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ABSTRACT 
 
Throughout their evolutionary history, humans have faced risks including drought, disease, 
natural disasters and other unexpected negative events. To deal with these risks, humans 
use a variety of risk management strategies, some of which involve relying on others in 
times of need in order to pool risk. However, the effectiveness of risk pooling strategies can 
be limited when there is high synchronicity of need. Here we investigate the limits of two 
resource transfer systems for pooling risk (need-based transfers, NBT, and debt-based 
transfers, DBT) in simulated ecologies with different degrees of correlated disasters using an 
agent-based model of the need-based transfer system of the Maasai. Overall, we find that 
survival is higher when shocks are less correlated among partners, when groups are larger, 
and when network structure is characterized by preferential attachment networks, which 
have a more modular structure than regular or small world networks. We also find that NBT 
strategies consistently outperform DBT strategies across a wide variety of parameter values 
and that the advantage of NBT over DBT is greatest when shocks are less correlated and 
group size is small. Our results also suggest that systems of sharing that are based on 
recipient need are less vulnerable than systems that are based on debt and credit, especially 
in small world and regular networks.  
 
Keywords: Risk-pooling, Agent-based modelling, Need-based transfers, social 
network, small-scale societies 
 
INTRODUCTION 
Risk is an unavoidable part of life for any organism living in a complex and changing 
environment.  Humans have faced risks including drought, disease, natural disasters and 
other negative events throughout their evolutionary history. Part of the human solution to 
managing these risks is to help each other in times of need. Managing risk through being 
social is an ancient strategy - in fact the need to manage risk more effectively is one of the 
reasons that cells evolved to be multicellular, where they could share resources and engage 
in other social risk management practices (1). Thus, risk management is an adaptive 
problem that we have had to solve, not just since our human beginnings, but going back all 
the way to the very origins of life. 
 
The risks that humans encounter can take many forms. Although some of these risks have 
positive expected values (e.g., windfalls to big game hunters in small scale societies; 2), 
many of them are negative. Every organism lives in an ecology that has some variation in 
resources over time and space, and many organisms live in environments where they 
encounter acute or chronic negative events. In human behavioral ecology the term risk 
refers to “unpredictable variation in an outcome with consequences that matter” (3). 
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Humans use several different strategies to manage risk (4). These include risk retention (i.e., 
accepting risk and absorbing losses), risk avoidance (i.e., reducing dependence on high 
variability outcomes), risk reduction (i.e., lowering the probability of or the size of losses), 
and risk transfer (i.e., moving risk from one party to another). In this framework, risk transfer 
is of particular interest for our understanding of human social behavior because it is the only 
risk management strategy that requires cooperation (2). One common form of risk transfer is 
risk-pooling (also referred to as risk-sharing). Risk pooling involves individuals sharing some 
of the risk of unexpected negative events. For example, among hunter-gatherers, if one 
individual has no food and another has more than they need as a result of successful 
foraging, the lucky individual may share with the unlucky individual, buffering that unlucky 
individual from the risks of unsuccessful foraging.  
 
Humans are unusual as a species because they form long-standing, non-reproductive 
relationships with unrelated individuals, i.e friendships, and cooperation is a defining feature 
of these friendships (5). Humans also learn from and influence each other, showing a clear 
predisposition to cultural transmission (6). These facts contribute to the propensity of 
humans to form social networks, which can range in size from dozens to millions of people 
(7). Social networks show impressive structural regularities (7; 8), and both theoretical 
models and empirical results suggest that networks may have facilitated the development of 
large-scale cooperation in human beings (9; 10; 11; 12; 13). 
 
To discover the possibly adaptive origins of human social networks and their relationship to 
cooperation, Apicella and colleagues (14) examined network features among Hadza 
foragers, whose way of life is thought to resemble that of our early ancestors (15). They find 
that cooperators tend to be connected to cooperators at both the dyadic and network level, 
conditions necessary to sustain cooperation (16). 
 
Different network topologies can lead to different dynamics and different levels of resilience 
of the networks to perturbations.  For example, Ash and Newth (17) demonstrated that 
preferential attachment networks (i.e, networks with modular components) are highly 
resilient to external perturbations and internal cascading effects. Modular components can 
help to isolate failures or, as in our models, shocks, and to reduce the overall complexity of 
the system. In modular networks, the consequences of local shocks are often propagated 
and resolved locally, affecting only a small part of the network and protecting most of the 
network from the perturbation. Less modular (e.g., regular networks and small-world 
networks) are more susceptible to the effects of shocks and show a lower resilience to them. 
In the present paper we explore how network topology interacts with the sharing system 
used by individuals in the network. We ask how vulnerable these networks are to collapse 
and whether network modularity is protective for both need-based and debt-credit based 
systems. 
 
Risk pooling systems can be based on need or on debt-credit relationships 
This model is inspired largely by the system of risk pooling through need-based transfers 
among Maasai and other Maa-speaking pastoralists in East Africa called osotua, the literal 
meaning of which is “umbilical cord.”  Osotua partners rely on their partners for help in times 
of need. For example, if a herder does not have enough livestock to support his family, he 
may ask one or more of his osotua partners for enough to bring his family up to the level 
necessary for survival. Transfers between osotua partners create neither credit nor debt, and 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 7, 2017. ; https://doi.org/10.1101/230607doi: bioRxiv preprint 

https://doi.org/10.1101/230607


there is no expectation that there will be an overall balance in total number of cattle 
transferred between partners, even over the long run. Transfers between osotua partners 
occur only in response to requests, and such requests must arise from genuine need and 
must be limited to the amount actually needed. Osotua relationships are imbued with 
respect, restraint, and a sense of great responsibility: in other words, they are sacred bonds 
(18, 2). Though the details vary, similar need-based transfer systems exist in many societies, 
from fisher-horticulturalists in Fiji to hunter-gatherers in Tanzania (2). These and other 
societies are part of The Human Generosity Project (www.humangenerosity.org), a large-
scale transdisciplinary effort to study the biological and cultural influences on human 
cooperation through a combination of fieldwork, human subjects experiments, and 
computational modeling.   
 
As part of The Human Generosity Project, we have designed and implemented several 
agent-based models that allowed us to explore the viability of various cooperative strategies 
for individuals living in different ecologies. This effort began with an agent-based model 
involving simulated pairs of osotua partners (19). In that model, herd survival was defined in 
terms of the agents’ success at keeping their herd sizes above a critical threshold, which 
was derived from the literature on herd demography and household food needs among East 
African pastoralists (20, 21). Agents whose herds dropped below the critical threshold for 
two consecutive rounds were removed from the simulation. Next we explored the viability of 
need-based transfers in simple networks that varied in size, connectedness and 
heterogeneity.  We found that larger, more connected and more heterogeneous networks 
had higher herd survival.  We also found that a selective asking rule, in which agents asked 
for help from their wealthiest partners, outperformed a random asking rule, in which agents 
asked for help from a randomly chosen partner (22). 
 
Need-based transfer systems such as osotua are not the only form of resource transfer that 
can help to pool risk. Debt-based systems, such as those involving lending and credit, can 
also act as a safety net for individuals falling on tough times or needing resources for other 
reasons. In fact, the Maasai also have a debt-based transfer system called esile, which 
translates simply as “debt” (23). Esile exists side by side with the need-based transfer 
osotua system. Esile and osotua follow very different rules. In esile, unlike in osotua, credit 
and repayment of debts are the essence of the relationship: there is expectation from both 
parties that the debt will be repaid through an elaata, which means to set free or untie a knot 
(24; see also 2). Aktipis et al. (25) compared the need-based osotua system and the debt-
based esile system in a dyadic interaction model, finding that need-based transfers lead to 
more risk pooling and higher survival than debt-based transfers. Moreover, need-based 
systems outperformed debt-based systems as the size and frequency of disasters 
increased. In the present paper we build on this previous work by placing agents in social 
networks with different features and exploring the impact of the synchronicity of disasters on 
the viability of these need-based vs. debt-based transfer systems. 
 
Because many other pastoralist societies also have sharing rules that can be considered 
equivalent to osotua and esile (26; 27, 28; 29; 30; 31;32), we follow Aktipis et al. (25) and 
Cronk et al. (2) in using a more general, less Maasai-specific set of terms, referring to osotua 
as “need-based transfers” and esile as “debt-based transfers.”  We operationalize need-
based transfers and debt based transfers algorithmically in resource transfer rules used by 
the agents in our model (see Model description below). 
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The limits of risk pooling 
In the current paper, we investigate the limits of risk pooling in networks with different 
topologies and in environments with high or low synchronicity of need. Sharing systems 
based on risk pooling can help to buffer individuals from risks in the environment (see 33 for 
a network-based modelling approach; and, 34 for an agent-based model of the influence that 
resource availability has on cooperation in the context of hunter-gatherer societies). 
However, if many individuals are simultaneously in need, then there may not be enough 
helping capacity in the system for individuals to recover from a negative event.  When 
negative events strike many individuals simultaneously, it can be much more difficult for 
individuals to find others who are able to help because of the synchronicity of need. Among 
Maasai and other pastoralists, such a situation can arise due to a regional drought or 
epizootic disease.  
 
The effectiveness of risk pooling can also be limited by the size and structure of the network 
- the more individuals there are to call on, the more likely individuals will be to find others 
who can help. But the structure of the network may also lead to unexpected vulnerabilities if 
shocks can reverberate and weaken the capacity of the network to future shocks. For these 
reasons, we varied both networks size and structure to explore the limits of both NBT and 
DBT strategies for pooling risk. 
 
METHODS 
 
Model 
 
We used NetLogo (35) to model a population of agents in networks with varying topologies 
(Fig. 1). In this model, each node/agent in the network represents a household/family of 
approximately six individuals and each link represents a connection to another family in the 
network. Each agent begins with a herd of 70. The initial stock of 70 grows or shrinks during 
each time step of the simulation at a rate normally distributed around a mean of 3.4% (20). 
The maximum cattle herd size allowed in the model is 600, which represents a realistic 
approximation of the maximum cattle herd size for an averaged-sized household. During 
each time step there is also a chance of a loss (e.g., through a drought or a disease 
spreading in the herd). Following estimates of a family’s caloric needs and productivity in the 
dry season (20), we set the minimum size of a viable herd at 64 units as in (19, 22, and 25) 
(Fig. 2). Finally, across models we vary the probability, pshocks, that a loss is correlated 
among agents (i.e., it affects all agents at the same time) from 0 to 1 with steps of 0.1. 
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Figure 1. Examples of the network topologies used in our model. a) Regular network, b) 
Small-world network, and, c) Preferential attachment network. 
 

 
Figure 2. Model schedule. Each cycle of the model consists of five different steps or 
phases. In the first phase stock grows and each herd increases in size following the growth 
rate parameter. In the second phase potential disaster strikes may occur following the 
parameter volatility rate, and herds may consequently decrease in size following the 
parameter volatility size. In the third phase a request is made by agents in need according to 
the strategy they adopt. In the fourth phase resources may be transferred according to the 
strategy adopted by agents providing help. Finally, in the fifth phase, a viability check is 
performed to remove from the model agents with herd size below the sustainability threshold 
of 64 for two consecutive rounds (or years). 
 
We simulated both need-based and debt-based livestock transfers between individuals by 
implementing these rules as algorithms that could be employed by each agent. 
 
Need-based transfers: If you drop below the critical threshold for livestock holdings, ask 
your wealthiest partner for help (i.e., agents used a selective asking rule rather than a 
random asking rule as in 22); if you are asked for help and can afford to provide it without 
putting yourself below the critical threshold for survival, do so. 
 
Debt-based transfers: Debt-based transfer agents also asked for help when they were in 
need. But otherwise they differed from need-based transfer agents. Debt-based agents only 
transfer cattle if they are asked by a partner who is in good standing. These debt-based 
agents kept track of the amounts they owed to and were owed by the other agents in their 
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networks. Recipients of loans repaid these loans as soon as they had enough livestock to do 
so without going below the sustainability threshold of 64 units. If five rounds went by after a 
transfer without repayment, then the agent who gave the loan considered this partner to no 
longer be in good standing and therefore would not provide a loan to this agent in the future. 
 
In the appendix we provide an algorithmic description of both transfer strategies.  
 

GLOSSARY 
 
Regular network 
In graph theory, a regular graph (or network) is a graph where each node has the same 
number of neighbors. In other words, every node has the same degree (i.e., number of 
connections with other nodes).  
 
Small-world network 
A small-world network is a network where the typical distance, L, between two randomly 
chosen nodes (the number of steps required) grows proportionally to the logarithm of the 
number of nodes N in the network (Watts & Strogatz 1998). In the context of a social 
network, this results in the small world phenomenon of strangers being linked by a short 
chain of acquaintances. Many empirical graphs show the small-world effect, e.g., social 
networks, the underlying architecture of the Internet, wikis such as Wikipedia, and gene 
networks. 
 
Preferential attachment network 
Preferential attachment means that the more connected a node is, the more likely it is to 
be connected to other nodes. Intuitively, preferential attachment can be understood if we 
think in terms of social networks connecting people. Here a link from A to B means that 
person A "knows" a person B. Heavily linked nodes represent well-known people with lots 
of relations. When newcomers enter a community, they are more likely to become 
acquainted with one of those more visible people rather than with a relative unknown.  The 
Barabási–Albert (BA) model is an algorithm for generating random scale-free networks 
using a preferential attachment mechanism. Several natural and human-made systems, 
including the Internet, the world wide web, citation networks, and some social networks are 
thought to be approximately scale-free and certainly contain few nodes (called hubs) with 
unusually high degree as compared to the other nodes of the network. 
 
 
Degree 
The degree of a node in a network is the number of connections or edges the node has to 
other nodes. 
 
Modularity  
Modularity is one measure of the structure of networks or graphs. It was designed to 
measure the strength of division of a network into modules (also called groups, clusters or 
communities). Networks with high modularity have dense connections between the nodes 
within modules but sparse connections between nodes in different modules. Preferential 
attachments networks have higher modularity than random networks and small world 
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networks. 

 
 
RESULTS 
 
We investigated the limits of two resource transfer systems for pooling risk (need-based 
transfers, NBT, and debt-based transfers, DBT) in simulated ecologies with different degrees 
of correlated disasters using an agent-based model of the resource transfer systems of the 
Maasai. First, we compared two different strategies, need-based transfers, NBT, and debt-
based transfers, DBT, in environments with different likelihoods, pshocks, of correlated shocks. 
Next, we varied group sizes from six to one hundred, reflecting plausible values for actual 
group sizes in actual small scale societies. 
 
Finally, we varied network topologies. The network topology is the specific social structure 
governing the relationships in a group of individuals and affecting their behaviors. We 
investigated sharing behaviors in three main network topologies: a regular network, a small-
world network, and a preferential attachment network (for details about the algorithmic 
implementation of the different topologies and their meanings, see the Methods section).   
Throughout, we measured survival at 100 rounds, corresponding to 100 simulated years. 
 
NBTs outperform DBTs when the correlation of shocks is low 
 
We investigated the effects of synchronicity of shocks by varying the correlation of shocks, 
pshocks from a scenario where all shocks are uncorrelated (i.e., idiosyncratic scenario) to a 
scenario where all shocks are completely correlated (i.e., systemic scenario) and affect all 
agents at the same time. This probability, pshocks, represents the probability between 0 and 1 
of a shock to affect all members of a group (in our model of a social network of agents) at the 
same time. Probability pshocks = 0 models the situation where a shock is very likely to affect 
just a single agent in the network at time t. Probability pshocks = 1 models the scenario where 
all agents from the same network are affected by the shock at time t (see model description 
in Method section for details). We also considered intermediate scenarios varying the 
probability of correlated shocks from 0 to 1 by steps of 0.1. At each step, we noted the 
median survival of agents over 10,000 replicates of the model. Results from our models 
show (see Fig. 3) that increasing the probability pshocks of correlated shocks progressively 
decreases the survival of the system and the gap between adopting NBT strategy and DBT 
strategy (p-values of Kruskal-Wallis Test < 0.05 for N = 6 and pshocks < 0.6). Thus, the 
resilience of the network strongly depends on this parameter. Moreover when pshocks = 0 and 
N = 6, the need-based transfer strategy is the only one that allows the system to avoid a 
collapse (compare results a and b shown in Fig. 6 when pshocks = 0 and N = 6). When pshocks 
is increased, networks adopting the need-based transfer strategy outperform those that 
adopt the debt-based transfer strategy. When pshocks is greater than 0.5, the system quickly 
collapses (at round 50 or before) regardless of whether individuals use need-based on debt-
based transfer strategies. 
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Figure 3. The figure shows the survival of the system (y-axis) as a function of the correlation 
of shocks. The darker the red line, the higher the correlation of shocks. NBT systems 
outperform DBT systems most dramatically when the correlation of shocks is low (lighter red 
line).  When correlation of shocks is high (dark red lines), no systems survive to the end of 
the simulation. When correlation of shocks is low, some NBT systems are able to survive 
until 100 simulated years, while DBT systems do not. 
 
When group size is small  NBTs outperform  DBTs  
We kept constant pshocks and varied group size N to see how the network size affects the 
ability of the system to avoid collapse. Small networks (N=6) of agents adopting the DBT 
strategy collapse even when there is a low correlation of shocks (i.e., pshocks = 0.1), while 
NBT networks survive shocks at this correlation level. When N=10, NBT systems exhibit 
better performances in absorbing shocks (p-values of Kruskal-Wallis Test < 0.05), but 
systems adopting the DBT strategy can survive, too. Finally, although starting from N=10 
DBT strategy networks can survive shocks (see Fig. 4), statistical analysis shows that there 
is a difference in performances of networks adopting NBT strategy and those adopting DBT 
strategy (Kruskal-Wallis Test shows that p-values < 0.05 for N < 90). This means that, as the 
size N of the network increases, the DBT strategy becomes more viable and comparable to 
the NBT strategy, but NBT strategy networks perform better than DBT strategy networks 
when the group size is relatively small (i.e, N < 90). 
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Figure 4. The figure shows the survival rates for individuals in the system (y-axis) as 
function of the size of the group. The darker the blue line, the bigger the group. NBT systems 
outperform DBT systems when the group is small. When group size is small, some NBT 
systems can survive past 100 simulated years, but DBT systems cannot. 
 
When group size is small and correlations of shocks is low NBT has the greatest 
advantage over DBT 
 
We compared the survival of need-based transfer systems and debt-based transfer systems 
while covarying both the probability, pshocks, of correlated shocks and the group size N to 
quantify the resilience of both strategies to shocks. Fig. 5 shows that small networks (N=6) 
that adopt the NBT strategy exhibit greater resilience than systems that adopt the DBT 
strategy. More specifically, when pshocks < 0.2, NBT systems survive, while DBT systems do 

not. When pshocks ≥ 0.2, both systems collapse before the end of the simulation. Increasing 

the size of the network reduces the gap between NBT system and DBT system 

performances. For N = 30, NBT systems outperform (Kruskal-Wallis Test p-values < 0.05) 

DBT systems when pshocks < 0.5; when pshocks = 0.6 both systems collapse. For N = 50, NBT 

systems performs better than DBT systems if and only if pshocks < 0.4; for values of pshocks 

between 0.4 and 0.7 it performs equally well. Finally, for pshocks > 0.7 both systems collapse. 

For N ≥ 50, the advantage in adopting the NBT strategy is limited to very low pshocks (i.e., 

pshocks ≤ 0.2), but generally, any system adopting either NBT or DBT strategy is much more 

resilient to correlated shocks: in fact, in both cases, NBT and DBT systems avoid the 

collapse for pshocks values ≤ 0.7. 
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Figure 5. The figure shows how the survival of the system (y-axis) adopting either NBT or 
DBT may vary as function of the correlation of shocks (x-axis), varying the group size of the 
network, considering N=6 (a), N=30 (b), and, N=50 (c). NBT systems outperform DBT 
systems when the network is small and the correlation of shocks is low (e.g., left side of 
figure a). 
 
NBTs outperform DBTs across all network structures and modular networks are most 
resilient 
 
In the baseline scenario where there is no correlation of shocks, the network size includes 
only six nodes, and the network topology is either regular or small-world, the need-based 
transfer strategy performs better than the debt-based transfer strategy (see results a and b in 
Fig. 6). In both cases, networks of agents adopting debt-based rules collapse after 90 
rounds. In the case of preferential-attachment networks, however, both strategies allow the 
system to survive, and the difference between the performance of need-based transfer 
systems and debt-based transfer systems is smaller than for other networks (see result c in 
Fig. 6). 
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Figure 6. The survival of the system (y-axis) as a function of time (x-axis), considering three 
different network topologies and no correlation of shocks. (a) In regular networks, (b) in 
small-world networks, and, (c) in preferential attachment networks NBT strategies outperform 
DBT strategies. DBT strategies are most successful when networks have a more modular 
structure (i.e., preferential attachment networks, figure c), though NBT systems still 
outperform DBT systems in modular networks. 
 
Both NBT systems and DBT systems show higher survival across all levels of correlated 
shocks when the network is modular. Modules in (complex) networks are sub-groups of 
nodes that are highly interconnected within, and loosely connected outside the group. 
DBT systems do collapse (no one survives after 85 simulated years) in normal and small 
networks, but they do not collapse in preferential-attachment networks (at least, not within 
the time window we considered, i.e., 100 simulated years). 
 
Discussion 
 
Humans have faced risks including drought, disease, natural disasters and other unexpected 
negative events throughout their evolutionary history. To deal with these risks, humans use a 
variety of risk management strategies, some of which involve relying on others in times of 
need in order to pool risk. However, the effectiveness of risk pooling strategies can be 
limited when there is high synchronicity of need.  Overall, we find that survival is higher when 
the correlation of unexpected events is low, which enables those unaffected by the shock to 
help those in need. Moreover, the survival is higher when groups are larger because there 
are more individuals able to share resources and absorb the negative effects of unexpected 
events. Finally, the structure of social network matters: the more modular the structure is, the 
more resilient it is to external perturbations. 
 
The superiority of need-based transfers over debt-based transfers in these models can be 
attributed to the simple fact that debt-based agents sever ties with other agents who, 
particularly in a volatile environment, might actually be helpful to them at some point in the 
future. Need-based agents, in contrast, do not expect to be repaid and so maintain all their 
partnerships, thus increasing the likelihood that they will receive help when they need it. This 
leads to the question of why need-based and debt-based transfers coexist. We propose that 
each one is appropriate in specific but quite different circumstances. When needs arise on a 
regular, predictable basis, it is possible for people to agree to a balanced exchange of 
favors: You help me today, I’ll help you tomorrow. When such favors are not repaid, it also 
makes sense to end the relationship and try again with someone else. But when needs arise 
unpredictably, as in our models, it is sensible to simply help those in need so that they will 
still be around to help you if you yourself are in need at some point in the future. This 
contrast is well illustrated by a pattern observed among ranchers in the American Southwest 
(36, 2). For help with predictable things, such as rounding up livestock for branding or 
marketing, ranchers agree to trade favors in the form of skilled labor. But when needs arise 
unpredictably (e.g., injuries and equipment failures), they provide help to one another with no 
expectation of any repayment beyond a similar kindness should they themselves ever suffer 
from a similarly unpredictable need. 
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Another advantage that need-based transfer systems may have over debt-based systems is 
the sheer simplicity of need-based transfer rules: Ask if you need, give if you can. The rules 
underlying a debt-based system, in contrast, are far more complex, involving not only rules 
about debt, credit, and repayment but also the maintenance of memories regarding the 
current status of each relationship one has. Need-based transfer agents, in contrast, simply 
need to keep track of whether their own resource holdings are above their survival 
threshold and occasionally calculate whether they can afford to help a partner in need. The 
low cognitive requirements of need-based transfer systems suggest that they may have 
predated account-keeping in our species’ evolutionary history and could be more 
phylogenetically widespread than systems requiring the tracking of credits and debts (25). 
 
One of our main findings is that correlated disasters lead to much lower survivorships, 
regardless of which rule of property transfer agents may use, than uncorrelated disasters. 
This finding is similar to one based on a network model of shocks in financial systems (37). 
In that simulation, the resilience of banking networks to systemic shocks is very low 
compared to their resilience to idiosyncratic shocks. The authors argue that the detrimental 
impact of systemic shocks comes from the fact that the shocks themselves reduce the 
wealth of each node of the network system at the same time, which makes them more 
vulnerable to shocks in subsequent periods. Hence, large shocks are likely to be followed by 
cascading defaults, thereby destabilizing the whole system. 
 
One way to reduce the correlation of shocks is to scale up the system. If shocks happen in 
specific locations, then pooling risk more broadly can reduce the synchronicity of shocks 
within the system over all. In societies with modern infrastructure for transportation and 
communication and with institutions (e.g., states, corporations, and non-profits) that routinely 
operate on large scales, such scaling up may be relatively easy. In societies with 
subsistence economies, scaling up may be more difficult. However, it may not be entirely 
impossible. For example, Fijian islanders adjust the social distance between themselves and 
the person they ask for help depending on whether the need is very local or more 
widespread. For example, when illnesses and injuries occur, people ask those close at hand, 
such as close kin, but when widespread disasters such as droughts and cyclones strike, they 
draw upon ties to distant kin in other villages where the impact of the disaster may be less 
severe (2). 
 
Whenever people cooperate at some cost to themselves, there is the potential for cheating 
as people seek to reduce the costs they pay or increase the benefits they receive. In a need-
based transfer system, cheating consists of feigning either need or an inability to help those 
in need. Among Maasai and other pastoralists, such cheating is made difficult by the fact 
that the primary form that wealth takes is publicly visible: Livestock. In addition, osotua 
relationships are imbued with a sense of sacredness that makes cheating virtually 
unthinkable (18). Nevertheless, it does behoove people to choose osotua partners very 
carefully. Partner choice is one possible way to enhance the assortment of cooperators with 
one another, and it can be implemented through a variety of behavioral rules for choosing 
and maintaining relationships (38, 39, 19; 40; 41; 42; 43). Among the Maasai, the selection 
of osotua partners resembles a courtship process, with prospective osotua partners getting 
to know each other and giving small gifts over a period of years. When a degree of trust has 
been established, the relationship may then be recognized as osotua. In future models of 
need-based transfers on networks, we plan to model this relationship formation process 
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explicitly to investigate whether partner choice increases the viability of the need-based 
transfer strategy. 
 
Across many systems, modularity has been shown to increase resilience to perturbations in 
networks.  This is the case for the evolution and stability of biological networks (17, 44), the 
scalability and efficiency of large-scale infrastructure (45, 46), and the development of 
economic and social systems (47, 48). In addition, one of the most striking characteristics of 
the networks resulting from an optimization process aimed at maximizing resilience against 
cascading failures is their modular design (17). Self-contained or modular components are 
often used as a means to isolate failures or, as in our models, shocks, and reduce the 
overall complexity of the system. Modularity in complex networks could also be serving a 
similar function by limiting the effects of shocks on the system as a whole. Networks showing 
a lower degree of modularity (e.g., regular networks and small-world networks) are more 
vulnerable to the effects of shocks. 
 
We found that the most modular network structure, the preferential attachment network, was 
associated with the highest survival for both need-based and debt-based transfer strategies.  
The preferential network structure also allowed the debt-based strategy to survive in 
conditions that were otherwise impossible (when correlation of shocks is high).  Future work 
can investigate in greater detail which characteristics of preferential attachment networks are 
driving this effect. Our preliminary analyses show that preferential attachment networks have 
higher degree (i.e, the number of connections or edges the node has to other nodes), higher 
Eigenvector centrality (i.e, a measure of the influence of a node in a network) and, of course, 
higher modularity (i.e, the division of a network into modules, groups, clusters or 
communities). In future work, the relative importance of each of these features could be 
investigated in greater depth. 
 
Conclusion 
 
Our findings may have implications for real-world disaster scenarios. Not surprisingly, when 
disasters strike entire networks at the same or nearly the same time, networks rarely survive. 
However, when disasters occur asynchronously, survival is improved if agents use a need-
based transfer strategy rather than a debt-based strategy, if networks are larger, and if 
networks are more modular. Because it may be difficult in many circumstances to simply 
create larger or more modular networks, perhaps the most important take-home message is 
that, when disasters and other negative events arise unpredictably, it is more adaptive to 
simply give to those in one’s network who are need if one is able to do so, and to do so 
without any expectation of repayment, rather than to give with the understanding that the 
relationship will end if the gift is not repaid. Spontaneous helping networks often emerge in 
the aftermath of disasters, with individuals helping strangers without expecting anything in 
return (49; 50). For example, after the 1906 earthquake in San Francisco, even traditionally 
market driven exchanges, such as food deliveries and transportation became need-based 
systems, with food being distributed and public transportation running for free until after the 
crisis passed (50). These examples, combined with the modelling results we report above, 
suggest that need-based helping systems may an important part of the human toolkit for 
surviving during correlated disasters.  
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For additional analyses and details, see Appendix. 
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Appendix. 
 
Need-based transfer rules were implemented as follows (consistently with Aktipis et al. 2016, 
Aktipis et al. 2011, and Hao et al. 2015): 
 

1. Need-based asking rule: Individuals ask their partners for livestock only if their 
current holdings are below the asking threshold (i.e., the minimum stock size of 64). 

2. Need-based giving rule: Individuals give what is asked, but not so much as to put 
their herds below the giving threshold (also the minimum stock size of 64). 

 
Debt-based transfer rules were implemented as follows: 
 

1. Debt-based payback rule: 
a. If livestock have been previously transferred from the partner to the actor and 

the actor has enough to pay back without going below sustainability threshold 
(resource min), the actor ‘pays back’ livestock to his partner according to the 
actor’s repayment probability 

2. Debt-based partner credit check rule: 
a. Checks whether partner is in good standing, which includes not having 

exceeded tolerated delay or credit size (when applicable) 
3. Debt-based asking rule: 

a. As with the need-based transfer asking rule, individuals ask their partners for 
livestock if their current herd size is below the sustainability threshold of 64. 

4. Debt-based giving rule: 
a. Response to partner. If a request is made, actors give if two conditions are 

met: 
i. If no debt remains from a previous request and partner is in good 

standing (meaning that previous debt had not existed for longer than 
tolerated delay) 

ii. The amount transferred cannot exceed the credit size extended to the 
partner 

 
Network Generation. 
To create a baseline for all comparisons, we decided to first implement a homogeneous 

regular network of agents to test the average herd survival of populations adopting either a 

need-based transfer strategy or a debt-based transfer strategy. By homogeneous we mean 

that all individuals in the network have the same number of partners. Each vertex in the 

network represents a family and each pair of partner families is connected by an edge. N 

represents the network size (i.e., the number of families in the network); k represents the 
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average degree of the network, i.e., the average number of partners per family. Each 

relationship is bidirectional, thus each node i, (1 ≤ i ≤ N) has degree four (di=4) and is 

connected to two of its closest neighbors from both sides. 
We then generated small-world networks and preferential attachment networks to 
investigate the effects of network topologies on performances of both strategies. 
 
The small-world networks were implemented starting from regular networks and randomly 
rewiring a small fraction (β = 0.1) of the edges of a homogeneous network. A small-world 
network is a type of network in which most nodes are not neighbors of one another, but the 
neighbors of any given node are likely to be neighbors of each other; moreover, most nodes 
can be reached from every other node by a small number of steps. 
 
The preferential attachment networks were generated adapting to our purposes the code 
from Wilensky (2005). The network generation algorithm starts with two nodes connected by 
an edge. At each step of the algorithm, a new node is added. Each new node picks an 
existing node to connect to randomly, but the node's chance of being selected being directly 
proportional to the number of connections it already has (i.e., the number of edges linking it 
to other nodes), or its "degree." This is the mechanism which is called "preferential 
attachment." 
The networks that result from running this algorithm are often called "scale-free" or "power 
law" networks. Those networks do not present a normal distribution of the number of 
connections of each node - instead they follow a power law distribution. Power law 
distributions are different from normal distributions in that they don’t have a peak at the 
average, and they are more likely to include extreme values (see Albert & Barabási 2002 for 
a further description of the frequency and significance of scale-free networks). 
 
Need-based transfer asking rule: agents (i.e., nodes in the network) make a request for 
cattle only if their current holdings are below the critical threshold (i.e., the minimum herd 
size of 64). Each agent is allowed to make only one request per year (or round). 
Need-based transfer giving rule: agents (i.e., nodes in the network) give what is asked, but 
not so much to make their cattle holdings reach the critical threshold (i.e., the minimum herd 
size of 64); if the request R is higher than the amount A necessary to reach the critical 
threshold, the agent will give just A. 
 
Debt-based transfer asking rule: agents (i.e., nodes in the network) make a request for cattle 
only if their current holdings are below the critical threshold (i.e., the minimum herd size of 
64). Each agent is allowed to make only one request per year (or round). 
Debt-based transfer giving rule: agents (i.e., nodes in the network) give what is asked only if 
the partner agent asking for help is a trustworthy partner (i.e., the partner already paid any 
debit), but not so much to make their cattle holdings reach the critical threshold (i.e., the 
minimum herd size of 64); if the request R is higher than the amount A necessary to reach 
the critical threshold, the agent will give just A. 
 
Asking order: agents are randomly selected to make request each year (or round). 
Asking strategy: we implemented a “selective” asking strategy in a way that, assuming that 
all agents have complete information about the herd size of their partners, agents are able to 
select the wealthiest partner among all their osotua or esile partners to make a request. 
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When two or more of an agent’s partners have the same maximum herd size, the selection 
will be randomly performed with equal probability. 
 
Simulation. 
Each simulation (or run of the model) consists of five phases (see Figure 2 in MS for a 
graphical representation and detailed description of phases): Initialization, Random growth, 
Disaster, Request, Response, and Viability check. After initialization, during each phase 
agents are randomly selected to act, interact or simply experience changes in their livestock.  
We varied the size of the network considering networks of 
N={6,10,20,30,40,50,60,70,80,90,100} nodes. For homogeneous regular networks the 

average degree is k=4. Finally, in the simulations, the herd size Hi
(n) of each agent i (1 ≤ i ≤ 

N) at year t, is updated at the end of year t simultaneously and is tracked until t = 100. To 

compensate for the stochasticity of random initial conditions, for every network topology (i.e, 

regular, small-world and preferential attachment networks), simulations were replicated 

10000 times and the average values are reported. 

 
We then compared the performance over time of populations of need-based transfer agents 
with other types of populations of debt-based transfer agents. Additional details regarding 
the model schedule, parameter values and model design can be found in the ODD protocol 
description of the model that follows. 
 
Initialization. 
Each network topology is specified by an N x N adjacency matrix A = {aij}. Because the 
reciprocal nature of need-based transfer and debt-based transfer relationships as we 
implemented in the model, the network is undirected, i.e., if a node i is a partner node to 
another node j, then aij = aji = 1. Consequently, the adjacency matrix A is a symmetric matrix 
with row sum k. 
 
For a homogeneous regular network, A has permutation symmetry (i.e., each node is 
identical) and additional symmetries depending on the structure of the edges of the network. 
 
A small-world (in our simulations β = 0.1) Watts-Strogatz network with a given β is 

generated randomly selecting 
���

�
 edges, disconnecting one end and reconnecting the link to 

another different randomly selected node. 
���

�
 pairs of subscripts (i,j) are randomly selected 

from {(i,j)|A(i,j)} with equal probability. The new adjacency matrix Â will lose the permutation 
symmetry but the row sums will remain unchanged. 
 
A preferential attachment network generation begins with an initial connected network of 

m0 nodes. Then, new nodes are added to the network one at a time. Each new node is 

connected to m ≤ m0 existing nodes with a probability p that is proportional to the number of 

links that the existing nodes already have. Formally, the probability pi that the new node is 
connected to node i is 
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where ki is the degree of node i and the sum is made over all pre-existing nodes j (i.e. the 
denominator results in twice the current number of edges in the network).  
Strongly linked nodes (i.e., so called "hubs") tend to quickly accumulate even more links, 
while nodes with only a few links are unlikely to be selected for creating a new link. The new 
nodes have a "preference" to attach themselves to the already well connected nodes. 

For all network topologies, initial herd size are set to Hi
(0)

=70, 1 ≤ i ≤ N, for all agents at the 

beginning of each simulation. 

 
Random growth. 
We implemented the same growing dynamics implemented in Aktipis et al. 2011, Hao et al. 
2015 and Aktipis et al. 2016. Thus, each year an agent’s herd i grows at random rate gi

(n) 
which is sampled from a Gaussian distribution. The growth rate distribution is given by 
 ��

��	 ~ �	3.4%, 	2.53%���            1 � � � �, 1 � � � 50 

 
meaning that the growth rate follows a Gaussian distribution with mean 3.4% and a standard 
deviation 2.53%, which represents a typical annual growth rate for cattle herds in East Africa 
(Dahl and Hjort, 1976). The growing process implemented in the model implies that before 
considering shock events that may happen over the same year, at the end of year n the herd 
size for an agent i is 

��

��	 �  ��

��
�	 � ��

��
�	��

��	 ,      1 � � � � 

 
The Gaussian distribution of growth rate implemented as such gives us also a very small 
probability of negative growths, which means that independently of shocks (e.g., drought, 
disease, theft) in some years deaths may exceed births. 
 
Disasters. 
At each single cycle of the model, the probability of correlated shocks pshocks determines 
whether the size of the shock affects a single agent or all agents at the same time. This is 
implemented by a simple comparison between the current value of pshocks and a value v 
randomly selected between zero and one; if v < pshocks, then the shock will affect all agents at 
the same time, otherwise, the shock will affect only the current agent. Then, the actual 
happening of shocks is modeled by a Poisson process. We assume that the sequence of 
shocks is generated by a Poisson process and that the time until the next disaster happens 
is exponentially distributed with mean 0.1. 
 
In the case of completely uncorrelated shocks (i.e., pshocks = 0), each agent’s herd is 
considered independent and each year there is a probability p = 0.1 that a shock happens. If 
the current year n is a disaster year for agent i, thus a random number  ��

��	 ~ �	30%, 	10%��� is drawn to quantify the percentage of the herd that is lost in this year. 
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Request. 
After accounting for random growth and disaster losses, the model selects for agents whose 
herd sizes fall below the critical threshold of sustainability (θ = 64); then, each of those 
agents are randomly selected for asking their wealthiest partner for help. Finally, a request 
for enough cattle to bring the herd size back to the threshold is performed 
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Where αi

(n) is the number of cattle asked by agent i. 
Each agent is allowed to make only one request per year (or round), even if no livestock are 
received as a result of the request. 
 
Response. 
Osotua. 
Agents respond to osotua requests one a time following the order in which the requests are 
made. 

When an agent j is asked by another agent i, j will respond by giving γj → i
(n) cattle to i where 
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In other terms, if j has more cattle than θ, then it will fully respond to the request made by i. If 
j has more than θ + α, then it will fulfill the request made by i giving αi

(n) cattle to i; otherwise, 
j only gives all cattle exceeding the threshold θ to i. 
 
Debt-based transfer. 
Agents respond to debt-based transfer requests one a time following the order in which the 
requests are made. 
When an agent j is asked by another agent i, j will respond if and only if the agent i results to 
be a trustworthy partner (i.e., agent i already gave back to agent j the amount k received 

during past livestock transfers); j will respond by giving γj → i
(n) cattle to i, 

Where 
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In other terms, if j has more cattle than θ, then it will fully respond to the request made by i. If 
j has more than θ + α, then it will fulfill the request made by i giving αi

(n) cattle to i; otherwise, 
j only gives all cattle exceeding the threshold θ to i. 
 
Viability check. 
When the “resources transferred” phase ends, the herd sizes are finalized for the current 
year, 
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In the viability check phase the herd size of the current and the previous year is checked for 
all agents. If an agent’s herd fails to satisfy the threshold criteria for two consecutive years 

(i.e.,Hi
(n) < θ and Hi

(n − 1) < θ), then the agent and its herd are removed from the simulation 

and become unavailable for interaction and transfers. 
This modeling assumption is based upon the fact that, among pastoralist societies, 
individuals whose herds are below a sustainability threshold typically keep their remaining 
cattle but are “removed” from the social system; they leave the group and find alternative 
ways (e.g., hunting, gathering, bee-keeping) to survive outside the network of herders. 
Surviving agents’ herds will then restart a typical yearly cycle with random growth phase until 
the simulation reaches the end. 
ODD protocol. 
 
Model Description 
The model description offered below follows the standardized ODD protocol for describing 
individual and agent based models (Grimm et al. 2006) and is based on Aktipis et al (2011). 
The model is a multiplayer-social network extension of the original model published in Aktipis 
et al (2011). 
  
Purpose 
Here we use an agent-based model of wealth transfers within ecologically realistic conditions 
to investigate the viability of two sets of cooperative rules: one characterized by account 
keeping and the other characterized by risk pooling norms of need-based transfers. We then 
investigate how these two rules affect overall resource stock survivorship and the variability 
of survivorship within socially structured populations (i.e., agents interactions are constrained 
by the topology of social network they are part of). 
  
State variables and scales 
In this model time is represented as discrete. Space is not explicitly modeled. Resource 
stock growth dynamics and volatility are implemented with global variables while the 
resource stock size and giving/asking rules are agent variables (Table 1 - below). During 
each time period, agents execute the commands described in the schedule. 
  

Entity State variable Description 

Global Growth rate Amount by which resource stocks grow 
each year 
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 Volatility rate Likelihood of a negative event (e.g., 
drought) 

 Volatility size Decrease in resource stock size resulting 
from negative event 

 Min. resource stock size The minimum viable resource stock size 

 Max. resource stock 
size 

The maximum resource stock that can be 
maintained 

 Correlation of shocks Probability of correlated shocks 

Agents Resource stock size Number of resources in agent�s 
resource stock 

 Net received list Number of resources received minus 
given to i partner (i.e., a list with length =  

N) 

 Asking threshold The threshold below which agents ask for 
resources 

 Generosity The likelihood of giving if asked and able 
(need-based) or giving to partner in good 

standing (account-keeping) 

Need-based only Giving threshold The threshold below which agents will no 
longer give resources 

Debt-based only Credit size The amount of credit granted to partner 

 Tolerated delay The number of periods an agent will 
tolerate not being repaid by a partner 

before placing that partner in bad 
standing 

 P good standing list If i partner is in good standing, means 
that they have not exceeded tolerated 
delay in past transfers (i.e., a list with 

length =  N) 

 Repayment probability The likelihood of repaying each partner 
during each time period 

 
Table 1. State variables and scales. 
 
Process overview and scheduling 
This model proceeds in discrete time steps, and entities execute procedures according to 
the following ordering: 
 
1. For each actor, resource stocks change in size: 

a.    Resource stocks increase in size according to growth rate 
b.    Resource stocks decrease in size by volatility size (as a percent of total 
holdings) according to volatility rate 
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c.    If resource stock size is above resource stock max it is set to resource stock 
max 
d.    Resource stock size is rounded to nearest integer 

2. Couples of agents are selected from the social network following one of two possible 
rules: 

a.    randomly select an agent as first player, then randomly select another agent 
among those which are linked to the first one 
b.    randomly select first agent, then select the wealthiest agent among those 
linked to the first (i.e., following a “selective” asking process instead of a random one) 

3. Requests are made: 
If giving is need-based, requests are made if resource stock size is below resource 

stock min 
If giving is account-keeping-based, requests are made if resource stock size is below 

resource stock min 
4. Transfers are made: 

If giving is need-based, requests are fulfilled to the extent possible keeping the 
resource stock size of the giver above resource stock min 

If giving is account-keeping-based: 
If resources have been previously transferred from the partner to the actor, the actor 

transfers net received resources to their partner according to repayment prob. 
If a new request was made, actors give if two conditions are met: 
The debt has not existed for longer than tolerated delay 
The amount transferred cannot exceed the credit size extended to the partner. 

All actors update net received to reflect transfers 
5. Actors removed from the population if two consecutive rounds occur where resources 
holdings are below resource stock min. 
6. Age of actors incremented by 1 
  
Design concepts 
 
Emergence: 
In this model, risk pooling emerges from interactions between agents. 
  
Prediction: 
Agents in this model lack the ability to predict outcomes of future environmental variability or 
future social interactions. They do not integrate information across time periods. 
  
Sensing: 
Agents receive requests from their interaction partners and are able to examine their own 
resource holdings before fulfilling requests. 
  
Interaction: 
Agents interact by making and fulfilling requests for resources. 
  
Stochasticity: 
Resource stock growth and environmental volatility both have stochastic components. 
  
Observation: 
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Reported data are averaged from 10,000 runs. Simulations were run until all agents were 
removed from the population (i.e., dropped below the viability threshold for more than 2 
consecutive time periods). 
  
 Initialization 
All runs were initialized according to default parameters in the table 2 below. 
  

Entity State variable Initial/Default value Units 

Global Growt rate 3.4 (SD: 2.53) % current resource 
stock 

  Volatility rate 10 % per year 

  Volatility size 30 (SD: 10) % current resource 
stock 

  Min. resource stock 
size 

64 Number resources 

  Max. resource stock 
size 

600 Number resources 

 P of correlated 
shocks 

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.0, 1} 

probability 

Agents Resource stock size 70 Number resources 

  Net received list [0, …, 0] with length = N Number resources 

  Asking threshold 64 Number resources 

  Generosity 100 % likelihood 

Need-based only Giving threshold 64 Number resources 

Debt-based only Credit size 10 Number resources 

  Tolerated delay 5 Years 

  P good standing list [1, …, 1] with length = N Boolean value [0,1] 

  Repayment 
probability 

100 % likelihood 

 
Table 2. Initialization.  
 
Input 
In order to make our model of the Maasai pastoral system as realistic as possible, the 
following parameter values and assumptions about resource dynamics were based on 
existing scholarship (Dahl & Hjort, 1976). 
  
Growth rate 
We used a 3.4% growth rate with an SD of 2.53 based on Dahl and Hjort’s (1976:66) 
estimate the growth rate in “normal” conditions to be 3.4%, with a maximum possible growth 
rate of roughly 11% and a minimum of approximately -6% (in the diminishing resource 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 7, 2017. ; https://doi.org/10.1101/230607doi: bioRxiv preprint 

https://doi.org/10.1101/230607


stocks example). Dahl and Hjort estimates are based on both empirical evidence and 
analytical modeling. 
  
Resource stock size 
Initial resource stock sizes in our model were 70, with a minimum of 64 and a maximum of 
600. These values were derived from Dahl and Hjort (1976:178) who state that a resource 
stock of 64 resources is sufficient to sustain a reference family. Resource stock sizes 
described in the text range from 60-100 cows and resource stocks larger than 600 are not 
considered viable (Dahl and Hjort, 1976:158). 
  
Volatility 
We used a volatility rate of 0.1, meaning that on average a disaster (e.g., drought or 
disease) occurred every 10 years. In our model, this disaster reduced the resources 
resource stock by 30% on average, with a SD of 10%. Dahl and Hjort (1976:114-130) note 
that these disasters occur approximately every 10-12 years based on empirical data, and 
that the population decline (during disasters that occur every 10 years) should not be more 
than approximately 28%, based on analytical models. 
 
 
Appendix References 
 

● Aktipis, A. (2016), Principles of cooperation across systems: from human sharing to 
multicellularity and cancer. Evol Appl, 9: 17–36. doi:10.1111/eva.12303 

● Aktipis, C. A., Cronk, L., and de Aguiar, R. (2011). Risk-Pooling and Herd Survival: 
An Agent-Based Model of a Maasai Gift-Giving System. Human Ecology 39(2): 131–
140. 

● Hao, Y., et al., Need-based transfers on a network: a model of risk-pooling in 
ecologically volatile environments, Evolution and Human Behavior (2015), 
http://dx.doi.org/10.1016/j.evolhumbehav.2014.12.003 

● Wilensky, U. (2005). NetLogo Preferential Attachment model. 
http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment. Center for 
Connected Learning and Computer-Based Modeling, Northwestern University, 
Evanston, IL. 

● Albert, Réka; Barabási, Albert-László (2002). Statistical mechanics of complex 
networks. Reviews of Modern Physics. 74 (1): 47–97. 

● Dahl, G., and Hjort, A. (1976). Having Herds: Pastoral Herd Growth and Household 
Economy. Dept. of Social Anthropology, University of Stockholm, Stockholm. 

● Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-
Custard, J., Grand, T., Heinz, S., and Huse, G. (2006). A Standard Protocol For 
Describing Individual-Based and Agent-Based Models. Ecological Modeling 198: 
115–126. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 7, 2017. ; https://doi.org/10.1101/230607doi: bioRxiv preprint 

https://doi.org/10.1101/230607

