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Abstract 38 

Forecasting anthropogenic changes to ecological communities is one of the central challenges in 39 

ecology. However, nonlinear dependencies, biotic interactions and data limitations have limited 40 

our ability to assess how predictable communities are. Here we used a machine learning 41 

approach and environmental monitoring data (biological, physical and chemical) to assess the 42 

predictability of phytoplankton cell density in one lake across an unprecedented range of time 43 

scales. Communities were highly predictable over hours to months: model R2 decreased from 44 

0.89 at 4 hours to 0.75 at 1 month, and in a long-term dataset lacking fine spatial resolution, 45 

from 0.46 at 1 month to 0.32 at 10 years. When cyanobacterial and eukaryotic algal cell density 46 

were examined separately, model-inferred environmental growth dependencies matched 47 

laboratory studies, and suggested novel trade-offs governing their competition. High-frequency 48 

monitoring and machine learning can help elucidate the mechanisms underlying ecological 49 

dynamics and set prediction targets for process-based models. 50 
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Introduction 60 

Forecasting how environmental change will alter communities and ecosystems is perhaps the 61 

most important task facing ecologists today, and a tremendous challenge to our ecological 62 

understanding (Mouquet et al. 2015, Petchey et al. 2015, Houlahan et al. 2016). Nonlinear 63 

relationships (such as between temperature and most biological processes), stochasticity and 64 

sensitive dependence on initial conditions are sources of uncertainty that community ecology 65 

shares with other predictive disciplines, such as climate science. However, ecology additionally 66 

has to grapple with biotic interactions in complex food webs, evolutionary change, and a paucity 67 

of data with which to assess predictive power and refine models (Magurran et al. 2010). 68 

Therefore, with few exceptions (notably in disease ecology, e.g. Axelsen et al. 2015), we do not 69 

know how predictable ecological communities are (i.e. how strong the association between 70 

present and future system states is, a proxy for forecast ability). Quantifying this would allow us 71 

to understand the time scale over which we can provide actionable input for management and 72 

legislative decision-making, recently termed the ecological forecast horizon (Petchey et al. 73 

2015).  74 

To make accurate long-term forecasts, ecology needs to develop process-based forecasts akin 75 

to those prevalent in climate science. Correlational approaches based on present conditions and 76 

abundances are likely to make inaccurate forecasts over decadal time-scales because patterns 77 

of environmental covariation will change in the future (Williams et al. 2007). Process-based 78 

models avoid this problem but are a challenge to design because of their complexity. This arises 79 

from of a lack of knowledge of the functional forms (or shape) relating population/community 80 

change to environmental factors, and a lack of data with which to parameterise them (Kremer et 81 

al. 2016). The scale of this challenge is highlighted by recent work showing that complex, highly 82 

nonlinear interactions between abiotic factors are a regular feature of physiological and 83 

ecological processes (Zhu et al. 2016, Zimmer et al. 2016, Edwards et al. 2016, Thomas et al. 84 
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2017). Designing process-based models using a traditional approach may require extensive 85 

experimental work examining high-dimensional interactions. High-throughput screening 86 

technologies are helping to address this problem. But in many cases, a traditional experimental 87 

approach to understanding interactions (i.e. through multidimensional factorial experiments) may 88 

not be realistic given present funding and experimental constraints. 89 

Machine learning (ML) algorithms offer us an alternative path towards the creation of these 90 

process-based models. When presented with complex environmental datasets, ML allows us to 91 

avoid the most important constraints inherent in traditional statistical approaches (a priori 92 

specification of functional forms, interactions and error distributions). Despite relying on 93 

underlying correlations, ML algorithms can improve substantially on traditional correlative 94 

analyses (Rivero-Calle et al. 2015, Kehoe et al. 2012, 2016). They can be used on complex 95 

datasets to assess associations (Rivero-Calle et al. 2015) and quantify predictability in the 96 

absence of the knowledge needed for a process-based model (Ewers et al. 2017). Even more 97 

importantly, they can be used to infer the functional forms and interactions needed to develop 98 

process-based models. This approach will require large datasets, but as ecology enters the ‘big 99 

data’ era, acquiring this is becoming feasible for many systems. As the cost of data acquisition 100 

continues to decrease, ML may prove a more efficient approach (relative to high-dimensional 101 

factorial experiments) to assessing community predictability and understanding the drivers of 102 

complex ecological dynamics.  103 

Natural communities of microbes such as phytoplankton are vital parts of most biogeochemical 104 

cycles and food webs (Field et al. 1998, Falkowski et al. 1998), and so assessing their 105 

predictability is especially important. Phytoplankton have generation times on the order of a day, 106 

and respond extremely rapidly to environmental change: shifts on time-scales of minutes to 107 

hours are sufficient to elicit physiological and ecological changes (Goldman & Glibert 1982, 108 
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Demers et al. 1991, Hemme et al. 2014). Despite this sensitivity to environmental conditions, we 109 

do not know the time-scales over which phytoplankton community dynamics may be predicted.  110 

Historically, most plankton monitoring campaigns have measured the community at coarse time-111 

scales of once to twice a month (Jochimsen et al. 2012), amounting to tens of generations. 112 

These efforts have helped us understand broad changes driven by eutrophication and 113 

environmental warming (Pomati et al. 2012, Jochimsen et al. 2012), helping to make the case for 114 

policies limiting further changes. However, with rare exceptions (notably Hunter-Cevera et al. 115 

2014, 2016), plankton monitoring efforts have not captured data needed to accurately assess 116 

community predictability across time scales. High-frequency monitoring campaigns that sample 117 

communities and environmental drivers on sub-daily time-scales can partly address this (Pomati 118 

et al. 2011, Merel 2013, Pomati et al. 2013, Hunter-Cevera et al. 2014, 2016), filling in pieces of 119 

the picture that coarser long-term datasets have hinted at. They also provide us with the quantity 120 

of data needed to profitably employ ML tools.  121 

We quantified the predictability of phytoplankton cell density over time scales ranging from 4 122 

hours to 10 years, or approximately 10-1 to 103 generations. Cell density, or the abundance of 123 

phytoplankton cells per unit volume, is the most important parameter characterising the 124 

phytoplankton community. It is a strong proxy for phytoplankton biomass (including in our 125 

system, Fig. S1) and for primary productivity, an important ecosystem property. We 126 

characterised predictability of cell density in Greifensee, a meso-eutrophic peri-alpine lake in 127 

Switzerland. The Greifensee plankton community, chemistry and physics have been monitored 128 

for >30 years, during which it has seen dramatic changes in biology as a result of eutrophication 129 

and re-oligotrophication (Bürgi et al. 2003). We make use of two complementary datasets 130 

examining the Greifensee phytoplankton community: (1) High-frequency data from monitoring 131 

campaigns carried out in the summer and autumn of 2014 and 2015. Cell density was measured 132 

at 6 different depths (Fig. 1) using scanning flow cytometry (SFCM), and environmental data 133 
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were also collected (Table S1). (2) A long-term time series created from monthly measurements 134 

of depth-integrated phytoplankton measurements (Fig. 1), as well as associated environmental 135 

factors (Table S2). Although the datasets differ in methodology and size, they measure 136 

substantially similar biological, physical and chemical factors (Tables S1, S2). Given the length 137 

of the two datasets and their sampling frequency and location, we are able to directly compare 138 

predictability in the two datasets at a time lag of 1 month.  139 

In addition to community density, ecology aims to predict the dynamics of functional groups and 140 

taxa. Especially because toxic cyanobacterial blooms are a major health concern (Chorus & 141 

Bartram 1999, Paerl & Huisman 2009, Paerl et al. 2011, Merel et al. 2013), we also assessed 142 

the predictability of cyanobacterial cell density over these time scales, and the drivers of 143 

competitive dynamics between cyanobacteria and eukaryotic phytoplankton (Fig. 2). Eukaryotic 144 

densities have remained relatively stable in Greifensee since the 1980s, while average 145 

cyanobacterial densities first increased 100-fold during eutrophication and then decreased by a 146 

similar amount over this time period as a result of re-oligotrophication (Fig. 2). Understanding the 147 

drivers of growth and competition between these two broad phytoplankton groups can help us 148 

refine process-based models of water quality, with important implications for the management of 149 

aquatic ecosystem services. 150 

Methods 151 

I. Overview 152 

Greifensee is a peri-alpine lake in Switzerland (47.35°N, 8.68°E) with a documented history of 153 

eutrophication and re-oligotrophication (Bürgi et al. 2003). The lake is currently meso-eutrophic, 154 

32 m deep at its deepest point and just over 20 m deep at the sampling locations used for both 155 

datasets.  156 
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We use two datasets in this study: a high-frequency dataset consisting of measurements every 4 157 

hours during the summer and autumn of 2014 and 2015 using the automated monitoring station 158 

Aquaprobe (Pomati et al. 2011), and a long-term dataset consisting of monthly measurements 159 

from March 1984 to June 2016. In both cases, important environmental data (both abiotic and 160 

biotic) was collected simultaneously near the middle of the lake, allowing similar analyses to be 161 

conducted and thereby enabling comparisons. However, the datasets differ in important ways:  162 

i) The high-frequency dataset involved measurements by SFCM, while the long-term dataset 163 

involved microscopy measurements. Therefore, sampling effort and density assessment 164 

methods differ.  165 

ii) The high-frequency dataset consists of measurements at six specific depths (1.0, 2.5, 4.0, 5.5, 166 

7.0 and 8.5m). Abiotic environmental data were also estimated at the same depth as the 167 

collected sample. In contrast, the long-term dataset consists of integrated phytoplankton 168 

measurements across the top 20m of the lake. Abiotic measurements were not integrated, but 169 

collected at specific depths (except for light, which is a surface estimate), and so we calculated 170 

the maximum and minimum value of each abiotic factor in the top 20m for use as our predictors.  171 

iii) The high-frequency dataset consists of 7161 measurements, while the long-term dataset 172 

contains 383 measurements.   173 

II. High-frequency dataset generation 174 

1. Scanning flow cytometry description: We used a scanning flow cytometer, the CytoSense 175 

(http://www.cytobuoy.com), to quantify the density of the total phytoplankton community as well 176 

as its cyanobacterial and eukaryotic algal fractions (estimated densities are strongly correlated 177 

with estimates from microscopy, Fig. S2). The CytoSense characterizes the scattering and 178 

pigment fluorescence of individual phytoplankton cells. It measures cells and colonies across a 179 

large proportion of the phytoplankton length range, between approximately 2 µm and 1 mm in 180 
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length. Particles that enter the system cross two coherent 15mW solid-state lasers. The 181 

instrument’s laser and sensor wavelengths are designed to target the fluorescence signals 182 

primarily from chlorophyll-a and phycocyanin, but also capture signals from phycoerythrin and 183 

carotenoids. We used two different instruments 2014 and 2015, with small differences in 184 

configuration. Instrument settings and data processing steps may be found in the supplementary 185 

information. 186 

2. SFCM field sampling procedure: All samples were collected from a floating platform 187 

Aquaprobe (Pomati et al. 2011) near the middle of the lake (47.3663°N, 8.665°E). Every four 188 

hours, water was sampled automatically at each of the 6 depths (as described in Pomati et al. 189 

2011). Water samples were pumped into a 150 mL sampling chamber at the surface through a 190 

tube with a 0.6-cm diameter opening. The sampling chamber was flushed with water from the 191 

sampling depth three to five times over 2 minutes before the CytoSense collected a subsample 192 

of up to 500 µL for measurement. 193 

3. Environmental factors: The full list of environmental parameters is found in Table S1. We 194 

measured temperature, conductivity and irradiance at all depths. We also collected weekly 195 

depth-specific samples for dissolved nutrient (nitrate, phosphate, ammonium) concentration 196 

estimation, and integrated measurements of size-fractionated zooplankton. We also monitored 197 

meteorological factors including wind speed and rainfall, and made use of additional data 198 

provided by the Office of Waste, Water, Energy and Air (AWEL) of Canton Zürich on water inflow 199 

(including flow rate, temperature and nutrient concentrations) into the lake. Detail of sampling 200 

procedures, instruments used and measurement methodology may be found in the 201 

supplementary information.  202 

 203 

 204 
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III. Long-term dataset 205 

1. Field sampling procedure: Approximately every month, water samples were collected for 206 

physical, chemical and biological measurements near the centre of the lake (47.3525°N, 207 

8.6748°E), approximately 1.5 km from the floating platform used for the high-frequency 208 

measurements. For microscopic counts of the phytoplankton community, an integrated water 209 

sample was collected over the upper 20 m of the water column with a Schröder sampler (Bürgi 210 

et al. 2003).  211 

2. Environmental factors: The full list of parameters is found in Table S2. To measure chemical 212 

and physical parameters, water samples were collected every 2.5 m over the whole water 213 

column, at the same location and on the same dates, and were analysed using standard 214 

limnological methods (Rice et al. 2012). Integrated zooplankton samples were collected over the 215 

upper 20 m of the water column. We also made use of a publicly available surface irradiance 216 

dataset (Schulz et al. 2008, Müller et al. 2015) to estimate the monthly-averaged irradiance at 217 

the water surface based on interpolated estimates from a location approximately 2 km from the 218 

sampling location (47.35°N 8.65°E). More details about sampling procedures, instruments used 219 

and measurement methodology may be found in Bürgi et al. (2003).  220 

3. Data processing: For every time point, we calculated the maximum and minimum value of 221 

every depth-specific parameter (such as phosphate concentration) across the entire water 222 

column, and used these for subsequent analyses. Additionally, samples were not collected on 223 

the same day every month and, in rare cases, more than one sample was collected in a month. 224 

We therefore aggregated measurements by rounding to the nearest month and then averaged 225 

duplicate values.  226 

IV. Machine learning analyses 227 
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1. Random forests overview: Random forests (RFs) are a robust ML tool comprising ensembles 228 

of regression trees (or classification trees) (Breiman 1999). In each regression ‘tree’ within the 229 

random ‘forest’, a randomly selected subset of the data is recursively partitioned based on the 230 

most strongly associated predictor. At each node, a random subset of the total number of 231 

predictors is considered for partitioning. The final tree ‘prediction’ for new data is given by the 232 

average value of the data within each branch of the tree. By aggregating predications across 233 

trees, RFs are able to reproduce arbitrarily complex shapes patterns without a priori functional 234 

form specification.  235 

We took advantage of three features that make RFs a flexible and useful tool for examining 236 

ecological systems: permutation importance, easy quantification of partial effects of individual 237 

predictors, and out-of-bag prediction.  238 

 (i) The importance of each predictor in a RF is assessed by permuting the predictor across all 239 

trees in the forest and quantifying the resulting change in the forest’s error rate. More important 240 

predictors lead to a greater increase in error when permuted.  241 

(ii) The partial effect of any single predictor on the dependent variable can also be quantified, 242 

allowing us to examine the functional form of the relationship (which may be arbitrarily nonlinear, 243 

though non-bifurcating).  244 

(iii) Out-of-bag (OOB) prediction allows us to make accurate estimates of error rate and 245 

goodness of fit (model R2) via a process akin to cross validation (Breiman 1999). Each data 246 

point is present in the training data of only a subset of all ‘trees’ that comprise the ‘forest’. 247 

Therefore, the value of every point may be predicted using the trees that have not been trained 248 

with it. The ‘OOB prediction error’, or mean difference between the OOB predictions and the true 249 

value of all points in the dataset (see Fig. S3, S4 for examples using our data) can be used to 250 

quantify the RF’s predictive ability through a pseudo-R2:  251 
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𝑅𝑅2 = 1 −
𝑀𝑀𝑀𝑀𝑀𝑀
𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦)

 252 

where MSE is the mean squared error of the OOB predictions when compared to the true 253 

values, and var(y) is the variance in the dependent variable. As in the case of a standard R2, a 254 

pseudo-R2 has an upper bound of 1, indicating perfect model performance. However, note that 255 

unlike a standard R2, there is no lower bound. It is possible for the pseudo-R2 to be negative, if 256 

MSE > var(y). This may be interpreted as saying that the model prediction is worse than the 257 

mean value of the dependent variable in the entire dataset. In our analyses, we saw low, 258 

negative values of pseudo-R2 in a small number of cases; we rounded these values to zero to 259 

avoid confusion, while noting this in the figure captions.  260 

2. Data pre-processing: In our analyses, we omitted: i) all entries cases where the dependent 261 

variable was missing, and ii) the predictors sampling depth and sampling time. We omitted the 262 

latter in order to accurately estimate the effects of predictors that covary with depth and time on 263 

cell density. In other words, we believe that gradients in light, temperature and nutrients should 264 

characterise most of the relevant information contained within depth and time.  265 

3. Quantifying predictability: We quantified the predictability of log cell density of the total 266 

phytoplankton community, and the cyanobacterial and eukaryotic fractions, using the pseudo-R2 267 

calculated based on the OOB predictions of the fitted model (see details above). We estimated 268 

predictability at time lags ranging from 4 hours to 1 month in the high-frequency dataset, and 269 

from 1 month to 10 years in the long-term dataset. For every time lag, we fit two models, 270 

predicting log cell density using: 1) only log cell density at the specified time lag, and 2) both log 271 

cell density and environmental parameters at the specified time lag. E.g. our simplest model 272 

considering a time lag of four hours predicted log cell density at all time points using only log cell 273 

density from the measurement four hours previously.  274 
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4. Predictor importance: We assessed the importance of predictors at all time lags using the 275 

change in model error rate when the predictor values were permuted.  276 

5. Partial effects of environment on growth: We quantified the model-inferred effects of 277 

environmental factors on cyanobacteria and eukaryotes. Instead of examining the effects of 278 

these predictors on log density, we instead examined how they influence the population growth 279 

rate (i.e. specific growth rate, day-1, the rate of change in density between successive time 280 

points). We did this to facilitate comparison between the partial effects in our field dataset and 281 

extensive prior laboratory findings for the same predictors. However, the functional forms 282 

remained highly similar to the model explaining log density.  283 

We focussed on two factors that are known to influence phytoplankton growth (Litchman & 284 

Klausmeier 2008) and were identified as important in our analyses: light and temperature.  285 

Because laboratory studies typically measure the effects of environmental factors on population 286 

growth rate per day, we multiplied the estimates of growth rate over four hours by 6 to express 287 

them in the same units. We then fitted RFs to these population growth rates using environmental 288 

parameters at a 4-hour lag and estimated their partial effects. Note that we omitted log density 289 

as a predictor, but model structure was otherwise identical to those previously described.  290 

Though we were also interested in the effects of dissolved nitrate, phosphate and N:P ratio, we 291 

had less well-resolved data for these predictors that limited the power of analyses relating to 292 

these factors. 293 

5. Model fitting and settings: All analyses were done in the R statistical environment v3.3.3 (R 294 

Core Team 2017) using the package randomforestSRC (Ishwaran & Kogalur 2007, Ishwaran & 295 

Kogalur 2017). We used 2000 trees for every forest, and set the number of predictors to be 296 

considered at each node to be one-third of the total number of predictors. Missing data among 297 
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the predictors were imputed for the purpose of model fitting, but imputed values were not used 298 

for predictor importance assessment (Ishwaran & Kogalur 2007, Ishwaran & Kogalur 2017).  299 

Results 300 

Phytoplankton cell density was highly predictable on time scales of hours to months. In our high-301 

frequency dataset, pseudo-R2 of the RF models trained with cell density and environmental data 302 

decreased from 0.89 at a 4 hour lag to 0.74 at a lag of 1 month (Fig. 3). The model using only 303 

cell density as a predictor had a lower R2 at all time lags. As time lag increased, including 304 

environmental data led to larger improvements in predictability: the difference in R2 between the 305 

two models was 0.03 at a 4 hour lag, and ten times higher (0.30) at a lag of 1 month (Fig. 3). In 306 

the long-term dataset, R2 of the model trained with cell density and environmental data 307 

decreased from 0.46 at a time lag of 1 month to 0.35 at 6 months, after which it remained 308 

relatively stable (Fig. 3). R2 in the density-only model was lower at all time lags.  309 

Aside from cell density, which was the strongest predictor at all time lags in our high-frequency 310 

dataset, the most important predictors were light, temperature and thermocline depth, itself an 311 

indirect effect of temperature (Fig. 4). Light and temperature were also most important in our 312 

long-term dataset on time scales of months (Fig. 4). At time-scales of years, dissolved 313 

phosphorus and zooplankton density become more important.  314 

Cyanobacteria were more predictable than eukaryotes at all time scales, in both high-frequency 315 

and long-term datasets (Fig. 3). Model R2 for cyanobacteria was consistently higher that than for 316 

eukaryotes by approximately 5-20 percentage points (Fig. 3), in both types of models (cell 317 

density only and cell density with environmental data). 318 

To motivate the development of process-based models of phytoplankton competition, we also 319 

examined the partial effects of environmental factors on the growth rate of cyanobacteria and 320 

eukaryotic algae (Fig. 5). Temperature and light, the strongest predictors in our dataset, showed 321 
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biologically realistic nonlinear patterns. Additionally, in both cases, each group dominated a 322 

region of parameter space, suggesting the presence of trade-offs in performance. 323 

Discussion 324 

Assessing the predictability of natural communities is crucial if we are to develop forecasts of 325 

how ecosystems will be altered by anthropogenic environmental change (Petchey et al. 2015, 326 

Mouquet et al. 2015, Houlahan et al. 2016). However, our ability to predict community dynamics 327 

has been limited by our understanding of environmental dependencies and biotic interactions 328 

(McGill et al. 2006). Our results suggest that lake phytoplankton communities are highly 329 

predictable over time scales of hours to months, approximately 10-1 to 102 generations, and 330 

possibly longer (Figs. 3, S5). Our approach quantifies the decline in predictability with increasing 331 

time lag, identifies the predictors that contribute to predictive power, and points towards realistic 332 

trade-offs and parameterisations through the examination of partial effects. Together, these can 333 

inform the development of process-based models, set targets for their forecasts to achieve, and 334 

identify a forecast horizon for adaptive management strategies. This is especially true in the 335 

case of cyanobacteria, which are a threat to human health and aquatic ecosystem services 336 

because of toxin production, and are believed to be hard to forecast (Chorus & Bartram 1999, 337 

Paerl & Huisman 2009, Paerl et al. 2011, Merel et al. 2013). We find cyanobacterial densities to 338 

be consistently more predictable than those of eukaryotes (Fig. 3). 339 

As our understanding of ecological processes improves, the limits to predictability of ecological 340 

systems will be determined by more fundamental constraints such as stochasticity, and sensitive 341 

dependence on initial conditions. Despite these forces, we find strong, ecologically important 342 

environmental forcing in a natural system across a range of time scales (Figs. 3-5). 343 

Consequently, we believe that process-based models are very likely to provide us with useful 344 

predictions over medium-to-long time scales. In other words, we believe that despite the 345 

complexity of phytoplankton communities, the ecological forecast horizon (Petchey et al. 2015) 346 
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is sufficiently distant for ecologists to provide useful input into adaptive management strategies. 347 

Note that we do not quantify a specific horizon here because this requires the specification of a 348 

(arbitrary) forecast threshold; if desired, readers may choose these thresholds for themselves 349 

and identify the resulting forecast horizon from Fig. 3. 350 

Light and temperature were strongly predictive of phytoplankton dynamics across time scales 351 

(Fig. 4), consistent with existing ecological understanding (Litchman & Klausmeier 2008). We 352 

also found that zooplankton density and dissolved phosphorus concentrations become highly 353 

predictive on time scales longer than a year, consistent with an ongoing, multidecadal decrease 354 

in phosphorus and biomass in Greifensee (Buergi et al. 2003). This identification of variables 355 

that are known to play a major role in phytoplankton ecology strengthens our confidence in the 356 

relationships underlying our metric of predictability. However, we note that predictor importance 357 

– while a useful tool – is sensitive to missing data patterns. Our estimates therefore understate 358 

the importance of two major groups of predictors in our high frequency data: nutrients and 359 

zooplankton density. Unlike most other predictors that were measured every four hours, these 360 

were measured weekly in 2014 and twice a week in 2015 (Table S1). To partially correct for this 361 

difference, we also assessed the relative importance of all predictors when these were 362 

interpolated using generalised additive models (GAMs) (Fig. S6). Models with interpolated 363 

nutrients and zooplankton predictors had marginally higher R2 values and these predictors rose 364 

considerably in importance, especially dissolved nitrogen. We believe that these results are 365 

noteworthy, but choose not to focus on them here because we are unable to validate the 366 

interpolated estimates.  367 

Importantly, the predictive power of environmental factors in our models arises from nonlinear 368 

dependencies that are consistent with causal relationships established through lab studies (Fig. 369 

5; Litchman & Klausmeier 2008). Light, one of the most important predictors, has a partial effect 370 

on growth that is a saturating function for cyanobacteria and a right-skewed unimodal function 371 
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for eukaryotes (Fig. 5); these are the only shapes consistent with laboratory measurements of 372 

light-dependent growth (Eilers & Peeters 1998, Edwards et al. 2015). The partial effect of 373 

temperature is an increasing function and possibly a left-skewed unimodal curve, consistent with 374 

prior eco-physiological findings, including in phytoplankton (Kingsolver 2009, Thomas et al. 375 

2012, Thomas et al. 2016). This concordance between controlled lab studies and ML-derived 376 

field patterns increases our confidence in the suitability of this ML approach, and suggests that 377 

the relationships we have uncovered are likely to be useful in guiding process-based model 378 

creation. Furthermore, it suggests that ML approaches may be used to discover novel ecological 379 

patterns. This is particularly important in the case of interactions between factors, which 380 

presently require labour-intensive and expensive multifactorial experiments to understand. 381 

The partial effects that we show here (Fig. 5) point towards trade-offs that could enable the co-382 

existence of cyanobacteria and eukaryotes. Cyanobacteria appear to benefit from high light 383 

intensity and high temperature, while eukaryotes have a growth advantage in the converse 384 

conditions. Therefore, temporal heterogeneity in one or both of these dimensions could allow for 385 

the maintenance of both these groups (Chesson 2000). Cyanobacteria do possess higher 386 

optimal temperatures for growth than eukaryotic phytoplankton at temperate latitudes (Thomas 387 

et al. 2016), consistent with the temperature-dependence we see (Fig. 5). The apparent trade-off 388 

between growth at high and low light intensities was not seen in a synthesis of lab-measured 389 

light traits (Schwaderer et al. 2011), but at present, measurements are available only from a 390 

small number of species and may be influenced by interactions with other factors. Laboratory 391 

data on a broader range of species and under a greater range of conditions will be needed to 392 

resolve this discrepancy. If true, the pattern we observe in the field also suggests an explanation 393 

underlying the formation of surface scums by cyanobacteria through buoyancy regulation (Paerl 394 

et al. 2011, Carey et al. 2012). Scum formation - important due to the negative impact on lake 395 

ecosystem services - is consistent with a cyanobacterial benefit from higher irradiance. In 396 

contrast, eukaryotes appear to have a lower optimal irradiance and might experience photo-397 
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degradation from surface growth. These observations offer an example of the insights that may 398 

be gained through a combination of high-frequency monitoring and machine learning.  399 

Our models may understate the long-term predictability of the phytoplankton community. The 400 

difference in predictability between high-frequency and long-term datasets at a time lag of 1 401 

month suggests that if a similar methodology was followed in the long-term dataset, reasonably 402 

high R2 values may have been obtained over time scales of years, not just months. This 403 

difference is driven by several factors: 1) our high-frequency dataset includes measurements of 404 

both phytoplankton and environmental factors at specific depths, as opposed to integrated 405 

values across the water column as in the long-term dataset, 2) the high-frequency dataset has 406 

more than an order of magnitude more data points (7161 vs. 383) with which to train the 407 

machine learning algorithm, and 3) the long-term dataset explores a far greater range of 408 

parameter space in temperature, nutrient concentration, zooplankton density and unmeasured 409 

factors. Of the three, we believe depth-specific sampling may be the major factor, as the 410 

difference in model R2 at a lag of one month is <15% in the case of the cell density-only models, 411 

and 30% in the models with both cell density and environmental factors (Fig. 3). However, we 412 

also note that in more complex systems where migration is a larger factor – such as coastal and 413 

open-ocean communities – predictability may be lower unless physical circulation patterns are 414 

highly predictable as well. 415 

It is important to note that although pseudo-R2 provides estimates of predictability that are robust 416 

(Breiman 1999), we have not assessed a true forecast, in which error is allowed to compound 417 

through time. This approach can in principle be used to make a forecast, but we chose not to do 418 

so because of large changes in environmental conditions towards the end of the 2014 and 2015 419 

monitoring seasons. Attempting to forecast would require us to predict in conditions well outside 420 

those that the model was trained on, where it will inevitably perform poorly. Despite this 421 

limitation, we believe that out-of-bag error is a useful proxy for forecast error: the realistic 422 
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environmental dependencies (Fig. 5) highlight that we are uncovering the mechanisms 423 

underpinning ecological dynamics. In the future, a broader sampling of parameter space 424 

(through a year-round monitoring campaign) should allow us to make and test true forecast skill.  425 

We have shown that high-frequency environmental monitoring and machine learning 426 

approaches can be usefully employed to uncover patterns in complex ecological communities, to 427 

assess the predictability of these communities, and to uncover dependencies that can then be 428 

incorporated into process-based models of communities and ecosystems. This can help us 429 

address fundamental questions in ecology: What are the drivers of ecological processes and 430 

how does this change through time? How large of an effect does environmental and 431 

demographic stochasticity have on communities? What are the dominant trade-offs that maintain 432 

diversity in natural systems and how do they operate in dynamic environments? But perhaps 433 

more importantly, it can allow us to improve our forecasts of ecological systems, fulfilling a 434 

fundamental obligation that ecology owes to society.  435 
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Fig. 1. Dynamics of cell density of the total phytoplankton community, in both the high-frequency and long-term datasets from 566 
Greifensee. High-frequency measurements were made every 4 hours in summer-fall 2014 and 2015, at six depths. Long-term 567 
measurements were made monthly from 1984 to 2016 and were integrated over the top 20m. Note that X-axes are on different 568 
scales in each panel. Y-axes are identical for the top two panels but differ for the third. 569 
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Fig. 2. Dynamics of cell density of the cyanobacteria and eukaryotic phytoplankton, in both the high-frequency and long-term 571 
datasets from Greifensee. High-frequency measurements were made every 4 hours in summer-fall 2014 and 2015, at six 572 
depths. Long-term measurements were made monthly from 1984 to 2016 and were integrated over the top 20m. Note that X- 573 
and Y-axes are on different scales in each column.  574 
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Fig. 3. Decline in predictability of the phytoplankton community with time, characterised by the random forest pseudo-R2. The 576 
predictive contribution of environmental information increased with increasing time lag (distance between solid and dashed 577 
lines increases). Cyanobacteria were consistently more predictable than eukaryotes. Despite overlap between high-frequency 578 
and long-term datasets at a time lag of 1 month, there is a decline in predictability likely driven by the lack of depth resolution 579 
in plankton and environmental data in the long-term dataset. The spike in R2 of the ‘cell density only’ models at 1 year reflects 580 
strong annual cycles in density. Note that pseudo-R2 values can go negative (see Methods), and we rounded a few slightly 581 
negative values up to zero. We present the same results in terms of change in Mean Absolute Error with increasing time lag in 582 
Fig. S5. 583 
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Fig. 4. The most important predictors of phytoplankton cell density at different time lags, ordered by descending rank. Light 585 
and temperature (directly, or indirectly through thermocline depth) were important predictors at most time scales. In the long-586 
term dataset, phosphorus and zooplankton density become highly important predictors at time scales of >1 year. Only the 587 
most important variables are shown here, for legibility (the top 5 predictors contribute >80% of the predictive power in most 588 
cases). In the high-frequency dataset, only variables that are in the top 10 most important for at least one time lag are shown, 589 
while in the long-term dataset we show only variables that appear in the top 5 most important at least once. See Tables S4 and 590 
S5 for the importance of all variables tested.  591 
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Fig. 5. Partial effects of important environmental variables on the population growth rates of cyanobacteria and eukaryotes, based on an RF 593 
model with a 4-hour time lag. The patterns reveal environmental dependencies consistent with lab experiments and suggest trade-offs with 594 
important ecological implications. Cyanobacteria appear to benefit from high light and high temperature. Wholly negative partial effects 595 
reflect the fact that in 2015, the community was decreasing through the majority of the monitoring campaign. Therefore, differences in 596 
shape and magnitude are highly informative, but the absolute estimates are only indicative. This is especially true because interactions 597 
between variables are captured by the complete forest prediction, but are not visible in single-dimension partial effects plots. Note that Y-598 
axes are on different scales.  599 
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