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Abstract

The ability to quickly and inexpensively describe taxonomic diversity is critical in this era of rapid

climate and biodiversity changes. The currently preferred molecular technique, barcoding, has been very

successful, but is based on short organelle markers. Recently, an alternative genome-skimming approach

has been proposed: low-pass sequencing (100Mb – several Gb per sample) is applied to voucher and/or

query samples, and marker genes and/or organelle genomes are recovered computationally. The cur-

rent practice of genome-skimming discards the vast majority of the data because the low coverage of

genome-skims prevents assembling the nuclear genomes. In contrast, we suggest using all unassembled

reads directly, but existing methods poorly support this goal. We introduce a new alignment-free tool,

Skmer, to estimate genomic distances between the query and each reference genome-skim using the k-

mer decomposition of reads. We test Skmer on a large set of insect and bird genomes, sub-sampled

to create genome-skims. Skmer shows great accuracy in estimating genomic distances, identifying the

closest match in a reference dataset, and inferring the phylogeny. The software is publicly available on

https://github.com/shahab-sarmashghi/Skmer.git
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Background

The ability to quickly and inexpensively study the taxonomic diversity in an environment is critical in this era

of rapid climate and biodiversity changes. The current molecular technique of choice is (meta)barcoding [1–

3]. Traditional (meta)barcoding is based on DNA sequencing of taxonomically informative and group-specific

marker genes (e.g., mitochondrial COI [1, 4] and 12S/16S [5, 6] for animals, chloroplast genes like matK

for plants [7], and ITS [8] for fungi) that are variable enough for taxonomic identification, but have flanking

regions that are sufficiently conserved to allow for PCR amplification using universal primers. Barcoding

is used for taxonomic identification of single-species samples. In the case of metabarcoding, the goal is to

deconstruct the taxonomic composition of a mixed sample consisting of multiple species [3]. Beyond the

barcoding application, the barcoding marker genes have also been used to delimitate species [9] and to infer

phylogenies [10, 11].

The accuracy of (meta)barcoding depends on the coverage of the reference database and the method

used to search queries against it [3]. To increase coverage, reference databases with millions of barcodes

have been generated (e.g., Barcode of Life Data System, BOLD, for COI [12]). Computational methods for

finding the closest match in a reference dataset (e.g., TaxI [13]), and for placement of a query into existing

marker trees [14–16] have been developed. However, the traditional approach to (meta)barcoding, despite its

success, has some drawbacks. PCR for marker gene amplification requires relatively high quality DNA and

thus cannot be applied to samples in which the DNA is heavily fragmented. Moreover, since barcode markers

are relatively short regions, their phylogenetic signal and identification resolution can be limited [17]. For

example, in a recent study, 896 out of 4,174 wasp species could not be distinguished from each other using

COI barcodes [18].

While low costs have kept PCR-based pipelines attractive, decreasing costs of shotgun sequencing have

now made it possible to shotgun sequence 1-2Gb of total DNA per reference specimen sample for as low

as $80 [19], even after including sample preparation and labor costs. This has lead researchers to propose

an alternate method that uses low-pass sequencing to generate genome-skims [19, 20], and subsequently

identifies chloroplast or mitochondrial marker genes or assembles the organelle genome. Reconstructing

plastid and mtDNA genomes from low-pass shotgun data is possible because organelle DNA tends to be

heavily overrepresented in shotgun sequencing data; for example, 10.4% of all reads from the Apocynaceae

family of flowering plants were from the chloroplast in one genome-skimming study [20]. Large reference

databases based on genome-skimming techniques are under construction by projects such as PhyloAlps [21],

NorBol [22], and DNAmark [23].

Most current applications of genome-skimming to species identification require organelle genome assem-

bly, a task that requires relatively time-consuming manual curation steps to ensure that assembly errors are

avoided [24]. This approach discards a vast proportion of the non-target data, reducing the discriminatory

power. For these reasons, the DNAmark project [23] is considering alternative methods, where, instead of

only relying on organelle markers, one could use the entire set of reads generated in a genome-skim as the

identifier of a species. This approach poses an interesting methodological question: can the unassembled

data be used to taxonomically profile reference and query samples in a similar manner to conventional

barcoding, but using all available genomic information and saving us from the labor-intensive task of mi-

tochondria/plastid genome assembly? In this paper, we introduce a new assembly-free method to directly

use low coverage genome-skims of both reference and query samples. By avoiding the assembly step, our
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approach also reduces the amount of data processing needed for expanding the reference database.

We treat genome-skims simply as low-coverage “bags of reads”, both for a collection of reference species

and for query samples. The problem is to find the reference genome-skim that matches the query; if an exact

match is not found, we seek the closest available match. A more advanced problem, not directly addressed

here, is placing the query in a phylogeny of reference species. An even more difficult challenge, also not

addressed here, is decomposing a query genome-skim that contains DNA from several different taxa into its

constituent species.

Central to solving these problems is the ability to estimate a distance between two genome-skims for low

and varied coverage using assembly-free and alignment-free approaches. Alignment-free sequence compar-

ison has been widely studied [25–30], including for phylogenetic reconstruction [25, 31–43]. Most existing

methods, such as Kr [28], andi [41], kmacs [44], and FSWM [43], compute evolutionary distances using the

length distribution of matched substrings or the count of certain words and thus require assembled genomes

to produce accurate results. These methods will not work with high accuracy when both the query and the

reference are simply a set of reads. Several assembly-free methods also exist. Co-phylog [39] makes micro-

alignments and calculates distances to reconstruct phylogenetic trees; Mash [45] computes the Jaccard index

and an evolutionary distance using the k-mers; Simka [46] computes several distance measures based on the

whole k-mer content of reads. However, these methods all assume high coverage, enough to cover most of the

genome with at least one read. These levels of coverage are currently not economically feasible for building

up large reference databases or for obtaining many query samples. Among existing methods, AAF [33] is

the only one that aims to work even at lower coverage. AAF first infers a phylogeny and then corrects its

branch lengths to reflect a given estimate of the coverage.

Here, we show that high levels of coverage are not necessary. We focus on a distance measure defined

as the proportion of mismatches between the global alignment of two genomes. The mismatch rate, called

genomic distance hereafter, is useful for species identification because it reflects the evolutionary diver-

gence between two species. We introduce a new method, Skmer, for accurately computing the genomic

distance even from low coverage genome-skims. In extensive test, we show that Skmer dramatically im-

proves estimates of genomic distance based on genome-skims and accurately places genome-skim queries on

to a reference collection. This assembly-free approach can therefore be considered a viable complement to

currently available DNA barcoding and genome-skimming tools.

Results

Skmer

We decomposed reads into fixed length oligomers (denoted k-mers with length k), a technique used by many

existing alignment-free methods [41, 47]. Recall that the Jaccard index J is a similarity measure between

any two sets (e.g. k-mer collections) defined as the size of their intersection divided by the size of their union.

Ondov et al. describe a tool, Mash [45], in which (a) J is estimated efficiently using a hashing procedure; and,

(b) J is used to estimate the genomic distance between two genomes. Mash, however, assumes sufficiently

high coverage. Unfortunately, J , in addition to the true distance, is impacted by coverage, sequencing error,

and genome length. Skmer accounts for the impact of these factors on J .

Skmer has two stages (Fig. 1): first we use k-mer frequency profiles (computed using JellyFish [48]) to

estimate the amount of sequencing error and the coverage (neither of which is known) using a novel method.
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Figure 1: Overview of Skmer pipeline. For both query and reference genome-skims, first, the k-mer
frequency profiles are used to estimate the sequencing error and coverage (top). Then, the k-mers are hashed,
and a subset is retained and used to estimate the Jaccard index between the two genomes (bottom). Finally,
the estimated Jaccard index and estimated sequencing coverage and error are used to compute the corrected
genomic distance between the query and the reference.

Let Mi be the number of k-mers observed i times in the genome-skim. Let h = argmaxi≥2Mi. Then,

defining ξ =
Mh+1

Mh
(h+ 1), we derive (see Methods):

λ =
M1

Mh

ξh

h!
e−ξ + ξ(1− e−ξ) (1)

ε = 1− (ξ/λ)1/k (2)

where λ and ε are our estimates of the k-mer coverage and the sequencing error rate, respectively.

In stage two, we use the hashing technique of Mash to compute J . Finally, given these estimates, we

compute the genomic distance using

D = 1−
(

2(ζ1L1 + ζ2L2)J

η1η2(L1 + L2)(1 + J)

)1/k

(3)

where for i ∈ {1, 2}, ηi = 1− e−λi(1−εi)k and ζi = ηi + λi(1− (1− εi)k) (for high coverage, we define ζi and

ηi differently; see Methods for details), and Li is the estimated genome length.

We used a series of experiments to study the accuracy of Skmer compared to existing methods with

respect to (i) the error in computed distances, and (ii) the ability to find the closest match to a query sequence

in a reference dataset of genome-skims, and (iii) phylogenetic inference. We compared the performance

against Mash and AAF [33]. AAF is a method that uses k-mers to estimate phylogenetic distances among

a set of at least four sequences. We conclude by comparing Skmer against the results of using COI barcodes

from available barcode databases.
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Figure 2: Comparing the accuracy of Mash and Skmer on simulated genomes. Genome-skims
are simulated using ART with read length ` = 100. Substitutions applied to the assembly of C. vestalis
at six different rates (x-axis), and genome-skims simulated at varying coverage range from 1

8X to 16X. The
estimated distance (y-axis) by Mash (left) and Skmer (right) is plotted versus the real distances for each
coverage level (color). The mean (dots) and standard error (lines) of distances are shown (10 repeats). True
distance is shown in red. See Additional file 1: Fig. S1 for a scaled representation.

Distance accuracy for pairs of genome-skims

We first compare the accuracy of Mash and Skmer in estimating distances between two genome skims. Since

AAF outputs a phylogenetic tree and so requires at least four species, we cannot include it in our first set

of analyses on pairs of genomes.

Simulated genomes with controlled distance

Starting from the highly repetitive genome assembly of the wasp species Cotesia vestalis, we simulated new

genomes with controlled true distance d by randomly adding SNPs, and then we simulated genome-skims

by randomly sub-sampling reads and adding error (see Methods). On these simulated genomes, distances

are computed with high accuracy by Mash when coverage is high (Fig. 2), except where the true distance

is also high (i.e., 0.2). However, the accuracy of Mash quickly degrades when the coverage is reduced to 4X

or less. In contrast, even when the coverage is reduced to 1
8X, Skmer has high accuracy. For example, with

the true distance set to 0.05, Mash estimates the distance as 0.081 with 1X coverage (an overestimation by

62%) while Skmer corrects the distance to 0.045 (an underestimation by 10%). Note that applying Mash*

(Mash without the unnecessary approximation (1 −D)k ≈ e−kD used by default in Mash) to the complete

assemblies generally generates very accurate results, as expected, but even given the full assembly, Mash*
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Figure 3: Comparing the accuracy of Mash and Skmer on pairs of insects (a) and birds (b)
genomes. Genome-skims are simulated at coverage 1

8X to 8X (shades of blue). The estimated distance (y-
axis) is plotted for Mash (left) and Skmer (right) for each pair of species (x-axis). The results of Mash* run
on assemblies, which is taken as the ground truth, is shown in red. Mash overestimates at lower coverages.
Skmer estimates are closer to the ground truth and are less sensitive to the coverage. See also Additional
file 1: Fig. S5.
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still has a small but noticeable error when d = 0.2. Note that results are extremely consistent across our ten

different runs of subsampling (Fig. 2). We repeated the simulation with a lower range of coverage ( 1
64X to

1X). Interestingly, even with very low coverage, the absolute distance error is small in many cases (Additional

file 1: Fig. S2); however, for d ≥ 0.1, Skmer estimates start to degrade below 1
8X coverage.

Repeating the process with the Drosophila melanogaster genome as the base genome also produces similar

results (Additional file 1: Fig. S3). The only condition where Skmer has an absolute error larger than 0.01

is with coverage below 1X and d = 0.2 (Fig. 2). However, we note that for d = 0.001, the relative error is

not small with low coverage (Additional file 1: Fig. S4b) indicating that distinguishing very small distances

(perhaps below species-level) requires high coverage. Estimating the right order of magnitude when the true

distance is 0.001 seems to require 2X coverage (preferably 8x) while 1X coverage is sufficient to distinguish

distances at or above 0.01 (Additional file 1: Fig. S4).

Pairs of insect and bird genomes

We now test methods on several pairs of insect and avian genomes, subsampled to create genome-skims. Note

that unlike the simulated datasets, here, genomes can undergo all types of genetic variations and complex

rearrangements, and thus, do not have the same length. We carefully selected several pairs of genomes to

cover a wide range of mutation distance and genome length. Here, the true genomic distance is not known,

but we use the distance estimated by Mash* on the full assemblies as the true distance d. For all pairs

of insect and avian genomes (Fig. 3), Mash has high error for coverage below 8X while Skmer successfully

corrects the estimated distance and obtains values extremely close to the results of running Mash* on the

full assembly. For example, the distance between A. stephensi with length ∼196Mbp and A. maculatus with

length ∼132Mbp is estimated to be 0.104 based on the full assembly and 0.102 (2% underestimation) with

only 1
2X coverage using Skmer, while Mash would estimate the distance to be 0.163 (∼57% overestimation).

Distance accuracy for all pairs genome-skims

We now turn to datasets with sets of genome-skims, evaluating the accuracy of all pairs of distances. Here,

since we have at least four sequences in each test, in addition to Mash, we also compare our results with

AAF.

Fixed sequencing effort

So far, our experiments have controlled for the coverage by subsampling varying amount of sequence data,

proportional to the genome length. In our genome-skimming application, coverage will not be fixed. Often,

the amount of sequence data obtained for each species will be relatively similar. As a result, genomes of

different length end up being sequenced with different coverage depth proportional to the inverse of their

length. We therefore performed a study where all species are subsampled to produce 100Mb of sequence

data in total resulting in varying levels of coverage (based on the genome length, Additional file 1: Table S7).

The error in the distance estimated by Mash relative to the ground truth can be quite large (higher than

300% in the worst case) while Skmer consistently makes accurate estimates close to the true distance even at

the lowest amount of coverage (Fig. 4, Figs. 5, and Additional file 1: Table S8). Repeating the analysis with

0.5Gb or 1Gb total sequence data produced similar patterns, but as expected, increasing the sequencing

effort reduces the error for all methods (Additional file 1: Figs. S6–S8).
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Table 1: Tree error. For each method, we show normalized weighted RF distance (%) of
trees inferred from genome-skim distances to trees inferred from full assembly distances.
Boldface: the lowest error.

Dataset Sequencing effort Mash Skmer AAF (uncorrected) AAF (corrected)

Anopheles

0.1G 23.19% 1.07% 19.92% 6.36%
0.5G 12.84% 0.45% 9.74% 4.9%
1G 8.92% 0.37% 9.59% 3.3%
Mixed 14.75% 0.58% 8.46% 8.45%

Drosophila

0.1G 23.87% 2.05% 20.29% 5.85%
0.5G 13.33% 0.72% 10.37% 5.25%
1G 7.11% 0.58% 10.84% 2.2%
Mixed 16.58% 1.11% 11.36% 10.87%

Birds

0.1G 37.03% 5.64% 31.81% 21.13%
0.5G 25.16% 1.91% 20.8% 6.86%
1G 19.42% 1.19% 15.54% 1.05%
Mixed 28.14% 3.08% 18.15% 7.57%

Before error correction, AAF has error levels that are comparable to Mash (Figs. 4b, Fig. 5b). The

correction applied by AAF, similar to Skmer, reduces the negative impact of low coverage but not to the

same extent. Thus, Skmer has less error compared to corrected AAF (with 100Mb sequence and across all

datasets, the mean error of Skmer is 3.13% and AAF-corrected is 22.7%). For example, in the Drosophila

dataset, the worst-case error of AAF between any two pairs of genome-skims is 31%, whereas the error never

exceeds 8% for Skmer. Note that when computing the error of AAF, we use the result of running AAF on

full assemblies as the ground truth.

To quantify the impact of distance estimates on downstream analyses, we used FastME [49] to infer

phylogenetic trees using distances computed by Mash and Skmer on genome skims and with correction

using the JC69 model [50]. AAF by default generates trees as part of its output. We compare these trees

to those computed by Mash/AAF run on the full assemblies (taken as the ground truth) using the weighted

Roubinson-Foulds (WRF) distance [51] (Table 1). WRF is the sum of branch length differences between the

two trees (using zero length for missing branches), and we normalized WRF by the sum of branch lengths

of both trees. In all three datasets, Skmer distances lead to trees with lower WRF distance to the ground

truth compared to Mash and AAF/uncorrected. AAF correction reduces WRF compared to uncorrected

AAF; however, Skmer trees have two to 14 times less error compared to the corrected AAF, except in one

case where AAF/corrected has 1.05% error and Skmer has 1.19% (Table 1). Increasing the size of skims to

0.5Gb and 1Gb helps all methods to produce more accurate trees.

Heterogeneous sequencing effort

In addition to changes in the genomic length, the sequencing effort per species may also vary across se-

quencing protocols, experiments and research labs, and so a database of reference genome-skims may consist

of samples with heterogeneous sequencing efforts. To capture this, for each species, we choose its total

sequencing effort from three possible values 0.1Gb, 0.5Gb, and 1Gb, uniformly at random, and estimate

all pairs of distances within each dataset as before (Fig. 6 and Additional file 1: Fig. S9). Similar to the
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Figure 4: Distance error with fixed 100Mb sequence per genome for (a) 22 Anopheles, (b)
21 Drosophila Each genome is skimmed with 100Mb sequence and distances are computed using Mash,
Skmer, and AAF. True distance used in calculating the error is computed by applying each method (AAF
and Mash) to the full genome assemblies. The heatmaps on the left show the error of Mash (upper triangle)
and Skmer (lower triangle), and the heatmaps on the right are for AAF before correction (upper) and after
correction (lower).

case of fixed sequencing effort, Skmer mitigates large relative error in the distances estimated by Mash and

produces more accurate results than both Mash and AAF, (Table 2, Fig. 6, and Additional file 1: Fig. S9).

For example, comparing to the case of fixed 100Mb genome-skims of the Drosophila dataset, the worst-case

error of AAF is increased to 70%, while using Skmer it remains almost the same (8%). Comparing trees

inferred from distances estimated by various methods also confirms the higher accuracy of Skmer (Table 1).

For instance, on the Anopheles dataset, Skmer has only 0.58% WRF distance to the reference tree whereas

Mash and AAF-corrected trees have 14.75% and 8.45% WRF distance.
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Figure 5: Distance error with fixed 100Mb sequence per genome for the avian dataset. The
errors of Mash and AAF for the two eagle species (H. albicilla and H. leucocephalus) were extremely large
(Mash: ≈ 4000%, AAF > 3000% error), dominating the color spectrum; we excluded H. albicilla to help
readability; for the eagles, Skmer’s estimate is 0.00244 (∼ 9% error).
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Figure 6: Distance error with heterogeneous sequencing effort for (a) Anopheles and (b)
Drosophila. Species have random amount of sequence chosen uniformly among 0.1Gb, 0.5Gb, and 1Gb.
See Additional file 1: Fig. S9 for birds.

Table 2: Comparing the average error of Mash, Skmer, and AAF in estimating distances
over three datasets with heterogeneous sequencing effort.

Dataset Mash Skmer AAF (uncorrected) AAF (corrected)

Anopheles 28.72% (1.10%) 0.84% (0.03%) 13.48% (0.56%) 11.36% (0.44%)
Drosophila 29.05% (0.59%) 0.84% (0.04%) 15.25% (0.38%) 10.94% (0.33%)
Birds 64.29% (0.54%) 2.21% (0.04%) 36.02% (0.29%) 5.28% (0.16%)

* The standard error of the mean is provided in parentheses.
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Figure 7: Comparing the error of Mash and Skmer on a dataset of 14 Drosophila genome-skims.
Each SRA is subsampled to 100Mb and then filtered to remove contamination. True distances are computed
from the assemblies.

Genome skims from real reads

So far, all of our tests used simulated reads. When analyzing real genome skims, there are additional

complications such as extraneous DNA (real or artifactual) and the over representation of organelle genome.

We next tested Skmer using real reads. We created 100Mb skims of 14 Drosophila genomes by subsampling

short-read data produced in a recent Drosophila genome assembly study [52]. Before running Skmer or Mash,

we filtered reads that (even partially) aligned to 12 Drosophila-associated microbial genomes as reported in

previous studies [53–55] (see Table S3), to the human genome, or to the mitochondrial genome of respective

Drosophila species. We then estimated all pairs of distances as before and computed the error relative to the

distances computed from the assemblies (Fig 7). Consistent with the results we obtained on the simulated

skims, Skmer has less error compared to Mash. The average error of Mash on this dataset is 43.48% (±
2.29%) with maximum error of 217%. Skmer, on the other hand, has an average error of 4.21% (± 0.35%)

and its maximum error is 22.2%.

Running time

Skmer and Mash have comparable running time, while AAF is much slower. In the experiment with het-

erogeneous sequencing effort, the total running time (using 24 CPU cores) to compute distances based on

genome-skims for all
(
47
2

)
pairs of birds using Mash, Skmer, and AAF was roughly 8, 33, and 460 minutes,

respectively.
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Leave-out search against a reference database of genome-skims

We now study the effectiveness of using genomic distance to search a database of genome-skims to find the

closest match to a query genome-skim. Given a query genome-skim and a reference dataset of genomes, we

can order the reference genomes based on their distance to the query. The results can be provided to the user

as a ranking. When the query genome is available in the reference dataset, finding the match is relatively

easy. To study the effectiveness of the search as the distance of the closest available match increases, we use

a leave-out experiment, as described in Methods. Figure 8 shows the mean rank error as well as the mean

distance error of the best remaining match in a leave-out experiment when removing genomes closer than d

for 0.01 ≤ d ≤ 0.1. A rank error (or distance error) equal to zero corresponds to a perfect match to the best

available genome.

On all three datasets, Skmer consistently and often substantially outperforms Mash and AAF in terms

of finding the best remaining match, except the Drosophila dataset where Mash and Skmer have comparable

rank error, while both are better than AAF (Fig 8). Even in that case, on average, the distance of the

best match found by Skmer is closer to the distance of the true best match compared to the best hit found

by Mash. Moreover, the mean rank error of Skmer is smaller than Mash (Additional file 1: Fig. S10) if

we exclude only one species Drosophila willistoni (which is at distance 0.1565 ≤ d ≤ 0.1622 from other

species). It is also notable that over the avian dataset, Skmer has mean rank error less than 0.5 for all

range of distances, while Mash and AAF can be off by more than 2.5 on average. These results demonstrate

that correcting the distance not only impacts our understanding of the absolute distance, but also, impacts

results of searching a reference library.

Phylogeny reconstruction and comparison to organelle markers

As the last experiment, we estimated phylogenetic trees for Anopheles and Drosophila datasets after trans-

forming the genomic distances estimated by Skmer to Jukes-Cantor (JC) distances [50]. For each dataset,

we also built another tree based on available COI barcodes, using an identical method. We compare the

results against a reference tree obtained from Open Tree of Life [56]. We restricted the results to species for

which COI barcodes were available (Fig. 9ab).

For the Anopheles species, Skmer distances produce a tree that is almost identical to the reference tree

(with only one branch difference out of nine), while COI tree differs from the reference in seven branches.

Similarly, for the Drosophila species, Skmer differs from the reference in three branches (with small local

changes) out of 13 total branches in the reference tree, whereas COI tree is very inconsistent with the

reference tree (seven branches are different). We also built maximum-likelihood trees from COI barcodes

(Additional file 1: Fig. S11), but the number of incorrect branches did not reduce. Comparing the distribu-

tion of all pairwise genomic distances obtained from genome-skims and barcodes (Fig. 9c), Skmer has larger

distances and fewer pairs with zero or close to zero distance, indicating that Skmer has a higher resolution in

differentiating between samples. For example, four species of the Anopheles genus A. coluzzii, A. gambiae,

A. arabiensis, and A. melas have very small pairwise distances based on COI barcodes, while using Skmer,

the estimated distances are in the range 0.02–0.04 for these species.
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Figure 8: The mean rank and distance error of the best remaining match in leave-out experiments.
The distance of closest genome in the reference to a query is varied from 0.01 to 0.1 (x-axis). The rank and distance
errors (y-axis) of the best match to a query, are computed by comparing the order given by each method with the
order obtained by applying Mash* to the full assemblies (ground truth). For each dataset, the experiment is repeated
by taking each species as the query, and then the errors are averaged. Three methods, Mash, Skmer, and AAF, are
compared on: (a) the Anopheles dataset, (b) the Drosophila dataset, and (c) the avian dataset.
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Figure 9: Comparing distances and phylogenetic trees from COI barcodes and simulated
genome-skims. Shown in red are wrong internal branches corresponding to the bipartitions that are
not found in the reference tree. Genome-skim size is randomly chosen among 0.1Gb, 0.5Gb, and 1Gb.
(a) Anopheles trees. (b) Drosophila trees. (c) Distribution of distances for Anopheles (left) and Drosophila
(right) genomes
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Discussion

We showed that Skmer can compute the genomic distance between a pair of species from genome-skims

with very low coverage (at or even below 1X), with much better accuracy than the main two alternatives,

Mash and AAF. We also showed that the distances computed by Skmer can accurately place a voucher

genome-skim within a reference database of genome-skims, and can be used to infer the phylogenetic tree

with reasonable accuracy. While Skmer is not the first k-mer based approach for distance estimation or

phylogenetic reconstruction, as we showed, the alternatives have low accuracy given low coverage data. We

compare with Mash because it is used within Skmer and is one of the most widely-used alignment and

assembly-free methods. However, we note that authors of Mash do no claim it can handle low coverage,

and so our results are not a criticism of their approach. Besides the methods we discussed, many other

alignment-free sequence comparison and phylogeny reconstruction algorithms exist [25, 28, 29, 31, 32, 34–

43]. However, these methods take as input assembled (but unaligned) sequences, and thus, are not applicable

in an assembly-free pipeline. In other words, their goal, is to avoid the alignment step and not the assembly

step.

Compared to using COI markers, currently used in practice, we showed that using all k-mers, including

those from the nuclear genome, improves the phylogenetic accuracy. These improvements are resulting from

distances that have a larger range and more resolution compared to COI. Also, the increased resolution

should not be surprising given that the entire genome is much larger than any single locus, reducing the

variance in estimates of the distance. Beyond the question of resolution, gene trees and species trees need

not match [57], a fact that can further reduce the accuracy of marker genes for both species identification

and phylogeny reconstruction. By using the entire genome, Skmer ensures that an average distance across

the genome is computed, reducing the sensitivity to gene tree/species tree discordances. Moreover, a recent

result shows that the JC-transformed genomic distance is a statistically consistent estimator of the species

distances despite gene tree discordance due to incomplete lineage sorting [58], further encouraging our use

of the genomic distance as a measure of the evolutionary divergence.

We showed that genomic distances as small as 0.01 can be estimated accurately from genome-skims with

1X or lower coverage. What does a distance of 0.01 mean? The answer will depend on the organisms of

interest. For example, two eagle species of the same genus (H. albicilla and H. leucocephalus) have D ≈ 0.003

but two Anopheles species of the same species complex (A. gambiae and A. coluzzii) have D ≈ 0.018. Broadly

speaking, for eukaryotes, detecting distances in the 10−2 order is often enough to distinguish between species

(Additional file 1: Fig. S12). On the other hand, to differentiate individuals in a population, or very similar

species, we may need to reliably estimate distances of the order 10−3. Detection at these lower levels

seems to require > 1X coverage using Skmer (Additional file 1: Fig. S4b) but future work should study the

exact level of sequencing required for accurate ordering of species at distances in the order of 10−3 or less.

Moreover, the question of the minimum coverage required may avail itself to information-theoretical bounds

and near-optimal solutions, similar to those established for the assembly problem [59, 60].

Although most of our tests simulated genome skims simulated from assemblies, we also tested Skmer

on genome skims simulated by subsampling previous whole genome sequencing experiments. Several com-

plications have to be addressed in real applications. The actual coverage of real genome skims may not

be uniform and randomly distributed and they can have an overrepresentation of mitochondrial or plastid

sequence. More importantly, other sources of DNA originating from for example, parasites, diet, fungi,
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commensals, bacteria, and human contamination may all be present in the sample and may cause a bias

in the estimation of distances. In our test, we simply searched all reads in a genome-skim against a few

bacterial genomes and the human reference genome; this simple scheme filtered out up to ∼10% of reads

(for D. virilis). These filtering strategies were sufficient to produce reliable distance estimates in the case

of Drosophila genomes. We recommend that before using Skmer, such database searches should be used

to find and eliminate bacterial or fungal contamination (using BLAST [61] or perhaps metagenomic tools

such as Kraken [62]), as well as removing contaminant reads with human origin (using for example Bowtie2

[63]). However, in future, it will be beneficial to develop better methods for finding extraneous reads without

reliance on known sources.

A related direction of future work is to explore whether Skmer can be extended to environmental DNA

analyses, i.e., queries consisting of genome-skims of multi-taxa samples. While Skmer is presented here in

a general setting, its best use is for eukaryotic organisms, where the notion of species is better established

and species can be separated with reasonable effort. We tested Skmer on birds and insects, but we predict

it will work equally well for plants, a prediction that we plan to test in future work.

Throughout our experiments, we used Mash* run on the assemblies to compute the ground truth. Given

the true alignment of the two genomes, we can compute the true genomic distance as the proportion of

mismatches among aligned orthologous positions (i.e., ignoring gaps). To ensure that Mash* closely ap-

proximates true distances, we used simulated genomes of Rat and Mouse from the Mammalian dataset of

the Alignathon competition [64]. This simulation uses Evolver [65] and includes many forms of mutation,

including indels, rearrangement, duplications, and losses. On this dataset, the true distance based on the

known true alignment is 0.145 and Mash* estimated the distance as 0.143, which is a very good approxima-

tion. In contrast, FastANI [66], an alignment-free sequence mapping tool for estimating average nucleotide

identity, computes the distance as 0.189. If we count gaps as non-matching positions in the definition of

distance, then the true distance would be 0.287, which also does not match FastANI. Presumably, FastANI,

which relies on alignment of short blocks, counts short gaps (with some definition of short) as mismatch

but excludes larger ones. Thus, on real data, Mash* is the best available option to approximate the true

distance. Finally, note that, for real genomes, we chose not to use estimated whole genome alignments

(WGA) to compute the ground truth because WGA is a difficult problem, and WGAs that are available

are not necessarily accurate. We get inconsistent estimates of distance when we use pairwise or multiple

WGAs. For example, between D. melanogaster and D. yakuba, the distance changes from 0.10 when using

the multiple WGA [67], to 0.21 if we use the pairwise WGAs [68] from the UCSC genome browser [69],

which is the state-of-the-art.

The connection between genomic distance and phylogenetic distance depends on mutation processes

considered. If only substitutions are allowed and assuming the Jukes-Cantor model, the phylogenetic distance

is −3
4 ln(1− 4

3d); note this transformation is monotonic and does not change rankings of matches to a query

search. Assuming a more complex model such as GTR [70], genomic distance is not enough to estimate the

phylogenetic distance. However, we have devised a simple procedure to estimate GTR distances using the

log-det approach [71] by repeated applications of Skmer to perturbed reads (Additional file 1: Appendix B).

The GTR distances can rank matches to a query differently from the genomic distance; the accuracy of the

two distances should be compared in future work.

Insertions, deletions, duplications, losses, and repeats can all lead to differences between genomes, thereby

reducing the Jaccard index and increasing the genomic distance. They also impact genomic length. Inter-
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estingly, in our experiments, Skmer run with the true coverage is less accurate than with estimated coverage

(Additional file 1: Fig. S13). We speculate that on genomes with repeats, by overestimating coverage, our

method gives an estimate of the “effective” coverage, reducing the impact of repeats on the Jaccard index.

Nevertheless, with these complex mutations, the correct definitions of the evolutionary distance and genomic

distance are not straightforward; nor is it clear how the Jaccard index should be translated to the genomic

distance. Here, we used a heuristic approach that simply averaged the length of the two genome, leaving

these broader questions about the best definition of genomic distance in the presence of large structural

variations to future work.

Conclusions

Skmer is an assembly-free and alignment-free tool for estimating the distance between two genome-skims. It

can estimate a wide-range of distances with high accuracy from low-coverage and mixed-coverage genome-

skims with no prior knowledge of the coverage or the sequencing error. Our paper shows that the idea of

genome-wide sample identification using genome-skims has merit and should be pursued in the future.

Methods

Consider an idealized model where two genomes are the outcome of a random process that copies a genome

and introduces mutations at each position with fixed probability d. Moreover, substitutions are the only

allowed mutation. In this case, the per-nucleotide hamming distance D between the two genomes is a

random variable (r.v.) with expected value d. We would like to estimate d. While this is a simplified model,

we will test the method on real pairs of genomes that differ due to complex mutational processes (also, see

Additional file 1: Appendix B for extensions). We start with known results connecting the Jaccard index

and the hamming distance and then show how these results can be generalized to low coverage genome-

skims. Throughout, we present our results succinctly and present derivations and more careful justifications

in Additional file 1: Appendix A of the supplementary material.

Jaccard index versus genomic distance

The Jaccard index of subsets A1 and A2 is defined as

J =
|A1 ∩A2|
|A1 ∪A2|

=
|A1 ∩A2|

|A1|+ |A2| − |A1 ∩A2|
. (4)

Let W be the number of shared k-mers between the two genomes. Note that: J = W
2L−W ⇒

2J
1+J = W

L , where

L is the genome length. Assuming random genomes and no repeats, perhaps justifiably [72], the probability

that a changed k-mer exists elsewhere in the genome is vanishingly small for sufficiently large k. Thus, we

assume a k-mer is in the shared k-mers set only if no mutation falls on it, an event that has probability

(1− d)k. Thus, we can model W as a binomial with probability (1− d)k and L trials. As Ondov et al. [45]

pointed out, we can estimate

D = 1−
(

2J

J + 1

) 1
k

(5)

18

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/230409doi: bioRxiv preprint 

https://doi.org/10.1101/230409
http://creativecommons.org/licenses/by/4.0/


and they further approximate D as 1
k ln

(
J+1
2J

)
. To be able to estimate large distances, we avoid the unnec-

essary approximation and use Equation 5 directly. We skim each genome to obtain k-mer sets A1, A2 and

estimate J using Equation 4, which can be computed efficiently using a hashing technique used by Mash [45].

Note that, however, Equation 5 assumes a high coverage of the genome so that each k-mer is sampled at least

once with very high probability. This assumption is violated for genome-skims in consequential ways. As

a simple example, suppose the coverage is low enough that a k-mer is sampled with probability 0.5. Then,

even for identical genomes, we estimate J as 1
3 , resulting in a distance estimate of D ≈ 0.032 for k = 21.

Extending to genome-skims with known low coverage and error

We now show how Equation 5 can be refined to handle genome-skims despite low and uneven coverage,

sequencing error, and varying genome-lengths. We first assume that coverage and error are known and later

show how to compute these.

Low coverage

When the genome is not fully covered, three sources of randomness are at work: mutations and sampling of

k-mers from each of the two genomes. Each genome of length L is sequenced independently using randomly

distributed short reads of length ` at coverages c1 and c2 to produce two genome-skims. Under the simplifying

assumption that genomes are not repetitive, we choose k to be large enough so that each k-mer is unique

with high probability. Therefore, the number of distinct k-mers in each genome is L−k ' L. The probability

of covering each k-mer can be approximated as ηi = 1− e−λi where λi = ci(1−k/`). Modeling the sampling

of k-mers as independent Bernoulli trials, |Ai| becomes binomially distributed with parameters ηi and L.

By independence, W = |A1 ∩A2| also becomes binomially distributed with parameters η1η2(1− d)k and L.

Moreover, U = |A1∪A2| can also be modeled approximately as a Gaussian with mean (η1+η2−η1η2(1−d)k)L.

Treating η1 and η2 as known and dividing W
L by U

L gives us:

J =
W

U
=

η1η2(1−D)k

η1 + η2 − η1η2(1−D)k
;

thus,

D = 1−
((η1 + η2)

η1η2

J

(1 + J)

) 1
k
.

Sequencing error

Each error reduces the number of shared k-mers and increases the total number of observed k-mers, and thus

can also change the Jaccard index. Let εi denote the base-miscall rate for genome skim i. For large k and

small εi, the probability that an erroneous k-mer produces a non-novel k-mer is negligible. The probability

that a k-mers is covered by at least one read, without any error, is approximately

ηi = 1− e−λi(1−εi)k . (6)
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Adding up the number of error-free and erroneous k-mers, the total number of k-mers observed from both

genomes can again be approximately modeled as a Gaussian with mean ζiL for

ζi = ηi + λi(1− (1− εi)k) . (7)

Just as before, we can simply estimate D by solving for it in

J =
η1η2(1−D)k

ζ1 + ζ2 − η1η2(1−D)k
. (8)

When the coverage is sufficiently high, each k-mer will be covered by multiple reads with high probability,

and low-abundance k-mers can be safely considered as erroneous. Mash has an option to filter out k-mers

with abundances less than some threshold m to remove k-mers that are likely to be erroneous. In this case,

ζi = ηi = 1−
mi−1∑
t=0

(λi(1− εi)k)t

t!
e−λi(1−εi)

k
(9)

assuming all erroneous k-mers are removed. For instance, filtering single-copy k-mers (i.e., m = 2) gives us:

ζi = ηi = 1− e−λi(1−εi)k − λi(1− εi)ke−λi(1−εi)
k

and the Jaccard index follows the same equation as (8). Since this filtering approach only works for

high coverage, we filter low coverage k-mers only when our estimated coverage is higher than a threshold

(described below). Note that the genome-skims compared may use different filtering schemes yet Eqn. 8

holds regardless.

Differing genome lengths

Based on a model where the genomic distance between genomes of different lengths is defined to be confined

to the mutations that are falling on homologous sequences, we can drive

J =
η1η2 min(L1, L2)(1−D)k

ζ1L1 + ζ2L2 − η1η2 min(L1, L2)(1−D)k
.

This computation does not penalize for genome length difference. While a rigorous modeling of evo-

lutionary distance for genomes of different length require sophisticated models of gene gain, duplication,

and loss, we take the heuristic approach used by Ondov et al. [45] and simply replace min(L1, L2) with

(L1 + L2)/2. This ensures that the estimated distance increases as genome lengths becomes successively

more different. This leads us to our final estimate of distance given by:

D = 1−
(

2(ζ1L1 + ζ2L2)J

η1η2(L1 + L2)(1 + J)

)1/k

(10)

Estimating sequencing coverage and error rate

So far we have assumed a perfect knowledge of sequencing depth and error. However, for genome-skims,

the genome length is not known; thus, we need to estimate the coverage in order to apply our distance

correction. We also assume a constant base error rate, and co-estimate it with the coverage.
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The sequencing depth, which is the average number of reads covering a position in the genome, can be

estimated from the k-mer coverage profiles. The probability distribution of the number of reads covering a

k-mer is a Poisson r.v. with mean λ, where λ is defined as k-mer coverage. As we look into the histogram

data, it is easier to work with counts instead of probabilities. Let M denote the total number of k-mers

of length k in the genome, and Mi count the number of k-mers covered by i reads. Thus, for i ≥ 0,

E[Mi] = M λi

i! e
−λ. For a given set of reads, we can count the number of times that each k-mer is seen, and

assuming zero sequencing error, it equals the number of reads covering that k-mer. Then, we can aggregate

the number of k-mers covered by i reads and find Mi for i ≥ 1. However, since in a genome-skim, large parts

of the genome may not be covered, both M and M0 are unknown. To deal with this issue, we could take the

ratio of consecutive counts to get a series of estimates of λ as λ̃i = Mi+1

Mi
(i+ 1) for i = 1, 2, . . .. In practice,

sequencing errors change the frequency of k-mers and has to be considered when estimating the coverage.

Assuming that the error is introduced at a constant rate along the reads, we can use the information in

the k-mer counts to co-estimate ε and λ. Like before, we assume that the k-mer length k is large enough

that any error will introduce a novel k-mer, so the count of all erroneous k-mers is added to the count of

single-copy k-mers. Moreover, for k-mers with more than one copy, the number of times that each kmer is

seen equals the number of reads covering that k-mer without any error. Formally, let M̂i denote the count

of k-mers seen i times in the presence of error, and ρ = (1− ε)k denote the probability of error-free k-mer.

E[M̂i] =


∑

j≥iM
λj

j! e
−λ(j

i

)
ρi(1− ρ)j−i i ≥ 2∑

j≥1M
λj

j! e
−λ (jρ(1− ρ)j−1 + j(1− ρ)

)
i = 1

=

M
ξi

i! e
−ξ i ≥ 2

M
(
ξe−ξ + λ− ξ

)
i = 1

(11)

where ξ = λρ is the average number of error-free reads covering a k-mer. A family of estimates for ξ is

obtained by taking the ratio of consecutive counts of error-free k-mers as ξ̃i = M̂i+1

M̂i
(i+ 1) for i ≥ 2. Then,

using an estimate of ξ and the count of single-copy k-mers, we get a series of estimates of λ for i ≥ 2 as

λ̃i =
M̂1

M̂i

ξ̃i

i!
e−ξ̃ + ξ̃(1− e−ξ̃) . (12)

Moreover, we can estimate the error rate from the estimates of λ and ξ as

ε̃ = 1− (ξ̃/λ̃)1/k . (13)

While any of these ξ̃i and λ̃i can be used in principle, the empirical performance can be affected by the

choice; in our tool, we use heuristic rules (described below) that seek to use large Mi values.

Skmer: implementation

Skmer takes as input two or more genome-skims. It uses JellyFish [48] to compute Mi values, which are

then used in estimating λ and ε based on Equations 12 and 13, by setting ξ̃ = ξ̃h and λ̃ = λ̃h, where

h = argmaxi≥2Mi. Then, Mash is used to estimate the Jaccard index, with k = 31 (selected empirically;

Additional file 1: Fig. S14) and sketch size 107. Finally, we use Equation 10 to compute the hamming

distance with η and ζ values computed using Equations 6, 7 if c < 5 or else using Equation 9. The genome
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length L is estimated as the total sequence length divided by the coverage c.

Experimental setup

Method settings

For Skmer, we use default parameters described above. For Mash, similar to Skmer, we used k = 31 (selected

empirically; Additional file 1: Fig. S14) and sketch size 107. As Mash handles errors by removing low copy

k-mers, we set the minimum cardinality for k-mers to be included as b c5c+ 1 with our estimate of c.

AFF has an algorithm to correct hamming distances for low coverage, but the correction relies on

adjusting the length of tip branches in a distance-based inferred phylogeny. As such, it cannot run on a pair

of genomes and requires at least four genomes. Also, AAF leaves coverage estimation to the user with some

guidelines, which we fully follow (Additional file 1: Appendix C).

For building phylogenetic distances, we we transformed Skmer distances using the JC69 [50] model and

used FastME [49] to construct the distance-based trees via BIONJ [73] method.

Genomic Datasets

We used three sets of publicly available assembled genomes (Additional file 1: Tables S4–S6) and used

ART [74] to simulate genome-skims of read length ` = 100 with default sequencing error profile, con-

trolling for the sequencing depth (coverage) (Additional file 1: Appendix C). Specifically, the data in-

cluded 21 Drosophila genomes (flies) and 22 genomes from the Anopheles genus (mosquitoes) obtained from

InsectBase[75], and 47 avian species from the Avian Phylogenomic Project [76, 77].

For the experiment on real genome skims, high-coverage SRA’s of 14 Drosophila species were obtained

from NCBI database under project number PRJNA427774 [78] and then subsampled to 100Mb. Assemblies

used to compute true distances for these 14 Drosophila species were obtained from the Drosophila project [79].

We used the tool fastp [80] for filtering low-quality reads and adapter removal. We also used Megablast [81]

to search against a database of bacterial and mitochondrial genomes and remove contaminant reads. We

used Bowtie2 [63] with the highest sensitivity to remove the reads aligning (even partially) to the human

reference genome.

To simulate genomes with controlled genomic distance, we introduced random mutations. As a chal-

lenging case, we took the highly repetitive assembly of the wasp species Cotesia vestalis, and mutated it

artificially; we only applied single nucleotide mutations distributed uniformly at random across the genome.

We repeated the study on the simpler case of the fly species D. melanogaster. We generate genome-skims

using ART with ` = 100, default error profile of Illumina sequencer, and varying coverage between 1
64X and

16X. For simulated genomes, we repeated the subsampling 10 times and reported the mean and standard

error.

In order to compare with DNA barcoding method, we downloaded available COI barcodes for the

Drosophila and Anopheles species in BOLD database [12]. Out of 21 Drosophila and 22 Anopheles species in

our dataset, 16 Drosophila and 19 Anopheles species had one or more barcodes in BOLD. For each species,

we selected a barcode, and using MUSCLE [82], aligned all barcodes within each dataset and constructed the

phylogenetic tree assuming the Jukes-Cantor model. Under the same model of substitution, we transformed

Skmer distances and built the Skmer tree. We used FastME [49] to construct the distance-based trees via

BIONJ [73] method. The maximum-likelihood COI trees were built using PhyML [83].
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Evaluation Metrics

For simulated data, the true distance is controlled and is thus known. For biological datasets, the ground

truth is unknown. Instead, we use the distance measured on the full assembly by each method as its ground

truth; thus, the ground truth for AAF is computed using AAF. We show both absolute error and the relative

error, measured as | d̂−dd | where d and d̂ are the true and the estimated distances.

Leave-out

We used a leave-out strategy to study the accuracy of searching for a query genome in a reference set. For

a query genome Gq in a set of n genomes {G1 . . . Gn}, we ordered all genomes based on their distances to

Gq calculated using the full assemblies, which represents the ground truth; let G1
q . . . G

n
q denote the order,

and d1q . . . d
n
q be the respective distances from the query (note G1

q = Gq and d1q = 0). For 0.01 ≤ d ≤ 0.10,

we removed genomes 1 . . . i from the datasets where i is the largest value such that diq ≤ d, leaving us with

Gi+1
q . . . Gnq . We then ordered the remaining genomes by each method; let x1 . . . xn−i be the order obtained

by a method and let r be the the rank of the best remaining genome according to the ground truth in

the estimated order (i.e., x1 = Gi+rq ). Since r = 1 implies perfect performance, and r > 1 indicates error,

we measured rank error as the mean of r − 1 across all query genomes (1 ≤ q ≤ n). Moreover, the mean

(relative) distance error is defined as the mean of
di+r
q −di+1

q

di+1
q

over all queries.
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A Theoretical results

Consider two genomes of identical length L and separated by hamming distance D where the hamming

distance is defined as the fraction of variant sites between the perfect alignment of the two genomes. We

would like to estimate D from two genome-skims.

Mutations

We model the two genomes as the outcome of a random process that copies a genome and introduces

mutations at each position i.i.d with a fixed probability d. Indexing from left to right, we can define

n = L − k + 1 k-mers (note that n ≈ L for any reasonable choice of k and genome length). Let Xi be a

binary random variable (r.v.) that indicates whether k-mer i is identical between the two genomes. Clearly,

in our model, Xi ∼ Bern(p) where p = (1− d)k. Then, W =
∑n

1 Xi gives the number of shared k-mers. If J

is defined as the Jaccard index over the set of all k-mers from both genomes, it’s easy to see that J = W
2n−W

and thus, W
n = 2J

1+J . We further make a simplifying assumption. We assume all Xi r.v.s are independent,

an assumption that is true for most pairs of k-mers but ignores the fact that each k-mer overlaps with k-1

other k-mers. With this assumption, the maximum likelihood estimate of p is simply

p̂ =
W

n
=

2J

1 + J
.

By the functional invariance of maximum likelihood, the ML estimate of d is given by:

d̂ = 1−
( 2J

1 + J

) 1
k .

k-mer sampling

We now assume that each genome is covered uniformly at random. Thus, k-mers are also sub-sampled and

we assume each k-mer is sampled at least once with probability η1 in the first genome and η2 in the second

genome; we derive the relationship between these probabilities and genome coverage below. We estimate η

values separately (also described below) and here consider them as given. For each 1 ≤ i ≤ n and j ∈ {1, 2},
let Yj,i ∼ Bern(ηj) be the indicator of whether the k-mer i is sampled at least once in the genome j. Under

this scenario, the number of k-mers shared between the two genomes is given by the r.v. W =
∑n

1 XiY1,iY2,i.

Defining Z = XiY1,iY2,i, we get W =
∑n

1 Zi and Zi ∼ Bern(r) where r = pη1η2 by the independence of the

mutation process and each of the two k-mer sampling processes. Assuming independence between Zi r.v.s

(again ignoring the overlap between consecutive k-mers) we get the ML estimate r̂ = W
n , and thus (for a

given η1 and η2) we have

r̂ = p̂η1η2 =
W

n
(S1)

Let U =
∑n

1 Si where Si = Y1,i + Y2,i − Y1,iY2,iXi. It is easy to see that U gives the total number of

sampled k-mers in both genomes. However, Si is not a Bernoulli and thus, U is not Binomial. Nevertheless,

the same assumptions that we used to treat Xi and Zi r.v.s as independent also give us independence

between Si values; therefore, by the central limit theorem, Un can be approximated by a Gaussian with mean

q = E [Si]. Moreover, E [Si] = E [Y1,i] + E [Y2,i]− E [Y1,iY2,iXi] = η1 + η2 − η1η2p (note that Xi, Y1,i and Y2,i
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are independent). By this Gaussian approximation, the ML estimate of q given η1, η2 is given by:

q̂ = η1 + η2 − η1η2p̂ =
U

n
. (S2)

Note that J = W
U . Equations S1 and S2 give two different ML estimators of the same parameter p given

two different types of data (W and U). While the two estimators are not the same, because n is extremely

large, both estimators have a very low variance. Exploiting the low variance, we treat the two estimates of

p as equal and divide both sides of Equation S1 by Equation S2 to get:

r̂

q̂
=
W

U
= J =

p̂η1η2
η1 + η2 − η1η2p̂

.

Solving for p̂ and replacing d̂ = 1− p̂
1
k gives

d̂ = 1−
( (η1 + η2)J

η1η2(1 + J)

) 1
k .

Note that we have assumed a known coverage and thus we are not co-estimating ηj ’s and d. In practice,

we need to first estimate η1 and η2, and we do it as we will describe.

Connection of η to read coverage

A k-mer stretching from position y to y+ k on the genome is covered by the reads that start in the interval

[y+ k− `, y]. Assuming that there is no sequencing error, and a uniform spread of of the N reads across the

genome of length L. We show that the probability η that a k-mer is sampled by at least one read is given

by

η = 1− e−c(1−
k
`
)

Let X be a r.v. denoting the number of reads that cover a specific k-mer. Assuming a uniform spread of

N reads across the genome of length L, the probability of x reads covering a k-mer (starting in an interval

of length `− k) is given by

Prob(X = x) =

(
N

x

)
(
l − k
L

)x(1− l − k
L

)N−x

As N is large and N(l−k)
L is constant, it can be closely approximated by

Prob(X = x) =
λx

x!
e−λ

where λ = N(l−k)
L is the k-mer coverage, and is related to the coverage c by

λ =
l − k
l

c

As the number of reads covering a k-mer follows Poisson distribution, the fraction of k-mers covered by 1

or more reads is

η = 1− e−λ (S3)
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Sequencing error

We model the sequencing error as an i.i.d process that corrupts each position of each read with a fixed

probability ε. To extend our previous results to cover this scenario, we need to see how the intersection r.v.

(W ) and the union r.v. (U) get affected.

We start with the intersection (W ). We change the meaning of η to denote the probability that a k-mer

is covered by at least one error-free read. The probability of a k-mer within a read being error-free is clearly

ρ = (1− ε)k ' e−kε (S4)

By conditioning on the number of reads covering a k-mer, the probability of not covering a k-mer with

an error-free read is given by

Prob(no error-free read) =

∞∑
i=0

Prob(all reads have error|i reads)Prob(i reads)

=

∞∑
i=0

(1− ρ)i Prob(i reads)

=

∞∑
i=0

(1− ρ)i
λi

i!
e−λ

= e−λρ

(S5)

Hence, the probability that a k-mer is covered by at least one error-free read is given by

η = 1− e−λρ (S6)

Note that Eqn. S6 reduces to Eqn. S3 when there is no sequencing error, i.e., ρ = 1. Similar to the

case of no error, given η1 and η2, the r.v. W
n (where W is the number of shared k-mers) can be used with

Equation S1 to estimate r.

We now turn to the union (r.v. U). For large enough k, and for genomes that are random and repeat-

free, with high probability (> 1 − 2L
4k

) an error produces a new k-mer that is not observed in either of the

input genomes. Ignoring the exceedingly unlikely event that two errors produce the same k-mer or that they

produce a k-mer present in one of the two genomes, we can assume that the sequencing error generates as

many new k-mers as the number of reads being affected by errors.

In the regime that includes errors, U =
∑n

1 (T1,i + T2,i) −W where the r.v.s T1,i and T2,i give the total

number of k-mers generated from the position i from the first and second genomes, respectively. W.l.o.g,

consider T1,i. By conditioning on the number of reads covering a k-mer we have

E[T1,i] = E[E[T1,i|x reads]] =

∞∑
x=0

E[T1,i|x reads]Prob(x reads) (S7)

Given that x reads are covering a k-mer, T1,i equals the number of erroneous k-mers E, plus 1 if there is
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any error-free k-mer. As E ∼ Binom(x, 1− ρ)

E[T1,i|x reads] =
x∑
j=0

(j + 1j 6=x)

(
x

j

)
(1− ρ)jρx−j

= x(1− ρ) + (1− (1− ρ)x)

(S8)

and substituting into (S7)

E[T1,i] =
∞∑
x=0

((1− (1− ρ)x) + x(1− ρ))Prob(x reads)

=
∞∑
x=0

((1− (1− ρ)x) + x(1− ρ))
λx1
x!
e−λ1

= 1− e−λ1ρ + λ1(1− ρ)

= η1 + λ1(1− ρ)

= η1 + λ1(1− (1− ε)k)

(S9)

Letting ζ1 = E [T1,i] and using the same central limit argument we used before, Un becomes approximately

a Gaussian with expectation ζ1 + ζ2 − η1η2p. Similar to Equation S2, given ζ1, ζ2, η1, and η2, the Gaussian

approximation gives us:

ζ1 + ζ2 − η1η2p̂ =
U

n
. (S10)

Again, assuming that estimates of p in Equation S1 (with the new definition of η) and Equation S10 are

the same (due to low variance), we divide the two equations and solve for d to get the estimator:

D = 1−
(

(ζ1 + ζ2)J

η1η2(1 + J)

)1/k

.

Excluding low-copy k-mers from the Jaccard index calculation

If we discard k-mers observed less than m times, then a k-mer will survive if it is covered by m or more

error-free reads. Hence, η becomes the probability of m or more error-free reads covering a k-mer

η = 1−
m−1∑
t=0

Prob(t error-free read)

= 1−
m−1∑
t=0

∞∑
i=t

Prob(t error-free read|i reads)Prob(i reads)

= 1−
m−1∑
t=0

∞∑
i=t

(
i

t

)
pt(1− p)i−tλ

i

i!
e−λ

= 1−
m−1∑
t=0

(λp)t

t!
e−λp

(S11)

In general, we have shown that the probability distribution of the number of error-free k-mers is a Poisson

with parameter λp.
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B Computing GTR distances

To compute the GTR matrix using the log-det approach, we need a 4 × 4 matrix F where each element is

the fraction of sites where one genome has one letter while the other genome has the other letter. Given

this matrix, d = − log(det(F )).

As elsewhere, we assume a no-indel scenario so that each k-mer mismatch can be attributed to a single

nucleotide substitution. For i, j ∈ {a,c,g,t}, let xij = xji denote the number of mutations of the form i↔ j.

Our goal is to estimate xij for all i, j. However, the paradigm of computing distance by hashing/sketching

k-mers treats all mutations alike. Formally, the estimated distance d equals

d = xac + xag + xat + xcg + xct + xgt

We do the following:

1. Replace G and T with C, and compute distance da = xac + xag + xat.

2. Replace G and T with A, and compute distance dc = xac + xcg + xct.

3. Replace G with T , and compute distance dac = xac + xag + xat + xcg + xct.

Combining, we get

xac = da + dc − dac

A similar procedure can be used to compute all xij and normalization gives us F .

Note that this procedure reduces the space of possible k-mers of length k to 2k possibilities instead of

4k. Therefore, it will likely be required that k is increased for high accuracy when this approach is used.
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C Supplementary method details and commands

Here we provide the exact procedures and commands that we used to run external softwares throughout our

experiments.

Simulating genome-skims using ART

To simulate short reads with length ` = 100 and (default) error profiles of Illumina HiSeq2000, we ran

art_illumina -i FASTA_FILE -l 100 -f c -o FASTQ_FILE

To simulate reads with constant error rate ε = 0.01 (Phred score = 20) at coverage c, we used

art_illumina -i FASTA_FILE -l 100 -qL 20 -qU 20 -f c -o FASTQ_FILE

Computing k-mer frequencies using JellyFish

To count all k-mers of length k = 31 in a genome-skim, we used

jellyfish count -m 31 -s 100M -C -o COUNT_FILE FASTQ_FILE

and to get the histogram of k-mer counts

jellyfish histo COUNT_FILE

Computing Jaccard index and estimating distance using Mash

We first sketch input genome-skims or assemblies with k-mer length k = 31 and sketch size s = 107. For

genome-skims (in FASTQ format) when no k-mer filtering is applied, we run

mash sketch -r -k 31 -s 10000000 -o SKETCH_FILE FASTQ_FILE

To sketch genome-skims while filtering k-mers with less than C copies, we use

mash sketch -m C -k 31 -s 10000000 -o SKETCH_FILE FASTQ_FILE

For genome assemblies (in FASTA format), we used

mash sketch -k 31 -s 10000000 -o SKETCH_FILE FASTA_FILE

Then, the Jaccard index and Mash distance between sketches is computed by running

mash dist SKETCH_FILE_1 SKETCH_FILE_2

Estimating distances using AAF

To count the k-mers (k = 31) in a dataset of genome-skims using 24 cores and 120GB memory, we first ran

python PATH_to_FILE/aaf_phylokmer.py -k 31 -t 24 -o KMER_COUNT_FILE \

-d INPUT_DIR -G 120

Next, to get the (uncorrected) distances and phylogeny, we used
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python PATH_to_FILE/aaf_distance.py -i KMER_COUNT_FILE -t 24 -G 120 \

-o OUTPUT_FILE_PREFIX -f KMER_DIVERSITY_FILE

where KMER_DIVERSITY_FILE is an output of previous command. Finally, to correct tip branches of phy-

logeny tree for low coverage and sequencing error, we used

python PATH_to_FILE/aaf_tip.py -i TREE_FILE -k 31 \

--tip TIP_INFO_FILE -f KMER_DIVERSITY_FILE

where we had to provide TIP_INFO_FILE containing estimates of coverage and sequencing error. To estimate

coverage, we followed the procedure suggested in AAF user manual. We first used JellyFish to find the k-mer

counts Mi’s as described before. They suggest when there is a clear peak in the k-mer frequency distribution,

estimate k-mer coverage λ to be the maximum bin. As they do not suggest a specific rule for that, we first

find j = argmaxi>1Mi, excluding the count of the first bin M1, which is always large because of erroneous

k-mers due to sequencing error. If j > 2, it means that we can see a peak in k-mers distribution at j, so

we use λ = j. Otherwise, if j = 2, we follow their suggested formula λ =
∑
iMi∑
Mi

for the case of low coverage

or high sequencing error that there is no clear peak in the k-mer frequency distribution. We should also

mention that no k-mer filtering used for AAF, as the coverage was heterogeneous over genome-skims. In

fact, in AAF the filtering is applied to all genome-skims if used, and so they suggest to not apply filtering

when there is any taxon with low coverage (c < 5) within the dataset.
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D Supplementary figures and tables

●●
●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

Mash Skmer

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

0.0

0.1

0.2

0.3

true distance

es
tim

at
ed

 d
is

ta
nc

e

Converage
●

●

●

●

●

●

●

●

0.125

0.25

0.5

1

2

4

8

16

Figure S1: Comparing the accuracy of Mash and Skmer on simulated genomes. Genome-skims
are simulated using ART with read length ` = 100. Substitutions applied to the assembly of C. vestalis at
six different rates (x-axis), and genome-skims simulated at varying coverage range from 1

8X to 16X (colors).
The estimated distance (y-axis) by Mash (left) and Skmer (right) is plotted versus the real distances (x-axis).
The mean (dots) distances are shown as dots (10 repeats) but standard errors are too small to see. The unit
line is shown as a dashed line.
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Figure S2: Comparing distances estimated by Mash and Skmer for simulated data at very low
coverages. Skims of C. vestalis v.s. genomes simulated to be at different distances from C. vestalis, with
varying coverage. The mean and standard error of distances are shown over 10 repeats of the experiment.
The coverage ranges from 1

64X to 1X.
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range of coverage from 1
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Figure S4: The resolution of Skmer at different genomic distances. Skims of D. melanogaster v.s.
genomes simulated to be at different distances from D. melanogaster, with varying coverage. (a) Estimated
distance versus the true distance. (b) The ratio of estimated distance to the true distance.
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Figure S5: Comparing the accuracy of Mash and Skmer on pairs of insects and birds genomes. Genome-
skims simulated at coverage 1

8X to 8X. On each subplot, the estimated distance (y-axis) is plotted versus the coverage
(x-axis) for a pair of species. Dashed line shows Mash* run on assemblies, which is taken as the true distance. Skmer
estimates (light-colored curves) are very close to the true distance while Mash (gray curves) largely overestimates at
lower coverages. (a) Six pairs of insects. (b) Six pairs of birds.
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Figure S6: Comparing the error of Mash, Skmer, and AAF in distance estimation with fixed
amount of sequence from each species. The dataset of 22 Anopheles genomes, subsampled with 0.1Gb,
0.5Gb, and 1Gb sequence.
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Figure S7: Comparing the error of Mash, Skmer, and AAF in distance estimation with fixed
amount of sequence from each species. The dataset of 21 Drosophila genomes, subsampled with 0.1Gb,
0.5Gb, and 1Gb sequence.
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Figure S8: Comparing the error of Mash, Skmer, and AAF in distance estimation with fixed
amount of sequence from each species. The dataset of 47 avian genomes, subsampled with 0.1Gb,
0.5Gb, and 1Gb sequence.
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Figure S9: Comparing the error of Mash, Skmer, and AAF on the Avian dataset with mixed coverage.
Species have random amount of sequence chosen uniformly among 0.1Gb, 0.5Gb, and 1Gb. Similar to (Fig. 5), we
have excluded one of the eagles (H. albicilla). The error of Mash, AAF, and Skmer in estimating the distance between
the two eagles are 2193%, 884%, and 4.2%, respectively (both of the eagles are subsampled at 0.5Gb here).
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Figure S10: The mean rank error of the best remaining match in leave-out experiments on the
Drosophila dataset. Drosophila willistoni has been excluded.
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Figure S11: Maximum-likelihood trees inferred from COI barcodes (a) Anopheles tree.
(b) Drosophila tree.
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Figure S12: The histogram of genomic distances between species from the same genus among
the Anopheles, Drosophila, and birds datasets. Distances computed based on full assemblies. The
only species from the same genus with hamming distance less than 0.01 were the two eagle species (H.
albicilla and H. leucocephalus).
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Figure S13: The performance of Skmer coverage estimation. Comparing distances estimated by
Mash, Skmer with estimated coverages, and Skmer with true coverages (Skmer*), on genome-skims of C.
vestalis and genomes simulated at different distances from it.
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Figure S14: The fraction of unique k-mers in selected species of insects and birds.
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Table S3: GenBank accession numbers of microbial species used in contamination removal.

Species GenBank assembly accession

Pasteurella langaaensis GCA 003096995.1
Providencia stuartii GCA 001558855.2
Serratia marcescens GCA 000783915.2
Shigella flexneri GCA 000006925.2
Commensalibacter intestini GCA 002153535.1
Acetobacter malorum GCA 002153605.1
Acetobacter pomorum GCA 002456135.1
Lactobacillus plantarum GCA 000203855.3
Lactobacillus brevis GCA 003184305.1
Enterococcus faecalis GCA 002208945.2
Vagococcus teuberi GCA 001870205.1
Wolbachia GCA 000022285.1
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Table S4: GenBank accession numbers and URLs for Anopheles genomes

Species GenBank assembly accession URL

Anopheles albimanus GCA 000349125.1 http://www.insect-genome.com/data/genome_download/Anopheles_

albimanus/Anopheles_albimanus_genomic.fasta.gz

Anopheles arabiensis GCA 000349185.1 http://www.insect-genome.com/data/genome_download/Anopheles_

arabiensis/Anopheles_arabiensis_genomic.fasta.gz

Anopheles atroparvus GCA 000473505.1 http://www.insect-genome.com/data/genome_download/Anopheles_

atroparvus/Anopheles_atroparvus_genomic.fasta.gz

Anopheles christyi GCA 000349165.1 http://www.insect-genome.com/data/genome_download/Anopheles_

christyi/Anopheles_christyi_genomic.fasta.gz

Anopheles coluzzii - http://www.insect-genome.com/data/genome_download/Anopheles_

coluzzii/Anopheles_coluzzii_genomic.fasta.gz

Anopheles culicifacies GCA 000473375.1 http://www.insect-genome.com/data/genome_download/Anopheles_

culicifacies/Anopheles_culicifacies_genomic.fasta.gz

Anopheles darlingi GCA 000211455.3 http://www.insect-genome.com/data/genome_download/Anopheles_

darlingi/Anopheles_darlingi_genomic.fasta.gz

Anopheles dirus GCA 000349145.1 http://www.insect-genome.com/data/genome_download/Anopheles_

dirus/Anopheles_dirus_genomic.fasta.gz

Anopheles epiroticus GCA 000349105.1 http://www.insect-genome.com/data/genome_download/Anopheles_

epiroticus/Anopheles_epiroticus_genomic.fasta.gz

Anopheles farauti GCA 000956265.1 http://www.insect-genome.com/data/genome_download/Anopheles_

farauti/Anopheles_farauti_genomic.fasta.gz

Anopheles funestus GCA 000349085.1 http://www.insect-genome.com/data/genome_download/Anopheles_

funestus/Anopheles_funestus_genomic.fasta.gz

Anopheles gambiae GCA 000150785.1 http://www.insect-genome.com/data/genome_download/Anopheles_

gambiae/Anopheles_gambiae_genomic.fasta.gz

Anopheles koliensis GCA 000956275.1 http://www.insect-genome.com/data/genome_download/Anopheles_

koliensis/Anopheles_koliensis_genomic.fasta.gz

Anopheles maculatus GCA 000473185.1 http://www.insect-genome.com/data/genome_download/Anopheles_

maculatus/Anopheles_maculatus_genomic.fasta.gz

Anopheles melas GCA 000473525.2 http://www.insect-genome.com/data/genome_download/Anopheles_

melas/Anopheles_melas_genomic.fasta.gz

Anopheles merus GCA 000473845.2 http://www.insect-genome.com/data/genome_download/Anopheles_

merus/Anopheles_merus_genomic.fasta.gz

Anopheles minimus GCA 000349025.1 http://www.insect-genome.com/data/genome_download/Anopheles_

minimus/Anopheles_minimus_genomic.fasta.gz

Anopheles nili GCA 000439205.1 http://www.insect-genome.com/data/genome_download/Anopheles_nili/

Anopheles_nili_genomic.fasta.gz

Anopheles punctulatus GCA 000956255.1 http://www.insect-genome.com/data/genome_download/Anopheles_

punctulatus/Anopheles_punctulatus_genomic.fasta.gz

Anopheles quadriannulatus GCA 000349065.1 http://www.insect-genome.com/data/genome_download/Anopheles_

quadriannulatus/Anopheles_quadriannulatus_genomic.fasta.gz

Anopheles sinensis GCA 000441895.2 http://www.insect-genome.com/data/genome_download/Anopheles_

sinensis/Anopheles_sinensis_genomic.fasta.gz

Anopheles stephensi GCA 000300775.2 http://www.insect-genome.com/data/genome_download/Anopheles_

stephensi/Anopheles_stephensi_genomic.fasta.gz
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Table S5: GenBank accession numbers and URLs for Drosophila genomes

Species GenBank assembly accession URL

Drosophila ananassae GCA 000005115.1 http://www.insect-genome.com/data/genome_download/Drosophila_

ananassae/Drosophila_ananassae_genomic.fasta.gz

Drosophila biarmipes GCA 000233415.2 http://www.insect-genome.com/data/genome_download/Drosophila_

biarmipes/Drosophila_biarmipes_genomic.fasta.gz

Drosophila bipectinata GCA 000236285.2 http://www.insect-genome.com/data/genome_download/Drosophila_

bipectinata/Drosophila_bipectinata_genomic.fasta.gz

Drosophila elegans GCA 000224195.2 http://www.insect-genome.com/data/genome_download/Drosophila_

elegans/Drosophila_elegans_genomic.fasta.gz

Drosophila erecta GCA 000005135.1 http://www.insect-genome.com/data/genome_download/Drosophila_erecta/

Drosophila_erecta_genomic.fasta.gz

Drosophila eugracilis GCA 000236325.2 http://www.insect-genome.com/data/genome_download/Drosophila_

eugracilis/Drosophila_eugracilis_genomic.fasta.gz

Drosophila ficusphila GCA 000220665.2 http://www.insect-genome.com/data/genome_download/Drosophila_

ficusphila/Drosophila_ficusphila_genomic.fasta.gz

Drosophila grimshawi GCA 000005155.1 http://www.insect-genome.com/data/genome_download/Drosophila_

grimshawi/Drosophila_grimshawi_genomic.fasta.gz

Drosophila kikkawai GCA 000224215.2 http://www.insect-genome.com/data/genome_download/Drosophila_

kikkawai/Drosophila_kikkawai_genomic.fasta.gz

Drosophila melanogaster GCA 000778455.1 http://www.insect-genome.com/data/genome_download/Drosophila_

melanogaster/Drosophila_melanogaster_genomic.fasta.gz

Drosophila miranda GCA 000269505.2 http://www.insect-genome.com/data/genome_download/Drosophila_

miranda/Drosophila_miranda_genomic.fasta.gz

Drosophila mojavensis GCA 000005175.1 http://www.insect-genome.com/data/genome_download/Drosophila_

mojavensis/Drosophila_mojavensis_genomic.fasta.gz

Drosophila persimilis GCA 000005195.1 http://www.insect-genome.com/data/genome_download/Drosophila_

persimilis/Drosophila_persimilis_genomic.fasta.gz

Drosophila rhopaloa GCA 000236305.2 http://www.insect-genome.com/data/genome_download/Drosophila_

rhopaloa/Drosophila_rhopaloa_genomic.fasta.gz

Drosophila sechellia GCA 000005215.1 http://www.insect-genome.com/data/genome_download/Drosophila_

sechellia/Drosophila_sechellia_genomic.fasta.gz

Drosophila simulans GCA 000259055.1 http://www.insect-genome.com/data/genome_download/Drosophila_

simulans/Drosophila_simulans_genomic.fasta.gz

Drosophila suzukii GCA 000472105.1 http://www.insect-genome.com/data/genome_download/Drosophila_

suzukii/Drosophila_suzukii_genomic.fasta.gz

Drosophila takahashii GCA 000224235.2 http://www.insect-genome.com/data/genome_download/Drosophila_

takahashii/Drosophila_takahashii_genomic.fasta.gz

Drosophila virilis GCA 000005245.1 http://www.insect-genome.com/data/genome_download/Drosophila_

virilis/Drosophila_virilis_genomic.fasta.gz

Drosophila willistoni GCA 000005925.1 http://www.insect-genome.com/data/genome_download/Drosophila_

willistoni/Drosophila_willistoni_genomic.fasta.gz

Drosophila yakuba GCA 000005975.1 http://www.insect-genome.com/data/genome_download/Drosophila_yakuba/

Drosophila_yakuba_genomic.fasta.gz
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Table S6: GenBank accession numbers and URLs for avian genomes

Species GenBank assembly accession URL

Acanthisitta chloris GCA 000695815.1 http://dx.doi.org/10.5524/101015

Anas platyrhynchos GCA 000355885.1 http://dx.doi.org/10.5524/101001

Antrostomus carolinensis GCA 000700745.1 http://dx.doi.org/10.5524/101019

Apaloderma vittatum GCA 000703405.1 http://dx.doi.org/10.5524/101016

Aptenodytes forsteri GCA 000699145.1 http://dx.doi.org/10.5524/100005

Balearica regulorum GCA 000709895.1 http://dx.doi.org/10.5524/101017

Buceros rhinoceros GCA 000710305.1 http://dx.doi.org/10.5524/101018

Calypte anna GCA 000699085.1 http://dx.doi.org/10.5524/101004

Cariama cristata GCA 000690535.1 http://dx.doi.org/10.5524/101020

Cathartes aura GCA 000699945.1 http://dx.doi.org/10.5524/101021

Chaetura pelagica GCA 000747805.1 http://dx.doi.org/10.5524/101005

Charadrius vociferus GCA 000708025.2 http://dx.doi.org/10.5524/101007

Chlamydotis macqueenii GCA 000695195.1 http://dx.doi.org/10.5524/101022

Colius striatus GCA 000690715.1 http://dx.doi.org/10.5524/101023

Columba livia GCA 000337935.1 http://dx.doi.org/10.5524/100007

Corvus brachyrhynchos GCA 000691975.1 http://dx.doi.org/10.5524/101008

Cuculus canorus GCA 000709325.1 http://dx.doi.org/10.5524/101009

Egretta garzetta GCA 000687185.1 http://dx.doi.org/10.5524/101002

Eurypyga helias GCA 000690775.1 http://dx.doi.org/10.5524/101024

Falcons peregrine GCA 000337955.1 http://dx.doi.org/10.5524/101006

Fulmarus glacialis GCA 000690835.1 http://dx.doi.org/10.5524/101025

Gallus gallus GCA 000002315.3 ftp://climb.genomics.cn/pub/10.5524/100001_101000/101000/chicken/

Gavia stellata GCA 000690875.1 http://dx.doi.org/10.5524/101026

Geospiza fortis GCA 000277835.1 http://dx.doi.org/10.5524/100040

Haliaeetus albicilla GCA 000691405.1 http://dx.doi.org/10.5524/101027

Haliaeetus leucocephalus GCA 000737465.1 http://dx.doi.org/10.5524/101040

Leptosomus discolor GCA 000691785.1 http://dx.doi.org/10.5524/101028

Manacus vitellinus GCA 000692015.2 http://dx.doi.org/10.5524/101010

Meleagris gallopavo GCA 000146605.3 ftp://climb.genomics.cn/pub/10.5524/100001_101000/101000/turkey/

Melopsittacus undulatus GCA 000238935.1 http://dx.doi.org/10.5524/100059

Merops nubicus GCA 000691845.1 http://dx.doi.org/10.5524/101029

Mesitornis unicolor GCA 000695765.1 http://dx.doi.org/10.5524/101030

Nestor notabilis GCA 000696875.1 http://dx.doi.org/10.5524/101031

Nipponia nippon GCA 000708225.1 http://dx.doi.org/10.5524/101003

Pelecanus crispus GCA 000687375.1 http://dx.doi.org/10.5524/101032

Phaethon lepturus GCA 000687285.1 http://dx.doi.org/10.5524/101033

Phalacrocorax carbo GCA 000708925.1 http://dx.doi.org/10.5524/101034

Phoenicopterus ruber GCA 000687265.1 http://dx.doi.org/10.5524/101035

Picoides pubescens GCA 000699005.1 http://dx.doi.org/10.5524/101012

Podiceps cristatus GCA 000699545.1 http://dx.doi.org/10.5524/101036

Pterocles gutturalis GCA 000699245.1 http://dx.doi.org/10.5524/101037

Pygoscelis adeliae GCA 000699105.1 http://dx.doi.org/10.5524/100006

Struthio camelus GCA 000698965.1 http://dx.doi.org/10.5524/101013

Taeniopygia guttata GCA 000151805.2 ftp://climb.genomics.cn/pub/10.5524/100001_101000/101000/zebrafinch/

Tauraco erythrolophus GCA 000709365.1 http://dx.doi.org/10.5524/101038

Tinamus guttatus GCA 000705375.2 http://dx.doi.org/10.5524/101014

Tyto alba GCA 000687205.1 http://dx.doi.org/10.5524/101039
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Table S7: The coverage of genomes over three datasets. Each genome is skimmed with 100Mb
sequence.

Dataset Min Mean Max

Drosophila 0.45X 0.60X 0.79X
Anopheles 0.37X 0.57X 1.02X
Birds 0.082X 0.090X 0.107X

Table S8: Comparing the average error of Mash, Skmer, and AAF over three datasets. Fixed
sequencing effort from each species.

Dataset Sequencing effort Mash Skmer AAF (uncorrected) AAF (corrected)

Anopheles
0.1Gb 48.02% (1.54%) 2.02% (0.05%) 40.22% (1.67%) 9.62% (0.52%)
0.5Gb 24.89% (0.59%) 0.75% (0.02%) 17.60% (0.70%) 7.35% (0.26%)
1Gb 18.43% (0.54%) 0.55% (0.02%) 16.94% (0.61%) 4.74% (0.22%)

Drosophila
0.1Gb 47.98% (0.82%) 1.65% (0.06%) 40.67% (0.94%) 9.00% (0.20%)
0.5Gb 25.25% (0.34%) 0.72% (0.03%) 18.63% (0.45%) 7.00% (0.19%)
1Gb 13.00% (0.16%) 0.50% (0.02%) 19.69% (0.52%) 2.18% (0.06%)

Birds
0.1Gb 95.57% (2.54%) 5.72% (0.06%) 86.45% (3.18%) 49.48% (1.94%)
0.5Gb 56.61% (1.40%) 2.14% (0.02%) 49.13% (1.75%) 13.73% (0.56%)
1Gb 41.25% (0.97%) 1.32% (0.01%) 34.33% (1.22%) 1.05% (0.09%)

* The standard error of the mean is provided in parentheses.
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