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Abstract	14	

Dengue,	chikungunya,	and	Zika	virus	epidemics	transmitted	by	Aedes	aegypti	15	

mosquitoes	have	recently	(re)emerged	and	spread	throughout	the	Americas,	16	

Southeast	Asia,	the	Pacific	Islands,	and	elsewhere.	Understanding	how	17	

environmental	conditions	affect	epidemic	dynamics	is	critical	for	predicting	and	18	

responding	to	the	geographic	and	seasonal	spread	of	disease.	Specifically,	we	lack	a	19	

mechanistic	understanding	of	how	seasonal	variation	in	temperature	affects	20	

epidemic	magnitude	and	duration.	Here,	we	develop	a	dynamic	disease	21	

transmission	model	for	dengue	virus	and	Aedes	aegypti	mosquitoes	that	integrates	22	

mechanistic,	empirically	parameterized,	and	independently	validated	mosquito	and	23	

virus	trait	thermal	responses	under	seasonally	varying	temperatures.	We	examine	24	

the	influence	of	seasonal	temperature	mean,	variation,	and	temperature	at	the	start	25	

of	the	epidemic	on	disease	dynamics.	We	find	that	at	both	constant	and	seasonally	26	

varying	temperatures,	warmer	temperatures	at	the	start	of	epidemics	promote	27	

more	rapid	epidemics	due	to	faster	burnout	of	the	susceptible	population.	By	28	

contrast,	intermediate	temperatures	(24-25°C)	at	epidemic	onset	produced	the	29	

largest	epidemics	in	both	constant	and	seasonally	varying	temperature	regimes.	30	

When	seasonal	temperature	variation	was	low,	25-35°C	annual	average	31	

temperatures	produced	the	largest	epidemics,	but	this	range	shifted	to	cooler	32	

temperatures	as	seasonal	temperature	variation	increased	(analogous	to	previous	33	

results	for	diurnal	temperature	variation).	Tropical	and	sub-tropical	cities	such	as	34	

Rio	de	Janeiro,	Fortaleza,	and	Salvador,	Brazil;	Cali,	Cartagena,	and	Barranquilla,	35	

Colombia;	Delhi,	India;	Guangzhou,	China;	and	Manila,	Philippines	have	mean	annual	36	
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temperatures	and	seasonal	temperature	ranges	that	produced	the	largest	37	

epidemics.	However,	more	temperate	cities	like	Shanghai,	China	had	high	epidemic	38	

suitability	because	large	seasonal	variation	offset	moderate	annual	average	39	

temperatures.	By	accounting	for	seasonal	variation	in	temperature,	the	model	40	

provides	a	baseline	for	mechanistically	understanding	environmental	suitability	for	41	

virus	transmission	by	Aedes	aegypti.	Overlaying	the	impact	of	human	activities	and	42	

socioeconomic	factors	onto	this	mechanistic	temperature-dependent	framework	is	43	

critical	for	understanding	likelihood	and	magnitude	of	outbreaks.		44	

	45	

Non-Technical	Summary	(150-200	Words)	46	

Mosquito-borne	viruses	like	dengue,	Zika,	and	chikungunya	have	recently	caused	47	

large	epidemics	that	are	partly	driven	by	temperature.	Using	a	mathematical	model	48	

built	from	laboratory	experimental	data	for	Aedes	aegypti	mosquitoes	and	dengue	49	

virus,	we	examine	the	impact	of	variation	in	seasonal	temperature	regimes	on	50	

epidemic	size	and	duration.	At	constant	temperatures,	both	low	and	high	51	

temperatures	(20°C	and	35°C)	produce	small	epidemics,	while	intermediate	52	

temperatures	like	25°C	and	30°C	produce	much	larger	epidemics.	In	seasonally	53	

varying	temperature	environments,	epidemics	peak	more	rapidly	at	higher	starting	54	

temperatures,	while	intermediate	starting	temperatures	produce	the	largest	55	

epidemics.	Seasonal	mean	temperatures	of	25-35°C	are	most	suitable	for	large	56	

epidemics	when	seasonality	is	low,	but	in	more	variable	seasonal	environments	57	

epidemic	suitability	peaks	at	lower	annual	average	temperatures.	Tropical	and	sub-58	

tropical	cities	have	the	highest	temperature	suitability	for	epidemics,	but	more	59	
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temperate	cities	with	high	seasonal	variation	also	have	the	potential	for	very	large	60	

epidemics.		 	61	
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Introduction	62	

Over	the	last	30-40	years,	arboviral	outbreaks	have	dominated	the	public	health	63	

landscape	globally	[1].		These	viruses,	most	notably	dengue	(DENV),	chikungunya	64	

(CHIKV),	and	Zika	(ZIKV),	can	cause	symptoms	ranging	from	rash,	arthralgia,	and	65	

fever	to	hemorrhagic	fever	(DENV),	long-term	arthritis	(CHIKV),	Guillain-Barré	66	

syndrome	and	microcephaly	(ZIKV)	[2–4].	DENV,	which	historically	spread	67	

worldwide	along	shipping	routes	[5],	places	3.97	billion	individuals	at	risk	68	

worldwide	[6]	and	causes	an	estimated	390	million	cases	annually,	including	96	69	

million	symptomatic	cases	[7].	CHIKV	was	introduced	into	the	Americas	in	70	

December	2013	after	an	outbreak	in	St.	Martin	Island	[8].	Since	then,	autochthonous	71	

transmission	has	been	reported	in	45	countries	[9],	and	1.3	billion	people	72	

worldwide	are	at	risk	of	contracting	CHIKV	[10].	More	recently,	the	ZIKV	epidemic	73	

in	the	Americas	captured	global	attention	after	the	World	Health	Organization	74	

(WHO)	designated	it	a	Public	Health	Emergency	of	International	Concern	in	75	

February	2016	in	response	to	its	association	with	neurological	disorders.	Following	76	

the	first	reported	case	in	Brazil	in	May	2015,	ZIKV	has	spread	to	48	countries	and	77	

territories	where	it	is	transmitted	autochthonously	[11].	Because	DENV,	CHIKV,	and	78	

ZIKV	are	mostly	transmitted	by	Aedes	aegypti	mosquitoes,	they	may	have	similar	79	

geographic	distributions	and	risk	factors.		80	

	 Informed	public	health	decisions	to	limit	the	spread	and	magnitude	of	these	81	

arboviral	epidemics	depend	on	a	robust	understanding	of	transmission	dynamics.	82	

One	mechanistic	modeling	framework,	the	Susceptible	–	Infected	–	Recovered	(SIR)	83	

model,	has	been	implemented	successfully	to	model	the	dynamics	of	outbreaks	of	84	
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influenza,	measles,	and	vector-borne	diseases	such	as	CHIKV	and	ZIKV	[12–14].	This	85	

approach	tracks	virus	population	dynamics	by	compartmentalizing	individuals	by	86	

their	state	in	an	epidemic	(i.e.,	Susceptible	(S),	Infected	(I),	Recovered	(R)).	This	87	

framework	can	be	extended	to	include	additional	compartments,	such	as	a	latency	88	

stage,	or	to	incorporate	the	dynamics	of	the	mosquito	population	for	vector	89	

transmission.		90	

	 Arbovirus	dynamics	are	strikingly	seasonal	and	geographically	restricted	to	91	

relatively	warm	climates	[6,7].	This	arises	because	several	life	history	traits	of	the	92	

mosquitoes	that	transmit	DENV,	CHIKV,	and	ZIKV	are	strongly	influenced	by	93	

temperature	and	seasonality	[15–22].	For	simplicity,	many	existing	models	assume	94	

static	life	history	traits	[14],	and	those	that	address	seasonal	forcing	tend	to	95	

incorporate	sinusoidal	variation	as	a	single	transmission	parameter,	β	[23].	Treating	96	

seasonal	temperature	variation	as	a	sinusoidal	forcing	function	on	the	transmission	97	

parameter	implies	a	monotonic	relationship	between	temperature	and	98	

transmission,	such	that	transmission	is	maximized	at	high	temperatures	and	99	

decreases	at	low	temperatures.	However,	decades	of	experimental	work	have	100	

demonstrated	strongly	nonlinear	(often	unimodal)	relationships	between	mosquito	101	

and	pathogen	traits	and	temperature	that	are	not	well	captured	in	a	single	102	

sinusoidal	forcing	function	[24].	Efforts	by	Yang	et	al.	[25,26]	addressed	the	need	to	103	

include	seasonal	variation	by	adopting	an	SEI-SEIR	compartmental	framework	with	104	

time-varying	entomological	parameters	and	fitting	the	model	to	DENV	incidence	105	

data	in	Campinas,	Brazil.	Other	previous	work	has	integrated	the	effects	of	106	

temperature	on	mosquito	and	parasite	traits	into	temperature-dependent	107	
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transmission	models	for	DENV,	CHIKV,	and/or	ZIKV,	and	revealing	a	strong,	108	

nonlinear	influence	of	temperature	with	peak	transmission	between	29	–	35	°C	[27–109	

34].	However,	we	do	not	yet	have	a	mechanistic	estimate	for	the	relationship	110	

between	seasonal	temperature	regimes	and	transmission	potential,	incorporating	111	

the	full	suite	of	transmission-relevant,	nonlinear	thermal	responses	of	mosquito	and	112	

parasite	traits.	113	

Here,	we	expand	on	previous	work	with	three	main	advances:	(1)	we	114	

incorporate	the	full	suite	of	empirically-derived,	unimodal	thermal	responses	for	all	115	

known	transmission-relevant	mosquito	and	parasite	traits;	(2)	we	examine	the	116	

influence	of	seasonal	temperature	mean	and	variation	(in	contrast	to	constant	117	

temperatures	or	daily	temperature	variation);	and	(3)	we	use	a	dynamic	118	

transmission	framework	to	explore	the	impact	of	different	seasonal	temperature	119	

regimes	on	the	epidemiologically-relevant	outcomes	of	epidemic	size,	duration,	and	120	

peak	incidence	(in	contrast	to	R0,	or	vectorial	capacity,	which	are	difficult	to	121	

measure	directly).	To	do	so,	we	incorporate	previously	estimated	and	independently	122	

validated	thermal	response	functions	for	all	vector	and	parasite	traits	[24]	into	a	123	

dynamic	SEI-SEIR	model	[25,26].	We	explore	field-relevant	temperature	regimes	by	124	

simulating	epidemics	across	temperature	means	(10	–	38°C)	and	seasonal	ranges	(0	125	

–	17°C)	from	across	the	predicted	suitable	range	for	transmission.	Specifically,	we	126	

use	the	model	to	ask:	(1)	How	does	final	epidemic	size	vary	across	constant	127	

temperatures?	(2)	Under	seasonally	varying	temperatures,	how	does	the	128	

temperature	at	the	start	of	the	epidemic	affect	the	final	epidemic	size	and	duration?	129	

(3)	How	do	temperature	mean	and	seasonal	range	interact	to	determine	epidemic	130	
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size?	(4)	Which	geographic	locations	have	high	epidemic	suitability	based	on	131	

climate?		132	

	133	

Methods	134	

Model	135	

Model	Framework	136	

We	adopted	an	SEI-SEIR	compartmental	modeling	framework	to	simulate	arboviral	137	

transmission	by	the	Aedes	aegypti	vector	(Fig.	1).	We	introduced	temperature-138	

dependence	into	the	model	by	using	fitted	thermal	response	curves	for	the	139	

mosquito	life	history	traits	provided	by	Mordecai	et	al.	[24].	The	full	model	is:	140	

	141	

𝑑𝑆#
𝑑𝑡

= 𝐸𝐹𝐷(𝑇) ∗ 𝑝𝐸𝐴(𝑇) ∗ 𝑀𝐷𝑅(𝑇) ∗ 𝜇(𝑇)−1 ∗ 𝑁# ∗ 51 −
𝑁#
𝐾(𝑇)

	8 – :𝑎(𝑇) ∗ 𝑝𝑀𝐼(𝑇) ∗
𝐼=
𝑁=

+ 𝜇(𝑇)? ∗ 𝑆#,					(1)	142	

	143	

𝑑𝐸#
𝑑𝑡

= 𝑎(𝑇) ∗ 𝑝𝑀𝐼(𝑇) ∗
𝐼=
𝑁=

∗ 𝑆# − A𝑃𝐷𝑅(𝑇) + 𝜇(𝑇)C ∗ 𝐸#,					(2)	144	

	145	
𝑑𝐼#
𝑑𝑡

= 𝑃𝐷𝑅(𝑇) ∗ 𝐸# − 𝜇(𝑇) ∗ 𝐼#,					(3)	146	

	147	
𝑑𝑆=
𝑑𝑡

= −𝑎(𝑇) ∗ 𝑏(𝑇) ∗
𝐼#
𝑁=

∗ 𝑆=,					(4)	148	

	149	
𝑑𝐸=
𝑑𝑡

= 𝑎(𝑇) ∗ 𝑏(𝑇) ∗
𝐼#
𝑁=

∗ 𝑆= − 𝛿 ∗ 𝐸=,					(5)	150	

	151	
𝑑𝐼=
𝑑𝑡

= 𝛿 ∗ 𝐸= − 𝜂 ∗ 𝐼=,					(6)	152	

	153	
𝑑𝑅=
𝑑𝑡

= 𝜂 ∗ 𝐼=,					(7)	154	

	155	
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Fig	1.	Compartmental	model	of	transmission.	SH,	EH,	IH,	and	RH	represent	the	156	

susceptible,	exposed	(or	latent),	infectious,	and	recovered	segments	of	the	human	157	

population,	respectively.	Likewise,	SV,	EV,	and	IV	represent	the	susceptible,	exposed	158	

(or	latent),	and	infectious	segments	of	the	mosquito	population.	Solid	arrows	signify	159	

the	directionality	of	transition	from	one	compartment	to	the	next,	and	dashed	160	

arrows	indicate	the	directionality	of	transmission.			161	

	 	162	

	 The	SEI	portion	of	the	model	describes	the	vector	population,	where	SV	163	

represents	the	number	of	susceptible	mosquitoes,	EV	is	the	number	of	mosquitoes	in	164	

the	latency	stage,	and	IV	is	the	number	of	infectious	mosquitoes.		We	assumed	that	165	

Aedes	aegypti	mosquitoes	remain	infectious	until	they	die.	In	equations	1-3,	(T)	166	

indicates	temperature-dependent	functions,	EFD(T)	is	the	number	of	eggs	laid	per	167	

female	per	day,	pEA(T)	is	the	probability	of	mosquito	egg-to-adult	survival,	MDR(T)	168	

is	the	mosquito	egg-to-adult	development	rate,	NV	is	the	total	mosquito	population	169	

at	time	t	(i.e.,	Sv	+	Ev	+	Iv),	K(T)	is	the	carrying	capacity	for	the	mosquito	population,	170	

a(T)	is	the	per	mosquito	biting	rate,	pMI(T)	is	the	probability	of	mosquito	infection	171	

per	bite	on	an	infectious	host,	μ(T)	is	the	adult	mosquito	mortality	rate,	and	PDR(T)	172	

is	the	parasite	development	rate.	Each	life	history	and	pathogen	transmission	trait	173	

of	the	Aedes	aegypti	mosquito	is	a	unimodal,	temperature-dependent	function	fit	174	

from	experimental	laboratory	data	in	previous	work	[15–22,24]	(Table	1;	Appendix;	175	

“Functional	Forms	of	Life	History	Traits”).		176	

	177	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 27, 2018. ; https://doi.org/10.1101/230383doi: bioRxiv preprint 

https://doi.org/10.1101/230383
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

Table	1.	Fitted	thermal	responses	for	Aedes	aegypti	life	history	traits.	Traits	were	fit	178	

to	a	Brière	[𝑐𝑇(𝑇 − 𝑇N)(𝑇O − 𝑇)
P
Q]	or	a	quadratic	[𝑐(𝑇 − 𝑇O)(𝑇 − 𝑇N)]	function	where	179	

T	represents	temperature.	T0	and	Tm	are	the	critical	thermal	minimum	and	180	

maximum,	respectively,	and	c	is	the	rate	constant.	Thermal	responses	were	fit	by	181	

[24].	182	

Trait	 Definition		 Function	 Fitted	Parameters	
a	 Biting	rate	(day-1)	

	
Brière	 c	=	2.02e-04	 Tmin	=	13.35	 Tmax	=	40.08	

EFD	 Eggs	laid	per	female	per	day	
	

Brière	 c	=	8.56e-03	 Tmin	=	14.58	 Tmax	=	34.61	

pEA	 Probability	of	mosquito	egg-to-
adult	survival	
	

Quadratic	 c	=	-5.99e-03	 Tmin	=	13.56	 Tmax	=	38.29	

MDR	 Mosquito	egg-to-adult	
development	rate	(day-1)	
	

Brière	 c	=	7.86e-05	 Tmin	=	11.36	 Tmax	=	39.17	

lf	 Adult	mosquito	lifespan	(days)	
	

Quadratic	 c	=	-1.48e-01	 Tmin	=	9.16	 Tmax	=	37.73	

b	 Probability	of	mosquito	
infectiousness	
	

Brière	 c	=	8.49e-04	 Tmin	=	17.05	 Tmax	=	35.83	

pMI	 Probability	of	mosquito	
infection	
	

Brière	 c	=	4.91e-04	 Tmin	=	12.22	 Tmax	=	37.46	

PDR	 Virus	extrinsic	incubation	rate	
(day-1)	

Brière	 c	=	6.65e-05	 Tmin	=	10.68	 Tmax	=	45.90	

	183	

	184	

The	SEIR	portion	of	the	model	describes	the	human	population,	where	SH	185	

represents	the	number	of	susceptible	individuals,	EH	the	number	of	latent	(or	186	

exposed)	individuals,	IH	the	number	of	infectious	individuals,	and	RH	the	number	of	187	

recovered	individuals.	We	assumed	a	static	population	size,	NH,	that	was	neither	188	

subject	to	births	nor	deaths	because	the	human	lifespan	far	exceeds	the	duration	of	189	
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an	epidemic.	Further,	we	binned	asymptomatic	and	symptomatic	individuals	into	a	190	

single	infectious	class	since	asymptomatic	infections	have	been	shown	to	transmit	191	

DENV	[35]	and	exhibit	similar	viremic	profiles	as	symptomatic	patients	in	CHIKV	192	

[36].	Based	on	previous	arboviral	outbreaks	[37,38],	we	assumed	that	an	infection	193	

conferred	long-term	immunity	to	an	individual.	Thus,	a	previously	infectious	194	

individual	entering	the	recovered	class	is	protected	from	subsequent	re-infection	195	

for	the	remainder	of	the	epidemic.	In	the	case	of	dengue,	where	there	are	four	196	

unique	serotypes,	we	consider	single-season	epidemics	of	a	single	serotype.	In	197	

equations	4-7,	b(T)	is	the	probability	of	human	infection	per	bite	by	an	infectious	198	

mosquito	(Table	1),	δ-1	is	the	intrinsic	incubation	period,	and	η-1	is	the	human	199	

infectivity	period.		Since	human	components	of	the	transmission	cycle	are	not	200	

seasonal,	we	used	constants	of	5.9	days	for	the	intrinsic	incubation	period,	1/δ,	and	201	

5.0	days	for	the	infectious	period,	1/η	[14].	All	temperature-independent	parameter	202	

values	are	given	in	Table	2.	203	

	204	

Table	2.	Values	of	temperature-independent	parameters	used	in	the	model,	and	205	

their	sources.	206	

Parameter	 Definition	 Value	 Source	
𝛿RS	 Intrinsic	incubation	period	(days)	

	
5.9	 [14]	

𝜂RS 	 Human	infectivity	period	(days)	
	

5.0	 [14]	

𝐼N=
𝑁T 	 Proportion	of	initially	infectious	

humans	
	

0.0001	 	

𝐼N#
𝑀T 	 Proportion	of	initially	infectious	

mosquitoes	
	

0.015	 [14]	
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𝑀
𝑁T 	 Ratio	of	mosquitoes-to-humans	at	29°C	 2.0	 [39]	

	207	

	208	

Since	the	lifespan	of	an	adult	mosquito	is	short	relative	to	the	timespan	of	an	209	

epidemic,	we	allowed	mosquito	birth	and	death	rates	to	drive	population	dynamics.	210	

Additionally,	the	birth	rate	of	susceptible	mosquitoes	was	regulated	by	a	211	

temperature-dependent	carrying	capacity,	K	(equation	8),	which	we	modeled	as	a	212	

modified	Arrhenius	equation	that	is	a	unimodal	function	of	temperature	[40]:		213	

	214	

𝐾(𝑇) =
𝐸𝐹𝐷(𝑇N) ∗ 𝑝𝐸𝐴(𝑇N) ∗ 𝑀𝐷𝑅(𝑇N) ∗ 𝜇(𝑇N)RS − 𝜇(𝑇N)

𝐸𝐹𝐷(𝑇N) ∗ 𝑝𝐸𝐴(𝑇N) ∗ 𝑀𝐷𝑅(𝑇N) ∗ 𝜇(𝑇N)RS
∗ 𝑁O ∗ 𝑒

RVW∗(XRXY)Q
Z[∗(X\]^_)∗(XY\]^_),					(8)	215	

	216	

Here,	T0	is	defined	as	the	reference	temperature	(i.e.,	the	temperature	at	217	

which	the	carrying	capacity	is	greatest)	in	Celsius,	Nm	is	the	maximum	carrying	218	

capacity,	and	κB	is	Boltzmann	constant	(8.617	x	10-5	eV/K).	EFD	is	the	number	of	219	

eggs	laid	per	female	per	day,	pEA	is	the	probability	of	egg-to-adult	mosquito	220	

survival,	MDR	is	the	mosquito	egg-to-adult	development	rate,	and	μ	is	the	adult	221	

mosquito	mortality	rate.	We	calculated	these	values	for	the	reference	temperature.	222	

EA	is	the	activation	energy,	which	we	set	to	0.5	and	represents	the	temperature	223	

dependence	of	the	carrying	capacity,	a	conservative	estimate	as	we	lacked	sufficient	224	

data	on	estimates	of	the	carrying	capacity	of	Aedes	aegypti	and	its	underlying	225	

temperature	dependence.	To	convert	from	Celsius	to	Kelvin,	we	incremented	the	226	

temperature	T	and	the	reference	temperature	T0	by	273.		Equation	(8)	was	adopted	227	

from	[40]	and	modified	to	allow	the	distribution	to	be	unimodal.	We	set	the	228	
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reference	temperature,	T0,	to	29°C,	which	is	consistent	with	optimal	temperatures	229	

for	Aedes	aegypti	transmission	[24,29].		230	

We	included	a	temperature-dependent	carrying	capacity	in	the	model	to	231	

constrain	the	growth	of	the	mosquito	population.	As	described	in	the	Appendix,	all	232	

simulations	begin	with	the	mosquito	population	at	its	(temperature-dependent)	233	

carrying	capacity.	As	the	temperature	changes	seasonally,	the	mosquito	population	234	

does	not	necessarily	remain	at	carrying	capacity	if	one	or	more	of	the	life	history	235	

traits	that	determine	the	production	of	new	mosquitoes	in	equation	(1)—EFD,	pEA,	236	

and	MDR—is	equal	to	zero.	This	occurs	below	14.58°C	(the	highest	Tmin	of	EFD,	pEA,	237	

and	MDR)	or	above	34.61°C	(the	lowest	Tmax	of	EFD,	pEA,	and	MDR).		238	

It	should	be	noted	that	the	transmission	parameters	are	only	related	to	the	239	

current	temperature	at	each	time	point	in	the	simulation.	Time	lags	for	each	life	240	

history	trait	were	not	explicitly	built	into	the	model.		241	

	242	

Seasonal	Forcing	243	

	 To	address	seasonality	in	the	model,	we	allowed	temperature	to	vary	over	244	

time.	We	modeled	temperature	as	a	sinusoidal	curve	with	a	period	of	365	days	of	245	

the	form:	246	

	247	

𝑇(𝑡) =
𝑇Oab − 𝑇Ocd

2 ∗ sin 5
2𝜋
365𝑡

8 + 𝑇Oiad,					(9)	248	

	249	

Here,	Tmax,	Tmean,	and	Tmin	represent	the	average	monthly	maximum,	mean,	and	250	

minimum	temperatures	across	a	calendar	year,	respectively,	and	t	is	measured	in	251	
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days.	By	modeling	temperature	as	a	function	of	time,	we	allowed	the	life	history	252	

traits	of	the	Aedes	aegypti	vector	to	vary	across	time	for	the	duration	of	the	253	

epidemic.	In	the	absence	of	a	specific	focal	location	we	modeled	seasonal	254	

temperature	as	a	sinusoidal	function	for	simplicity.	255	

	256	

Data	257	

Life	History	Traits	258	

To	incorporate	seasonal	forcing	into	the	compartmental	modeling	framework,	we	259	

used	fitted	mechanistic	thermal	response	curves	[24].	Mordecai	et	al.	[24]	examined	260	

published	data	on	thermal	responses	for	life	history	traits	of	the	Aedes	aegypti	261	

vector	and	DENV	and	adopted	a	Bayesian	approach	for	fitting	quadratic	(𝑄(𝑇);	Eq.	262	

10)	or	Brière	(𝐵(𝑇);	Eq.	11)	curves	(see	Appendix	for	details).		263	

	264	

𝑄(𝑇) = 𝑐 ∗ (𝑇 − 𝑇Ocd) ∗ (𝑇 − 𝑇Oab),					(10)	265	

	266	

𝐵(𝑇) = 𝑐 ∗ 𝑇 ∗ (𝑇 − 𝑇Ocd) ∗ n𝑇Oab − 𝑇,					(11)	267	

	268	

Here,	c	is	a	rate	constant,	Tmin	is	the	critical	temperature	minimum,	and	Tmax	is	the	269	

critical	temperature	maximum	(Table	1).	Following	Mordecai	et	al.	[24],	we	270	

assumed	values	above	the	critical	thermal	maxima	and	below	the	minima	were	271	

equal	to	zero.		272	

	 Mordecai	et	al.	[24]	fit	the	thermal	response	for	adult	mosquito	lifespan	273	

(Table	1),	the	inverse	of	the	adult	mosquito	mortality	rate	(μ,	in	days-1),	used	in	our	274	
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model.		We	set	the	mortality	rate	at	temperatures	outside	the	critical	thermal	275	

minimum	and	maximum	to	24	days-1	(i.e.,	mosquitoes	survive	for	one	hour	at	276	

temperatures	outside	of	the	Tmin	to	Tmax	range).		277	

	278	

Historical	Weather	Data	279	

	 To	identify	areas	of	epidemic	suitability	across	the	globe,	we	extracted	280	

monthly	mean	temperatures	for	2016	from	Weather	Underground	281	

(wunderground.com)	for	twenty	different	cities	(Table	3).		For	each	city,	we	282	

calculated	the	mean,	minimum,	and	maximum	from	the	average	monthly	mean	283	

temperatures,	to	estimate	temperature	seasonality.	This	provided	a	range	of	the	284	

average	monthly	temperature	over	the	span	of	a	calendar	year.	We	chose	this	time	285	

period	because	it	provided	the	most	recent	full	calendar	year	to	demonstrate	286	

seasonal	variation	in	temperature.		287	

	288	

Table	3.	Temperature	regimes	for	major	cities	during	the	2016	calendar	year.	289	

Monthly	mean	temperatures	during	2016	were	extracted	from	Weather	290	

Underground.		291	

	292	

City	 Annual	Mean	Temperature	

(°C)	

Annual	Temperature	

Amplitude	(°C)	

Buenos	Aires,	Argentina	 16.5	 8.0	

Sao	Paulo,	Brazil	 20.6	 5.0	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 27, 2018. ; https://doi.org/10.1101/230383doi: bioRxiv preprint 

https://doi.org/10.1101/230383
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

Rio	de	Janeiro,	Brazil	 24.3	 4.0	

Salvador,	Brazil	 26.3	 2.0	

Fortaleza,	Brazil	 27.8	 0.50	

Belo	Horizonte,	Brazil	 21.9	 3.0	

Recife,	Brazil	 27.2	 1.5	

Shanghai,	China	 17.6	 12.5	

Beijing,	China	 12.8	 16	

Guangzhou,	China	 22.9	 8.0	

Bogotá,	Colombia	 14.7	 1.0	

Medellin,	Colombia	 17.9	 1.0	

Cali,	Colombia	 25.1	 1.5	

Barranquilla,	Colombia	 28.8	 1.0	

Cartagena,	Colombia	 28.6	 1.0	

Delhi,	India	 26.3	 9.5	

Tokyo,	Japan	 17.0	 10.5	

Kobe,	Japan	 17.4	 11	

Manila,	Philippines	 29.0	 1.5	

New	York,	USA	 13.8	 12	

	293	

	294	

Variability	in	Epidemic	Dynamics	with	Constant	Temperature	295	

We	first	examined	how	epidemic	dynamics	varied	across	different	constant	296	

temperatures.	Here,	we	did	not	introduce	seasonal	forcing	into	the	model	but	rather	297	
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assumed	static	life	history	traits	for	Aedes	aegypti	for	the	simulation	period.	We	298	

simulated	the	model	under	default	starting	conditions	(see	Appendix)	at	four	299	

different	constant	temperatures:	20°C,	25°C,	30°C,	and	35°C.	These	temperatures	300	

were	chosen	to	span	the	range	of	temperatures	at	which	arbovirus	transmission	is	301	

likely	to	be	possible	[24].		302	

	303	

Variability	in	Epidemic	Dynamics	with	Starting	Temperature	304	

Using	the	model	that	included	seasonal	variation	in	temperature,	we	examined	how	305	

the	dynamics	of	an	epidemic	varied	due	to	the	temperature	at	which	the	epidemic	306	

began,	under	two	temperature	regimes.	First,	we	set	Tmax	=	40.0°C,	Tmean	=	25.0°C,	307	

and	Tmin	=	10.0°C	in	the	time-varying	seasonal	temperature	model	under	default	308	

parameters	(see	Appendix)	and	varied	the	temperature	at	the	start	of	the	epidemic	309	

from	10.0°C	to	40.0°C	in	increments	of	0.1°C.	We	examined	the	response	of	final	310	

epidemic	size,	epidemic	length,	and	maximum	instantaneous	number	of	infected	311	

individuals.	We	then	repeated	this	process	for	a	regime	with	a	lower	magnitude	of	312	

seasonal	temperature	variation:	Tmax	=	30.0°C,	Tmean	=	25.0°C,	and	Tmin	=	20.0°C.	By	313	

comparing	these	temperature	regimes,	we	can	examine	how	epidemics	respond	to	314	

starting	temperatures	that	are	outside	the	range	of	plausible	temperatures	of	315	

arbovirus	transmission	(regime	1)	versus	restricted	to	the	plausible	temperatures	316	

for	transmission	(regime	2)	[24].		317	

	318	

Seasonal	Variability	of	Final	Epidemic	Size	319	
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Using	the	compartmental	modeling	framework	with	the	default	starting	conditions,	320	

we	examined	the	variation	in	final	epidemic	size	as	a	result	of	seasonal	forcing.	To	321	

do	so,	we	simulated	over	a	wide	range	of	temperature	mean	and	seasonal	variance	322	

regimes.	The	mean	annual	temperature	varied	from	10.0°C	to	38.0°C	in	increments	323	

of	0.1°C,	while	the	seasonal	variation	about	the	mean	(i.e.,	XopqRXors
]

)	ranged	from	324	

0.0°C	to	17.0°C	in	increments	of	0.1°C.		Many	of	these	temperature	regimes	are	325	

unlikely	to	be	observed	empirically.	However,	the	simulated	temperature	regimes	326	

spanned	the	full	range	of	feasible	temperature	conditions.	We	recorded	the	final	327	

epidemic	size,	measured	as	the	number	of	individuals	in	the	recovered	328	

compartment	at	the	end	of	the	simulation,	for	each	unique	combination	of	mean	329	

annual	temperature	and	seasonal	variation.	In	addition,	we	examined	the	effect	of	330	

epidemic	starting	temperature	on	final	epidemic	size	across	the	same	seasonal	331	

temperature	regimes.	We	ran	the	model	under	default	starting	conditions,	but	332	

allowed	the	starting	temperature	to	equal	Tmin,	Tmean,	or	Tmax.		333	

	 To	observe	the	interaction	of	population	immunity	with	the	seasonal	334	

temperature	regime,	we	simulated	the	model	assuming	that	0,	20,	40,	60,	or	80%	of	335	

the	population	was	initially	immune.		Each	simulation	began	with	the	introduction	336	

of	the	infected	individual	occurring	at	the	mean	seasonal	temperature.		337	

We	then	compared	simulated	climate	regimes	with	actual	climates	in	major	338	

cities,	to	measure	relative	epidemic	suitability	of	the	following	cities:	São	Paulo,	339	

Brazil;	Rio	de	Janeiro,	Brazil;	Salvador,	Brazil;	Fortaleza,	Brazil;	Belo	Horizonte,	340	

Brazil;	Recife,	Brazil;	Bogotá,	Colombia;	Medellín,	Colombia;	Cali,	Colombia;	341	

Barranquilla,	Colombia;	Cartagena,	Colombia;	Tokyo,	Japan;	Delhi,	India;	Manila,	342	
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Philippines;	Shanghai,	China;	Beijing,	China;	New	York	City,	USA;	Guangzhou,	China;	343	

Kobe,	Japan;	and	Buenos	Aires,	Argentina,	given	0,	20,	40,	60,	and	80%	population	344	

immunity.	These	cities	were	chosen	because	they	represent	some	of	the	most	345	

populous	urban	areas	across	South	America	and	throughout	the	world.			346	

	347	

Model	Sensitivity	and	Uncertainty	Analysis	348	

To	characterize	uncertainty	in	the	model,	we	sampled	50	joint	posterior	estimates	349	

for	c,	Tmin,	and	Tmax	for	each	life	history	trait	provided	by	Mordecai	et	al.	[24].	We	350	

examined	the	variability	in	epidemic	dynamics	with	starting	temperatures	under	351	

each	parameterization	and	report	the	95%	credible	interval	for	the	epidemiological	352	

indices.	We	similarly	characterize	uncertainty	in	our	estimates	of	the	final	epidemic	353	

size	as	a	function	of	the	seasonal	temperature	regime	by	simulating	under	each	354	

parameterization	and	reporting	the	95%	credible	interval.		355	

	356	

Results	357	

Variability	in	Epidemic	Dynamics	with	Constant	Temperature	358	

Holding	temperature	constant,	we	examined	variability	in	epidemic	dynamics	359	

across	four	temperatures:	20°C,	25°C,	30°C,	and	35°C.	As	temperature	increased	360	

from	20°C	to	30°C,	the	number	of	susceptible	individuals	depleted	more	rapidly	361	

(Fig.	2,	SH).	At	20°C	and	35°C,	the	epidemics	were	small	(1.33%	and	5.92%	of	the	362	

population	infected,	respectively)	and	burned	out	rapidly.		Although	simulations	run	363	

at	25°C	and	30°C	produced	final	epidemic	sizes	of	94.73%	and	99.98%	of	the	364	
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population	infected,	respectively	(Fig.	2,	RH),	the	epidemic	peaked	much	faster	at	365	

30°C.		366	

	367	

Fig	2.	Variation	in	epidemic	dynamics	by	temperature.	The	model	was	simulated	368	

under	default	parameters	at	four	constant	temperatures:	20°C,	25°C,	30°C,	and	35°C.		369	

	370	

Variability	in	Epidemic	Dynamics	with	Starting	Temperature	371	

Next,	we	examined	variability	in	epidemic	dynamics	due	to	the	temperature	at	372	

which	the	epidemic	began,	given	two	seasonal	temperature	regimes	(25°C	mean	and	373	

a	seasonal	range	of	10°C	to	40°C	or	20°C	to	30°C,	respectively).	Given	that	an	374	

epidemic	occurred,	epidemic	length	monotonically	decreased	as	a	function	of	375	

starting	temperature	for	the	first	temperature	regime	(Fig.	3,	A):	warmer	376	

temperatures	at	the	start	of	the	epidemic	produced	shorter	epidemics,	and	vice	377	

versa.	In	the	second	temperature	regime,	epidemic	length	monotonically	decreased	378	

as	a	function	of	starting	temperature	until	~29°C.	When	temperature	varied	from	379	

10°C	to	40°C,	the	longest	epidemic	simulated	was	137.8	days	and	occurred	at	380	

starting	temperatures	of	11.2°C,	and	the	shortest	epidemic	lasted	16.82	days	and	381	

occurred	when	the	temperature	at	the	epidemic	start	was	35.7°C.		When	the	382	

temperature	was	35.8°C	or	higher	or	10.2°C	or	lower,	no	epidemic	occurred.		When	383	

temperature	was	constrained	between	20°C	and	30°C,	the	longest	epidemic	384	

simulated	was	253.64	days	at	a	starting	temperature	of	20°C,	and	the	shortest	385	

epidemic	lasted	136.1	days	at	a	starting	temperature	of	28.9°C.		386	

	387	
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Fig	3.	Epidemiological	indices	as	a	function	of	starting	temperature,	within	a	388	

given	seasonal	temperature	regime.	The	red	curve	represents	the	maximum	389	

number	of	humans	in	the	infected	class	(IH)	at	any	given	point	during	the	simulation.	390	

The	blue	curve	represents	the	final	(or	cumulative)	epidemic	size	(RH	at	the	final	391	

time	step).	The	green	curve	represents	the	length	of	the	epidemic	(i.e.,	the	point	at	392	

which	the	number	of	infected	individuals	was	below	one).	Here,	simulations	were	393	

run	with	the	temperature	conditions:	Tmin	=	10°C,	Tmean	=	25°C,	and	Tmax	=	40°C	(A)	394	

and	Tmin	=	20°C,	Tmean	=	25°C,	and	Tmax	=	30°C	(B).	395	

	396	

	In	contrast	to	epidemic	length,	the	response	of	final	epidemic	size	and	397	

maximum	number	of	infected	individuals	to	the	temperature	at	epidemic	onset	398	

depended	on	the	amount	of	seasonal	temperature	variation.	When	temperature	399	

varied	widely,	from	10°C	to	40°C,	both	final	epidemic	size	and	the	maximum	400	

number	of	infected	individuals	responded	unimodally	to	starting	temperature,	with	401	

peaks	at	23.9°C	and	24.1°C,	respectively	(Fig.	3,	A).	By	contrast,	when	temperature	402	

varied	more	narrowly	from	20°C	to	30°C,	the	final	epidemic	size	and	the	maximum	403	

number	of	infected	individuals	were	insensitive	to	starting	temperature	(Fig.	3,	B).	404	

Taken	together,	these	results	show	that	epidemics	introduced	at	different	times	405	

within	identical	seasonal	temperature	regimes	can	produce	very	similar	final	406	

epidemic	sizes	and	maximum	infection	rates,	provided	that	the	temperature	range	is	407	

sufficiently	constrained.	If	temperature	variation	is	large,	dramatically	different	final	408	

epidemic	sizes	and	maximum	infection	rates	may	result.			409	

	410	
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Seasonal	Variability	of	Final	Epidemic	Size	411	

To	address	how	mean	temperature	and	seasonal	variance	combined	to	influence	the	412	

final	epidemic	size,	we	simulated	over	a	wide	range	of	temperature	regimes	that	413	

accounted	for	variation	in	the	mean	and	temperature	range	over	a	calendar	year.	414	

We	calculated	relative	epidemic	suitability,	defined	as	the	final	epidemic	size	as	a	415	

proportion	of	the	human	population,	for	twenty	major	cities	worldwide	(Table	3).		416	

	 In	a	low-variation	thermal	environment,	a	band	of	mean	temperatures	417	

between	approximately	25°C	and	35°C	supports	the	highest	epidemic	suitability	418	

(Fig.	4).	As	the	seasonal	temperature	range	increases,	lower	mean	temperatures	are	419	

capable	of	supporting	large	epidemics.	However,	outside	this	narrow	band	of	420	

temperature	regimes,	epidemic	suitability	rapidly	diminishes,	and	most	421	

temperature	regimes	did	not	produce	epidemics.		422	

	423	

Table	3.	Estimates	of	epidemic	suitability	for	major	cities.	Epidemic	suitability	was	424	

calculated	as	the	proportion	of	the	population	that	became	infected	in	simulations	425	

run	with	0,	20,	40,	60,	or	80%	initial	population	immunity.	Temperature	at	426	

simulation	onset	was	set	to	the	mean	of	the	temperature	regime.	Each	city	was	427	

simulated	with	its	respective	temperature	regime	from	the	2016	calendar	year.	428	

	429	

	 Epidemic	Suitability	 	

City	 0%	Immunity	 20%	Immunity	 40%	Immunity	 60%	Immunity	 80%	Immunity	
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Buenos	

Aires,	

Argentina	

0.03656	 0.02169	 0.01203	 0.005975	 0.002295	

Sao	Paulo,	

Brazil	

0.6056	 0.3386	 0.1518	 0.05351	 0.01385	

Rio	de	

Janeiro,	

Brazil	

0.9984	 0.7962	 0.5891	 0.3618	 0.09862	

Salvador,	

Brazil	

0.9990	 0.7976	 0.5937	 0.3804	 0.1335	

Fortaleza,	

Brazil	

0.9993	 0.7982	 0.5953	 0.3861	 0.1535	

Belo	

Horizonte,	

Brazil	

0.5909	 0.3344	 0.1544	 0.05771	 0.01633	

Recife,	Brazil	 0.9994	 0.7985	 0.5959	 0.3871	 0.1517	

Shanghai,	

China	

0.9966	 0.7878	 0.5507	 0.2484	 0.03456	

Beijing,	

China	

0.5268	 0.2526	 0.09058	 0.02298	 0.003587	

Guangzhou,	

China	

0.9996	 0.7989	 0.5965	 0.3848	 0.1254	
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Bogotá,	

Colombia	

0.0001000	 0.0001000	 0.0001000	 0.0001000	 0.0001000	

Medellin,	

Colombia	

0.002544	 0.002048	 0.001556	 0.001068	 0.0005820	

Cali,	

Colombia	

0.9909	 0.7822	 0.5617	 0.3122	 0.07217	

Barranquilla,	

Colombia	

0.9997	 0.7993	 0.5979	 0.3928	 0.1703	

Cartagena,	

Colombia	

0.9997	 0.7993	 0.5978	 0.3923	 0.1688	

Delhi,	India	 0.9537	 0.7215	 0.4759	 0.2388	 0.06803	

Tokyo,	Japan	 0.7269	 0.4149	 0.1758	 0.05159	 0.009489	

Kobe,	Japan	 0.9435	 0.6669	 0.3522	 0.1090	 0.01632	

Manila,	

Philippines	

0.9998	 0.7994	 0.5981	 0.3933	 0.1720	

New	York,	

USA	

0.04088	 0.02159	 0.01041	 0.004390	 0.001425	

	430	

Table	4.	Estimates	of	epidemic	suitability	for	major	cities	under	different	431	

starting	temperatures.	Epidemic	suitability	was	calculated	as	the	proportion	of	the	432	

population	that	became	infected	in	simulations	that	began	at	the	minimum,	mean,	or	433	

maximum	temperature	of	the	seasonal	temperature	regime.	Each	city	was	simulated	434	
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with	its	respective	temperature	regime	from	the	2016	calendar	year	with	0%	435	

population	immunity.		436	

	437	

	 Epidemic	Suitability	

City	 Minimum	Starting	

Temperature	

Mean	Starting	

Temperature	

Maximum	Starting	

Temperature	

Buenos	Aires,	Argentina	 0.0001000	 0.03656	 0.1166	

Sao	Paulo,	Brazil	 0.02026	 0.6056	 0.3480	

Rio	de	Janeiro,	Brazil	 0.9978	 0.9984	 0.9760	

Salvador,	Brazil	 0.9965	 0.9990	 0.9963	

Fortaleza,	Brazil	 0.9986	 0.9993	 0.9990	

Belo	Horizonte,	Brazil	 0.09404	 0.5909	 0.3273	

Recife,	Brazil	 0.9973	 0.9994	 0.9987	

Shanghai,	China	 0.0001000	 0.9966	 0.8905	

Beijing,	China	 0.0001000	 0.5268	 0.5792	

Guangzhou,	China	 0.9983	 0.9996	 0.9912	

Bogotá,	Colombia	 0.0001000	 0.0001000	 0.0001000	

Medellin,	Colombia	 0.0002177	 0.002544	 0.004472	

Cali,	Colombia	 0.9858	 0.9909	 0.9623	

Barranquilla,	Colombia	 0.9994	 0.9997	 0.9997	

Cartagena,	Colombia	 0.9993	 0.9997	 0.9997	

Delhi,	India	 0.5615	 0.9537	 0.6954	
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Tokyo,	Japan	 0.0001000	 0.7269	 0.5121	

Kobe,	Japan	 0.0001000	 0.9435	 0.6890	

Manila,	Philippines	 0.9994	 0.9998	 0.9998	

New	York,	USA	 0.0001000	 0.04088	 0.1863	

	438	

Fig	4.	Variation	in	epidemic	suitability	across	different	seasonal	temperature	439	

regimes.	The	heat	map	shows	the	epidemic	suitability	(represented	as	the	440	

proportion	of	the	total	human	population	infected	during	an	epidemic)	as	a	function	441	

of	mean	annual	temperature	and	temperature	range.	Here,	temperature	range	is	442	

defined	as	the	seasonal	variation	about	the	annual	mean	temperature.	Twenty	large,	443	

globally	important	cities	are	plotted	to	illustrate	their	epidemic	suitability.	444	

	445	

	 Of	the	focal	20	major	cities,	those	with	high	mean	temperature	and	small	446	

average	temperature	variation	exhibited	the	highest	epidemic	suitability.	For	447	

instance,	Manila,	Philippines,	which	has	a	monthly	mean	temperature	of	29°C	and	448	

average	seasonal	amplitude	in	mean	temperature	of	1.50°C,	had	an	epidemic	449	

suitability	of	0.9998.	Cartagena	and	Barranquilla,	Colombia	had	epidemic	suitability	450	

of	0.9997.	On	the	other	hand,	areas	with	low	average	temperature	and	greater	451	

temperature	variation,	such	as	Beijing	and	New	York,	exhibited	lower—but	still	452	

non-zero—epidemic	suitabilities	of	0.5268	and	0.04088	respectively.	Notably,	453	

Guangzhou	and	Shanghai,	China	have	high	epidemic	suitability	(0.9996	and	0.9966,	454	

respectively)	despite	moderate	mean	temperatures	(22.9	and	17.6°C,	respectively)	455	

due	to	high	seasonal	variation	in	temperature.	By	contrast,	high	seasonal	variation	456	
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reduced	suitability	to	0.9537	in	Delhi,	India,	which	has	a	high	mean	temperature	of	457	

26.3°C	(Fig.	4).		458	

	 The	relationship	between	epidemic	suitability	and	seasonal	temperature	459	

regime	was	consistent	across	varying	levels	of	population	immunity.	Locations	with	460	

high	mean	temperatures	and	small	average	temperature	variation	had	higher	461	

epidemic	suitability,	regardless	of	the	level	of	population	immunity	(Figures	S2-S5).	462	

However,	as	the	level	of	immunity	increased	from	20%	to	80%,	the	epidemic	463	

suitability	at	given	seasonal	temperature	regime	decreased	(Table	3).		464	

	 Epidemic	suitability	also	varied	by	starting	temperature,	depending	on	the	465	

seasonal	temperature	regime.	The	epidemic	suitability	of	cities	with	high	mean	466	

temperature	and	small	average	temperature	variation—such	as	Manila,	Philippines	467	

and	Cartagena	and	Barranquilla,	Colombia—did	not	depend	on	starting	temperature	468	

(Table	4).	However,	areas	with	low	to	moderate	mean	temperature	and	large	469	

average	temperature	variation	(e.g.,	Kobe,	Japan	and	Shanghai,	China)	exhibited	low	470	

epidemic	suitability	(both	0.0001000)	at	the	minimum	starting	temperature	and	471	

moderate-to-high	epidemic	suitability	at	the	maximum	starting	temperature	472	

(0.6890	and	0.8905,	respectively)	(Fig.	5).	The	opposite	occurred	in	regimes	with	473	

high	mean	temperature	and	large	temperature	variation,	though	these	temperature	474	

regimes	are	rarer.	475	

Estimated	epidemic	suitability	is	close	to	one	in	the	most	suitable	476	

temperature	regimes	because	we	assumed	that:	(i)	the	population	was	fully	477	

susceptible	at	the	start	of	the	epidemic;	(ii)	mixing	was	homogeneous	among	478	

humans	and	mosquitoes;	(iii)	all	cases	of	infection	are	included	regardless	of	479	
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whether	or	not	they	are	symptomatic;	and	(iv)	no	other	environmental	or	social	480	

drivers	are	limiting	transmission.	As	a	result,	the	epidemic	suitability	metric	should	481	

be	considered	an	upper	bound	on	the	proportion	of	the	population	that	could	482	

become	infected	based	on	temperature	alone.	483	

	484	

Fig	5.	Variation	in	epidemic	suitability	across	different	seasonal	temperature	485	

regimes	averaged	across	starting	temperatures.	The	heat	map	shows	the	486	

epidemic	suitability	(represented	as	the	proportion	of	the	total	human	population	487	

infected	during	an	epidemic)	as	a	function	of	mean	annual	temperature	and	488	

temperature	range	averaged	across	simulations	where	the	initial	temperature	was	489	

set	to	the	seasonal	temperature	regime’s	minimum,	mean,	or	maximum	490	

temperature.	Here,	temperature	range	is	defined	as	the	seasonal	variation	about	the	491	

annual	mean	temperature.	Twenty	large,	globally	important	cities	are	plotted	to	492	

illustrate	their	epidemic	suitability.	493	

	494	

Model	Sensitivity	and	Uncertainty	Analysis	495	

Final	epidemic	size	was	not	sensitive	to	life	history	trait	parameterization	(Figs.	S8-496	

S10),	using	samples	from	the	posterior	distribution	of	thermal	response	fits	for	each	497	

temperature-dependent	trait.	498	

	 There	was	uncertainty	in	the	specific	numerical	values	of	the	epidemiological	499	

indices	across	starting	temperatures	(Fig.	S1).	However,	the	overall	functional	500	

response	of	the	final	epidemic	size,	maximum	number	of	infected	individuals,	and	501	
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the	epidemic	length	to	starting	temperature	was	consistent	across	the	samples	from	502	

the	joint	posterior	distribution.				503	

	504	

Discussion	505	

	 Recent	outbreaks	of	DENV,	CHIKV,	and	ZIKV	in	Latin	America	and	across	the	506	

globe	have	captured	the	attention	of	the	public	health	community	and	underscore	507	

the	importance	of	preparation	for	future	outbreaks.	As	temperatures	rise,	the	global	508	

landscape	suitable	for	such	outbreaks	will	expand	and	shift	geographically,	509	

potentially	placing	a	larger	proportion	of	the	world’s	population	at	risk	[24,29,31].	510	

Understanding	how	local	temperature	regimes	govern	epidemic	dynamics	is	511	

increasingly	important	for	determining	resource	allocation	and	control	512	

interventions	[41].	While	previous	work	has	investigated	the	effects	of	temperature	513	

on	DENV,	CHIKV,	and/or	ZIKV	transmission,	until	now	we	have	lacked	514	

comprehensive,	mechanistic,	and	dynamic	understanding	of	the	effects	of	seasonally	515	

varying	temperature	on	transmission	via	its	(nonlinear)	effects	on	mosquito	and	516	

parasite	traits	[27–34].	With	our	model,	which	expands	on	[24]	and	[25],	we	show	517	

that	seasonal	temperature	mean	and	amplitude	interact	with	the	temperature	at	518	

epidemic	onset	to	shape	the	speed	and	magnitude	of	epidemics.		519	

	 At	constant	temperature,	epidemics	varied	substantially	in	the	rate	at	which	520	

susceptible	individuals	were	depleted.	Epidemics	simulated	at	25°C	and	30°C	521	

reached	similar	sizes	but	the	epidemic	at	25°C	proceeded	at	a	much	slower	rate	(Fig.	522	

2).	This	“slow	burn”	phenomenon	occurs	because	slower	depletion	of	susceptible	523	

individuals	can	produce	epidemics	of	similar	size	to	epidemics	that	infect	people	524	
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very	rapidly.	This	phenomenon	also	occurs	in	more	realistic,	seasonally	varying	525	

temperature	regimes.	526	

	 The	temperature	at	which	an	epidemic	started	affected	dynamics	only	under	527	

large	ranges	of	temperature	variation.	When	temperature	ranged	from	10°C	to	40°C,	528	

the	final	epidemic	size	peaked	at	intermediate	starting	temperatures	(24°C;	Fig.	3,	529	

A).	However,	in	highly	suitable	seasonal	environments,	final	epidemic	size	was	large	530	

regardless	of	the	starting	temperature	(Fig.	3,	B).			531	

At	mean	starting	temperatures,	epidemic	suitability	was	sensitive	to	the	532	

interaction	between	annual	temperature	mean	and	seasonal	variation.	Under	low	533	

seasonal	temperature	variation,	a	narrow	band	of	annual	mean	temperatures	534	

(approximately	25-35°C)	had	the	highest	epidemic	suitability	(Figs.	4	&	S2-S5).	535	

Outside	this	band	of	temperature	regimes,	suitability	diminishes	rapidly.	Larger	536	

seasonal	variation	in	temperature	lowers	the	range	of	optimal	annual	mean	537	

temperatures	(i.e.,	suitability	is	high	in	cooler	places	with	larger	seasonal	variation	538	

in	temperature;	Fig.	4).		539	

The	relationship	between	epidemic	suitability	and	the	seasonal	temperature	540	

regime	also	depended	on	the	temperature	at	the	epidemic	onset.	Three	distinct	541	

relationships	emerged	(Figs.	5	&	S6-S7).	At	intermediate	annual	mean	temperatures	542	

of	~25-35°C	and	low	seasonal	temperature	variation	(~0-10°C),	epidemic	suitability	543	

is	insensitive	to	starting	temperature	because	temperature	is	suitable	for	544	

transmission	year-round.	At	lower	annual	mean	temperatures	(~10-25°C)	and	545	

higher	seasonal	temperature	variation	(~10-15°C),	epidemic	suitability	is	highest	546	

when	epidemics	start	in	moderate	to	warm	seasons,	and	lower	when	epidemics	547	
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start	during	cooler	seasons.	Finally,	at	high	annual	mean	temperatures	(>	35°C)	and	548	

low	seasonal	temperature	variation	(~0-10°C),	epidemic	suitability	is	high	only	549	

when	epidemics	start	at	the	coldest	period	of	the	year,	because	otherwise	the	550	

temperature	is	too	warm	for	efficient	transmission.	The	interaction	between	551	

temperature	mean,	annual	variation,	and	starting	point	sharply	illustrates	the	552	

unimodal	effect	of	temperature	on	transmission.	Models	that	do	not	include	553	

unimodal	effects	of	temperature	(e.g.,	those	with	sinusoidal	forcing	on	a	554	

transmission	parameter)	may	fail	to	capture	the	limits	on	transmission	in	warm	555	

environments.	556	

With	rising	mean	annual	temperatures	and	increasing	seasonal	temperature	557	

variation	due	to	climate	change,	the	landscape	of	epidemic	suitability	is	likely	to	558	

shift.	Importantly,	areas	with	previously	low	epidemic	suitability	may	have	559	

increasing	potential	for	transmission	year-round.	By	contrast,	warming	560	

temperatures	may	drive	epidemics	in	cities	with	high	current	suitability	(e.g.,	561	

Manila,	Philippines,	Barranquilla,	Colombia,	and	Fortaleza,	Brazil)	to	shift	toward	562	

cooler	months.	Thus,	climate	change	may	alter	not	only	epidemic	size	and	duration	563	

but	also	seasonal	timing	globally,	as	it	interacts	with	other	important	drivers	like	564	

rainfall	and	human	behavior.		565	

It	is	important	to	note	that	model-estimated	epidemic	suitability	should	be	566	

treated	as	an	upper	bound	on	the	potential	for	large	epidemics	because	within	567	

highly	suitable	climate	regimes,	epidemics	can	vary	in	magnitude	due	to	human	568	

population	size	and	movement	dynamics	[28],	effective	vector	control,	and	other	569	
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mitigating	factors.	Likewise,	our	estimates	are	conditioned	on	Aedes	aegypti	570	

presence	and	virus	introduction	to	support	an	outbreak.		571	

Although	seasonal	temperature	dynamics	provide	insight	into	vector-borne	572	

transmission	dynamics,	other	factors	like	mosquito	abundance,	vector	control,	and	573	

rainfall	also	determine	transmission	dynamics.	Thus,	temperature	must	be	574	

considered	jointly	with	these	factors.	Moreover,	accurately	describing	epidemic	575	

dynamics	of	emerging	and	established	vector-borne	pathogens	will	ultimately	576	

require	integrating	realistic	models	of	environmental	suitability,	as	presented	here,	577	

with	demographic,	social,	and	economic	factors	that	promote	or	limit	disease	578	

transmission	[42,43].	Conversely,	we	show	that	the	interaction	between	579	

temperature	and	the	availability	of	susceptible	hosts	alone	can	drive	epidemic	580	

burnout	even	in	the	absence	of	other	limiting	factors	like	vector	control	and	581	

seasonal	precipitation.	This	suggests	that	correctly	representing	the	nonlinear	582	

relationship	between	temperature	and	epidemic	dynamics	is	critical	for	accurately	583	

inferring	mechanistic	drivers	of	epidemics	and,	in	turn,	predicting	the	efficacy	of	584	

control	interventions.	 	585	
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Supporting	Information	Legends	724	

S1	Fig.	Sensitivity	of	epidemiological	indices	as	a	function	of	starting	725	

temperature	to	the	parametrization	of	life	history	traits.	The	red	curve	726	

represents	the	median	maximum	number	of	humans	in	the	infected	class	(IH)	at	any	727	

given	point	during	the	simulation.	The	blue	curve	represents	the	median	final	(or	728	

cumulative)	epidemic	size	(RH	at	the	final	time	step).	The	green	curve	represents	the	729	

median	length	of	the	epidemic	(i.e.,	the	point	at	which	the	number	of	infected	730	

individuals	was	below	one).	Each	shaded	area	represents	the	95%	credible	interval	731	

for	the	epidemiological	indices	ran	under	50	different	parameterizations	of	the	life	732	

history	traits.	Here,	simulations	were	run	with	the	temperature	conditions:	Tmin	=	733	

10°C,	Tmean	=	25°C,	and	Tmax	=	40°C	(A)	and	Tmin	=	20°C,	Tmean	=	25°C,	and	Tmax	=	30°C	734	

(B).	735	

S2	Fig.	Variation	in	epidemic	suitability	across	different	seasonal	temperature	736	

regimes	with	20%	population	immunity.	The	heat	map	shows	the	epidemic	737	

suitability	(represented	as	the	proportion	of	the	total	human	population	infected	738	

during	an	epidemic)	as	a	function	of	mean	annual	temperature	and	temperature	739	

range	assuming	20%	population	immunity.	Here,	temperature	range	is	defined	as	740	

the	seasonal	variation	about	the	annual	mean	temperature.	Twenty	large,	globally	741	

important	cities	are	plotted	to	illustrate	their	epidemic	suitability.	742	

S3	Fig.	Variation	in	epidemic	suitability	across	different	seasonal	temperature	743	

regimes	with	40%	population	immunity.	The	heat	map	shows	the	epidemic	744	

suitability	(represented	as	the	proportion	of	the	total	human	population	infected	745	

during	an	epidemic)	as	a	function	of	mean	annual	temperature	and	temperature	746	
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range	assuming	40%	population	immunity.	Here,	temperature	range	is	defined	as	747	

the	seasonal	variation	about	the	annual	mean	temperature.	Twenty	large,	globally	748	

important	cities	are	plotted	to	illustrate	their	epidemic	suitability.	749	

S4	Fig.	Variation	in	epidemic	suitability	across	different	seasonal	temperature	750	

regimes	with	60%	population	immunity.	The	heat	map	shows	the	epidemic	751	

suitability	(represented	as	the	proportion	of	the	total	human	population	infected	752	

during	an	epidemic)	as	a	function	of	mean	annual	temperature	and	temperature	753	

range	assuming	60%	population	immunity.	Here,	temperature	range	is	defined	as	754	

the	seasonal	variation	about	the	annual	mean	temperature.	Twenty	large,	globally	755	

important	cities	are	plotted	to	illustrate	their	epidemic	suitability.	756	

S5	Fig.	Variation	in	epidemic	suitability	across	different	seasonal	temperature	757	

regimes	with	80%	population	immunity.	The	heat	map	shows	the	epidemic	758	

suitability	(represented	as	the	proportion	of	the	total	human	population	infected	759	

during	an	epidemic)	as	a	function	of	mean	annual	temperature	and	temperature	760	

range	assuming	80%	population	immunity.	Here,	temperature	range	is	defined	as	761	

the	seasonal	variation	about	the	annual	mean	temperature.	Twenty	large,	globally	762	

important	cities	are	plotted	to	illustrate	their	epidemic	suitability.	763	

S6	Fig.	Variation	in	epidemic	suitability	across	different	seasonal	temperature	764	

regimes	with	minimum	starting	temperature.	The	heat	map	shows	the	epidemic	765	

suitability	(represented	as	the	proportion	of	the	total	human	population	infected	766	

during	an	epidemic)	as	a	function	of	mean	annual	temperature	and	temperature	767	

range.	Here,	temperature	range	is	defined	as	the	seasonal	variation	about	the	annual	768	

mean	temperature,	and	the	simulation	began	at	the	minimum	temperature	of	the	769	
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regime.	Twenty	large,	globally	important	cities	are	plotted	to	illustrate	their	770	

epidemic	suitability.	771	

S7	Fig.	Variation	in	epidemic	suitability	across	different	seasonal	temperature	772	

regimes	with	maximum	starting	temperature.	The	heat	map	shows	the	epidemic	773	

suitability	(represented	as	the	proportion	of	the	total	human	population	infected	774	

during	an	epidemic)	as	a	function	of	mean	annual	temperature	and	temperature	775	

range.	Here,	temperature	range	is	defined	as	the	seasonal	variation	about	the	annual	776	

mean	temperature,	and	the	simulation	began	at	the	maximum	temperature	of	the	777	

regime.	Twenty	large,	globally	important	cities	are	plotted	to	illustrate	their	778	

epidemic	suitability.	779	

S8	Fig.	The	2.5%	quantile	of	epidemic	suitability	to	the	parameterization	of	780	

life	history	traits.	Epidemic	suitability	(represented	as	the	proportion	of	the	total	781	

human	population	infected	during	an	epidemic)	as	a	function	of	mean	annual	782	

temperature	and	the	temperature	range.	Temperature	varied	according	to	a	783	

seasonal	temperature	regime,	and	50	samples	of	c,	Tmin,	and	Tmax	were	taken	from	784	

the	joint	posterior	distribution	of	each	trait	thermal	response	from	Mordecai	et	al.	785	

[24].		786	

S9	Fig.	The	50%	quantile	of	epidemic	suitability	to	the	parameterization	of	life	787	

history	traits.	Epidemic	suitability	(represented	as	the	proportion	of	the	total	788	

human	population	infected	during	an	epidemic)	as	mean	annual	temperature	and	789	

the	temperature	range.	Temperature	varied	according	to	a	seasonal	temperature	790	

regime,	and	50	samples	of	c,	Tmin,	and	Tmax	were	taken	from	the	joint	posterior	791	

distribution	of	each	trait	thermal	response	from	Mordecai	et	al.	[24].		792	
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S10	Fig.	The	97.5%	quantile	of	epidemic	suitability	to	the	parameterization	of	793	

life	history	traits.	Epidemic	suitability	(represented	as	the	proportion	of	the	total	794	

human	population	infected	during	an	epidemic)	as	mean	annual	temperature	and	795	

the	temperature	range.	Temperature	varied	according	to	a	seasonal	temperature	796	

regime,	and	50	samples	of	c,	Tmin,	and	Tmax	were	taken	from	the	joint	posterior	797	

distribution	of	each	trait	thermal	response	from	Mordecai	et	al.	[24].		798	

	799	
	800	
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