles and connection topologies. Importantly,
our results predict that spatial heterogeneity in drug
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FIG. 4. (a) Schematic: when a subpopulation of mutants
(red) is not uniformly distributed in space, the spatial distri-
bution of selection pressure (i.e. drug concentration) can be
chosen to impact the mean fixation time. (c) The optimal
spatial heterogeneity (ds) leading to the slowest mean fixa-
tion time from an initial state of (0, N/2,0) with N = 25 and
(s) = 0.167. Depending on the specific parameter regime, the
optimal selection pressure profile is the one with the largest
possible valley consistent with (s) (black) or the one having
the largest possible peak (white). (d) Relative magnitude
of TJ‘ES’"‘” (mean fixation time at maximum value of ds) and
T?s"”" (mean fixation time at minimum value of §s) as muta-
tion rate decreases at constant migration rate (green arrow,

panel (c)).

concentrations would impact populations of motile and
non-motile cells in opposing ways, even when mutations
rates are relatively similar. While heterogeneity is likely
to accelerate evolution for populations of motile bac-
teria, similar to what is observed in experiments with
E. coli [22, [24], our results predict slowed evolution for
less motile cells (e.g. the nosocomial pathogen E. fae-
calis [45]) or cells with rapid mutation rates. Perhaps
most interestingly, our results suggest counter-intuitive,
spatially optimal profiles for slowing the spread of re-
sistance sub-populations. In the long term, these results
may lay the groundwork for optimized, spatially-resolved
drug dosing strategies for mitigating the effects of drug
resistance.
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