1	Seasonal temperature variation influences climate suitability for dengue,
2	chikungunya, and Zika transmission
3	John H. Huber ^{1, 2} , Marissa L. Childs ³ , Jamie M. Caldwell ² , Erin A. Mordecai ^{2*}
4	
5	¹ Department of Applied and Computational Mathematics and Statistics, University
6	of Notre Dame, Notre Dame, Indiana, USA
7	² Department of Biology, Stanford University, Stanford, California, USA
8	³ Emmett Interdisciplinary Program in Environment and Resources, Stanford
9	University, Stanford, California, USA
10	
11	*Corresponding Author: emordeca@stanford.edu
12	
13	Short title: Seasonal climate affects vector transmission

14 Abstract

15	Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti
16	mosquitoes have recently (re)emerged and spread throughout the Americas,
17	Southeast Asia, the Pacific Islands, and elsewhere. Understanding how
18	environmental conditions affect epidemic dynamics is critical for predicting and
19	responding to the geographic and seasonal spread of disease. Specifically, we lack a
20	mechanistic understanding of how seasonal variation in temperature affects
21	epidemic magnitude and duration. Here, we develop a dynamic disease
22	transmission model for dengue virus and Aedes aegypti mosquitoes that integrates
23	mechanistic, empirically parameterized, and independently validated mosquito and
24	virus trait thermal responses under seasonally varying temperatures. We examine
25	the influence of seasonal temperature mean, variation, and temperature at the start
26	of the epidemic on disease dynamics. We find that at both constant and seasonally
27	varying temperatures, warmer temperatures at the start of epidemics promote
28	more rapid epidemics due to faster burnout of the susceptible population. By
29	contrast, intermediate temperatures (24-25°C) at epidemic onset produced the
30	largest epidemics in both constant and seasonally varying temperature regimes.
31	When seasonal temperature variation was low, 25-35°C annual average
32	temperatures produced the largest epidemics, but this range shifted to cooler
33	temperatures as seasonal temperature variation increased (analogous to previous
34	results for diurnal temperature variation). Tropical and sub-tropical cities such as
35	Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla,
36	Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual

37 temperatures and seasonal temperature ranges that produced the largest 38 epidemics. However, more temperate cities like Shanghai, China had high epidemic 39 suitability because large seasonal variation offset moderate annual average 40 temperatures. By accounting for seasonal variation in temperature, the model 41 provides a baseline for mechanistically understanding environmental suitability for 42 virus transmission by *Aedes aegypti*. Overlaying the impact of human activities and 43 socioeconomic factors onto this mechanistic temperature-dependent framework is 44 critical for understanding likelihood and magnitude of outbreaks. 45 46 Non-Technical Summary (150-200 Words)

47 Mosquito-borne viruses like dengue, Zika, and chikungunya have recently caused 48 large epidemics that are partly driven by temperature. Using a mathematical model 49 built from laboratory experimental data for *Aedes aegypti* mosquitoes and dengue 50 virus, we examine the impact of variation in seasonal temperature regimes on 51 epidemic size and duration. At constant temperatures, both low and high 52 temperatures (20°C and 35°C) produce small epidemics, while intermediate 53 temperatures like 25°C and 30°C produce much larger epidemics. In seasonally 54 varying temperature environments, epidemics peak more rapidly at higher starting 55 temperatures, while intermediate starting temperatures produce the largest 56 epidemics. Seasonal mean temperatures of 25-35°C are most suitable for large 57 epidemics when seasonality is low, but in more variable seasonal environments 58 epidemic suitability peaks at lower annual average temperatures. Tropical and sub-59 tropical cities have the highest temperature suitability for epidemics, but more

- 60 temperate cities with high seasonal variation also have the potential for very large
- 61 epidemics.

62 Introduction

63	Over the last 30-40 years, arboviral outbreaks have dominated the public health
64	landscape globally [1]. These viruses, most notably dengue (DENV), chikungunya
65	(CHIKV), and Zika (ZIKV), can cause symptoms ranging from rash, arthralgia, and
66	fever to hemorrhagic fever (DENV), long-term arthritis (CHIKV), Guillain-Barré
67	syndrome and microcephaly (ZIKV) [2–4]. DENV, which historically spread
68	worldwide along shipping routes [5], places 3.97 billion individuals at risk
69	worldwide [6] and causes an estimated 390 million cases annually, including 96
70	million symptomatic cases [7]. CHIKV was introduced into the Americas in
71	December 2013 after an outbreak in St. Martin Island [8]. Since then, autochthonous
72	transmission has been reported in 45 countries [9], and 1.3 billion people
73	worldwide are at risk of contracting CHIKV [10]. More recently, the ZIKV epidemic
74	in the Americas captured global attention after the World Health Organization
75	(WHO) designated it a Public Health Emergency of International Concern in
76	February 2016 in response to its association with neurological disorders. Following
77	the first reported case in Brazil in May 2015, ZIKV has spread to 48 countries and
78	territories where it is transmitted autochthonously [11]. Because DENV, CHIKV, and
79	ZIKV are mostly transmitted by Aedes aegypti mosquitoes, they may have similar
80	geographic distributions and risk factors.
81	Informed public health decisions to limit the spread and magnitude of these
82	arboviral epidemics depend on a robust understanding of transmission dynamics.
83	One mechanistic modeling framework, the Susceptible – Infected – Recovered (SIR)

84 model, has been implemented successfully to model the dynamics of outbreaks of

influenza, measles, and vector-borne diseases such as CHIKV and ZIKV [12–14]. This
approach tracks virus population dynamics by compartmentalizing individuals by
their state in an epidemic (i.e., Susceptible (S), Infected (I), Recovered (R)). This
framework can be extended to include additional compartments, such as a latency
stage, or to incorporate the dynamics of the mosquito population for vector
transmission.

91 Arbovirus dynamics are strikingly seasonal and geographically restricted to 92 relatively warm climates [6,7]. This arises because several life history traits of the 93 mosquitoes that transmit DENV, CHIKV, and ZIKV are strongly influenced by 94 temperature and seasonality [15–22]. For simplicity, many existing models assume 95 static life history traits [14], and those that address seasonal forcing tend to 96 incorporate sinusoidal variation as a single transmission parameter, β [23]. Treating 97 seasonal temperature variation as a sinusoidal forcing function on the transmission 98 parameter implies a monotonic relationship between temperature and 99 transmission, such that transmission is maximized at high temperatures and 100 decreases at low temperatures. However, decades of experimental work have 101 demonstrated strongly nonlinear (often unimodal) relationships between mosquito 102 and pathogen traits and temperature that are not well captured in a single 103 sinusoidal forcing function [24]. Efforts by Yang et al. [25,26] addressed the need to 104 include seasonal variation by adopting an SEI-SEIR compartmental framework with 105 time-varying entomological parameters and fitting the model to DENV incidence 106 data in Campinas, Brazil. Other previous work has integrated the effects of 107 temperature on mosquito and parasite traits into temperature-dependent

transmission models for DENV, CHIKV, and/or ZIKV, and revealing a strong,
nonlinear influence of temperature with peak transmission between 29 - 35 °C [27–
34]. However, we do not yet have a mechanistic estimate for the relationship
between seasonal temperature regimes and transmission potential, incorporating
the full suite of transmission-relevant, nonlinear thermal responses of mosquito and
parasite traits.
Here, we expand on previous work with three main advances: (1) we

115 incorporate the full suite of empirically-derived, unimodal thermal responses for all

116 known transmission-relevant mosquito and parasite traits; (2) we examine the

117 influence of seasonal temperature mean and variation (in contrast to constant

temperatures or daily temperature variation); and (3) we use a dynamic

transmission framework to explore the impact of different seasonal temperature

120 regimes on the epidemiologically-relevant outcomes of epidemic size, duration, and

121 peak incidence (in contrast to R₀, or vectorial capacity, which are difficult to

122 measure directly). To do so, we incorporate previously estimated and independently

123 validated thermal response functions for all vector and parasite traits [24] into a

dynamic SEI-SEIR model [25,26]. We explore field-relevant temperature regimes by

simulating epidemics across temperature means (10 – 38°C) and seasonal ranges (0

126 – 17°C) from across the predicted suitable range for transmission. Specifically, we

127 use the model to ask: (1) How does final epidemic size vary across constant

128 temperatures? (2) Under seasonally varying temperatures, how does the

129 temperature at the start of the epidemic affect the final epidemic size and duration?

130 (3) How do temperature mean and seasonal range interact to determine epidemic

- 131 size? (4) Which geographic locations have high epidemic suitability based on
- 132 climate?
- 133
- 134 Methods
- 135 **Model**
- 136 Model Framework
- 137 We adopted an SEI-SEIR compartmental modeling framework to simulate arboviral
- 138 transmission by the Aedes aegypti vector (Fig. 1). We introduced temperature-
- dependence into the model by using fitted thermal response curves for the
- 140 mosquito life history traits provided by Mordecai et al. [24]. The full model is:
- 141

142
$$\frac{dS_{v}}{dt} = EFD(T) * pEA(T) * MDR(T) * \mu(T)^{-1} * N_{v} * \left(1 - \frac{N_{v}}{K(T)}\right) - \left(a(T) * pMI(T) * \frac{I_{H}}{N_{H}} + \mu(T)\right) * S_{v}, \quad (1)$$

143

144
$$\frac{dE_V}{dt} = a(T) * pMI(T) * \frac{I_H}{N_H} * S_V - (PDR(T) + \mu(T)) * E_V, \quad (2)$$

- 145
- $\frac{dI_v}{dt} = PDR(T) * E_v \mu(T) * I_v, \quad (3)$
- 147

148
$$\frac{dS_{H}}{dt} = -a(T) * b(T) * \frac{I_{V}}{N_{H}} * S_{H}, \quad (4)$$

149

150
$$\frac{dE_H}{dt} = a(T) * b(T) * \frac{I_V}{N_H} * S_H - \delta * E_H, \quad (5)$$

151

152
$$\frac{dI_H}{dt} = \delta * E_H - \eta * I_H, \quad (6)$$

153

$$\frac{dR_H}{dt} = \eta * I_H, \quad (7)$$

Fig 1. Compartmental model of transmission. S_H, E_H, I_H, and R_H represent the
susceptible, exposed (or latent), infectious, and recovered segments of the human
population, respectively. Likewise, S_V, E_V, and I_V represent the susceptible, exposed
(or latent), and infectious segments of the mosquito population. Solid arrows signify
the directionality of transition from one compartment to the next, and dashed
arrows indicate the directionality of transmission.

162

163 The SEI portion of the model describes the vector population, where S_V 164 represents the number of susceptible mosquitoes, E_V is the number of mosquitoes in 165 the latency stage, and I_V is the number of infectious mosquitoes. We assumed that 166 Aedes aegypti mosquitoes remain infectious until they die. In equations 1-3, (T) 167 indicates temperature-dependent functions, EFD(T) is the number of eggs laid per 168 female per day, pEA(T) is the probability of mosquito egg-to-adult survival, MDR(T)169 is the mosquito egg-to-adult development rate, N_V is the total mosquito population 170 at time t (i.e., $S_v + E_v + I_v$), K(T) is the carrying capacity for the mosquito population, 171 a(T) is the per mosquito biting rate, pMI(T) is the probability of mosquito infection 172 per bite on an infectious host, $\mu(T)$ is the adult mosquito mortality rate, and PDR(T)173 is the parasite development rate. Each life history and pathogen transmission trait 174 of the *Aedes aegypti* mosquito is a unimodal, temperature-dependent function fit 175 from experimental laboratory data in previous work [15–22,24] (Table 1; Appendix; 176 "Functional Forms of Life History Traits"). 177

178 **Table 1.** Fitted thermal responses for *Aedes aegypti* life history traits. Traits were fit

179 to a Brière
$$[cT(T - T_0)(T_m - T)^{\frac{1}{2}}]$$
 or a quadratic $[c(T - T_m)(T - T_0)]$ function where

180 *T* represents temperature. T_0 and T_m are the critical thermal minimum and

181 maximum, respectively, and *c* is the rate constant. Thermal responses were fit by

182 [24].

183

184

Trait	Definition	Function	Fit	ted Parameters	S
а	Biting rate (day ⁻¹)	Brière	c = 2.02e-04	$T_{min} = 13.35$	$T_{max} = 40.08$
EFD	Eggs laid per female per day	Brière	<i>c</i> = 8.56e-03	<i>T_{min}</i> = 14.58	<i>T_{max}</i> = 34.61
рЕА	Probability of mosquito egg-to- adult survival	Quadratic	<i>c</i> = -5.99e-03	$T_{min} = 13.56$	$T_{max} = 38.29$
MDR	Mosquito egg-to-adult development rate (day ⁻¹)	Brière	<i>c</i> = 7.86e-05	<i>T_{min}</i> = 11.36	<i>T_{max}</i> = 39.17
lf	Adult mosquito lifespan (days)	Quadratic	<i>c</i> = -1.48e-01	$T_{min} = 9.16$	$T_{max} = 37.73$
b	Probability of mosquito infectiousness	Brière	<i>c</i> = 8.49e-04	$T_{min} = 17.05$	$T_{max} = 35.83$
рМІ	Probability of mosquito infection	Brière	<i>c</i> = 4.91e-04	<i>T_{min}</i> = 12.22	<i>T_{max}</i> = 37.46
PDR	Virus extrinsic incubation rate (day ⁻¹)	Brière	<i>c</i> = 6.65e-05	<i>T_{min}</i> = 10.68	<i>T_{max}</i> = 45.90

185 The SEIR portion of the model describes the human population, where S_H

186 represents the number of susceptible individuals, E_H the number of latent (or

187 exposed) individuals, I_H the number of infectious individuals, and R_H the number of

- 188 recovered individuals. We assumed a static population size, N_{H} , that was neither
- subject to births nor deaths because the human lifespan far exceeds the duration of

190	an epidemic. Further, we binned asymptomatic and symptomatic individuals into a
191	single infectious class since asymptomatic infections have been shown to transmit
192	DENV [35] and exhibit similar viremic profiles as symptomatic patients in CHIKV
193	[36]. Based on previous arboviral outbreaks [37,38], we assumed that an infection
194	conferred long-term immunity to an individual. Thus, a previously infectious
195	individual entering the recovered class is protected from subsequent re-infection
196	for the remainder of the epidemic. In the case of dengue, where there are four
197	unique serotypes, we consider single-season epidemics of a single serotype. In
198	equations 4-7, <i>b(T)</i> is the probability of human infection per bite by an infectious
199	mosquito (Table 1), $\delta^{\text{-}1}$ is the intrinsic incubation period, and $\eta^{\text{-}1}$ is the human
200	infectivity period. Since human components of the transmission cycle are not
201	seasonal, we used constants of 5.9 days for the intrinsic incubation period, $1/\delta$, and
202	5.0 days for the infectious period, $1/\eta$ [14]. All temperature-independent parameter
203	values are given in Table 2.
204	

Table 2. Values of temperature-independent parameters used in the model, and

206	their sources.
-----	----------------

Parameter	Definition	Value	Source
δ^{-1}	Intrinsic incubation period (days)	5.9	[14]
η^{-1}	Human infectivity period (days)	5.0	[14]
I_0^H/N	Proportion of initially infectious humans	0.0001	
$I_0^V/_M$	Proportion of initially infectious mosquitoes	0.015	[14]

$$M/_N$$
 Ratio of mosquitoes-to-humans at 29°C 2.0 [39]

- 207
- 208

209	Since the lifespan of an adult mosquito is short relative to the timespan of an
210	epidemic, we allowed mosquito birth and death rates to drive population dynamics.
211	Additionally, the birth rate of susceptible mosquitoes was regulated by a
212	temperature-dependent carrying capacity, <i>K</i> (equation 8), which we modeled as a
213	modified Arrhenius equation that is a unimodal function of temperature [40]:

214

215
$$K(T) = \frac{EFD(T_0) * pEA(T_0) * MDR(T_0) * \mu(T_0)^{-1} - \mu(T_0)}{EFD(T_0) * pEA(T_0) * MDR(T_0) * \mu(T_0)^{-1}} * N_m * e^{\frac{-E_A * (T - T_0)^2}{\kappa_B * (T + 273) * (T_0 + 273)}},$$
(8)

216

217 Here, T_{0} is defined as the reference temperature (i.e., the temperature at 218 which the carrying capacity is greatest) in Celsius, N_m is the maximum carrying 219 capacity, and κ_B is Boltzmann constant (8.617 x 10⁻⁵ eV/K). *EFD* is the number of 220 eggs laid per female per day, *pEA* is the probability of egg-to-adult mosquito 221 survival, *MDR* is the mosquito egg-to-adult development rate, and μ is the adult 222 mosquito mortality rate. We calculated these values for the reference temperature. 223 E_A is the activation energy, which we set to 0.5 and represents the temperature 224 dependence of the carrying capacity, a conservative estimate as we lacked sufficient 225 data on estimates of the carrying capacity of *Aedes aegypti* and its underlying 226 temperature dependence. To convert from Celsius to Kelvin, we incremented the 227 temperature T and the reference temperature T_0 by 273. Equation (8) was adopted 228 from [40] and modified to allow the distribution to be unimodal. We set the

reference temperature, T_0 , to 29°C, which is consistent with optimal temperatures for *Aedes aegypti* transmission [24,29].

231	We included a temperature-dependent carrying capacity in the model to
232	constrain the growth of the mosquito population. As described in the Appendix, all
233	simulations begin with the mosquito population at its (temperature-dependent)
234	carrying capacity. As the temperature changes seasonally, the mosquito population
235	does not necessarily remain at carrying capacity if one or more of the life history
236	traits that determine the production of new mosquitoes in equation (1)— <i>EFD</i> , <i>pEA</i> ,
237	and MDR —is equal to zero. This occurs below 14.58°C (the highest T_{min} of <i>EFD</i> , <i>pEA</i> ,
238	and <i>MDR</i>) or above 34.61°C (the lowest T_{max} of <i>EFD</i> , <i>pEA</i> , and <i>MDR</i>).
239	It should be noted that the transmission parameters are only related to the
240	current temperature at each time point in the simulation. Time lags for each life
241	history trait were not explicitly built into the model.

242

243 Seasonal Forcing

To address seasonality in the model, we allowed temperature to vary over time. We modeled temperature as a sinusoidal curve with a period of 365 days of the form:

247

248
$$T(t) = \frac{T_{max} - T_{min}}{2} * \sin\left(\frac{2\pi}{365}t\right) + T_{mean}, \quad (9)$$

249

Here, T_{max} , T_{mean} , and T_{min} represent the average monthly maximum, mean, and minimum temperatures across a calendar year, respectively, and *t* is measured in

252	davs. I	By modeling	temperature as	a function of tim	e. we allowed	the life history
		- J			,	·

- 253 traits of the Aedes aegypti vector to vary across time for the duration of the
- 254 epidemic. In the absence of a specific focal location we modeled seasonal
- temperature as a sinusoidal function for simplicity.
- 256
- 257 Data
- 258 Life History Traits
- 259 To incorporate seasonal forcing into the compartmental modeling framework, we
- used fitted mechanistic thermal response curves [24]. Mordecai et al. [24] examined

261 published data on thermal responses for life history traits of the Aedes aegypti

- vector and DENV and adopted a Bayesian approach for fitting quadratic (Q(T); Eq.
- 263 10) or Brière (B(T); Eq. 11) curves (see Appendix for details).
- 264
- 265 $Q(T) = c * (T T_{min}) * (T T_{max}), \quad (10)$
- 266
- 267 $B(T) = c * T * (T T_{min}) * \sqrt{T_{max} T}, \quad (11)$
- 268

Here, *c* is a rate constant, T_{min} is the critical temperature minimum, and T_{max} is the critical temperature maximum (Table 1). Following Mordecai et al. [24], we assumed values above the critical thermal maxima and below the minima were equal to zero.

273 Mordecai et al. [24] fit the thermal response for adult mosquito lifespan
274 (Table 1), the inverse of the adult mosquito mortality rate (μ, in days⁻¹), used in our

275	model. We set the mortality rate at temperatures outside the critical thermal				
276	minimum and maximum to 24 days ⁻¹ (i.e., mosquitoes survive for one hour at				
277	temperatures outside of the T_{min} to T_{max} range).				
278					
279	Historical Weather Data				
280	To identify areas of epidemic suitability across the globe, we extracted				
281	monthly mean temperatures for 2016 from Weather Underground				
282	(wunderground.com) for twenty different cities (Table 3). For each city, we				
283	calculated the mean, minimum, and maximum from the average monthly mean				
284	temperatures, to estimate temperature seasonality. This provided a range of the				
285	average monthly temperature over the span of a calendar year. We chose this time				
286	period because it provided the most recent full calendar year to demonstrate				
287	seasonal variation in temperature.				
288					
289	Table 3. Temperature regimes for major cities during the 2016 calendar year.				
290	Monthly mean temperatures during 2016 were extracted from Weather				
291	Underground.				
292					
	City Annual Mean Temperature Annual Temperature				

City	Annual Mean Temperature	Annual Temperature
	(°C)	Amplitude (°C)
Buenos Aires, Argentina	16.5	8.0
Sao Paulo, Brazil	20.6	5.0

Rio de Janeiro, Brazil	24.3	4.0
Salvador, Brazil	26.3	2.0
Fortaleza, Brazil	27.8	0.50
Belo Horizonte, Brazil	21.9	3.0
Recife, Brazil	27.2	1.5
Shanghai, China	17.6	12.5
Beijing, China	12.8	16
Guangzhou, China	22.9	8.0
Bogotá, Colombia	14.7	1.0
Medellin, Colombia	17.9	1.0
Cali, Colombia	25.1	1.5
Barranquilla, Colombia	28.8	1.0
Cartagena, Colombia	28.6	1.0
Delhi, India	26.3	9.5
Tokyo, Japan	17.0	10.5
Kobe, Japan	17.4	11
Manila, Philippines	29.0	1.5
New York, USA	13.8	12

- 293
- 294

295 Variability in Epidemic Dynamics with Constant Temperature

- 296 We first examined how epidemic dynamics varied across different constant
- 297 temperatures. Here, we did not introduce seasonal forcing into the model but rather

assumed static life history traits for *Aedes aegypti* for the simulation period. We
simulated the model under default starting conditions (see Appendix) at four
different constant temperatures: 20°C, 25°C, 30°C, and 35°C. These temperatures
were chosen to span the range of temperatures at which arbovirus transmission is
likely to be possible [24].

303

304 Variability in Epidemic Dynamics with Starting Temperature

305 Using the model that included seasonal variation in temperature, we examined how

306 the dynamics of an epidemic varied due to the temperature at which the epidemic

307 began, under two temperature regimes. First, we set $T_{max} = 40.0$ °C, $T_{mean} = 25.0$ °C,

308 and T_{min} = 10.0°C in the time-varying seasonal temperature model under default

309 parameters (see Appendix) and varied the temperature at the start of the epidemic

310 from 10.0°C to 40.0°C in increments of 0.1°C. We examined the response of final

epidemic size, epidemic length, and maximum instantaneous number of infected

312 individuals. We then repeated this process for a regime with a lower magnitude of

313 seasonal temperature variation: T_{max} = 30.0°C, T_{mean} = 25.0°C, and T_{min} = 20.0°C. By

314 comparing these temperature regimes, we can examine how epidemics respond to

315 starting temperatures that are outside the range of plausible temperatures of

arbovirus transmission (regime 1) versus restricted to the plausible temperatures

317 for transmission (regime 2) [24].

318

319 Seasonal Variability of Final Epidemic Size

221 we are mined the maniation in final and denote the first here the first	m
321 we examined the variation in final epidemic size as a result of seasonal forcin	g. 10
do so, we simulated over a wide range of temperature mean and seasonal var	iance
regimes. The mean annual temperature varied from 10.0°C to 38.0°C in increa	nents
of 0.1°C, while the seasonal variation about the mean (i.e., $\frac{T_{max}-T_{min}}{2}$) ranged f	rom
325 0.0°C to 17.0°C in increments of 0.1°C. Many of these temperature regimes an	e
326 unlikely to be observed empirically. However, the simulated temperature reg	imes
327 spanned the full range of feasible temperature conditions. We recorded the fi	nal
328 epidemic size, measured as the number of individuals in the recovered	
329 compartment at the end of the simulation, for each unique combination of me	an
annual temperature and seasonal variation. In addition, we examined the effe	ct of
epidemic starting temperature on final epidemic size across the same season	al
temperature regimes. We ran the model under default starting conditions, bu	t
allowed the starting temperature to equal T_{min} , T_{mean} , or T_{max} .	
334To observe the interaction of population immunity with the seasonal	
temperature regime, we simulated the model assuming that 0, 20, 40, 60, or 8	80% of
the population was initially immune. Each simulation began with the introdu	ction
of the infected individual occurring at the mean seasonal temperature.	
We then compared simulated climate regimes with actual climates in r	najor
cities, to measure relative epidemic suitability of the following cities: São Pau	lo,
340 Brazil; Rio de Janeiro, Brazil; Salvador, Brazil; Fortaleza, Brazil; Belo Horizont	e,
341 Brazil; Recife, Brazil; Bogotá, Colombia; Medellín, Colombia; Cali, Colombia;	
342 Barranquilla, Colombia; Cartagena, Colombia; Tokyo, Japan; Delhi, India; Man	ila,

343	Philippines; Shang	hai, China; Beijin	g, China; New Y	ork City, USA; (Guangzhou, China;
	F F , 8	,,j	<i>o,,,</i>	,	,,

Kobe, Japan; and Buenos Aires, Argentina, given 0, 20, 40, 60, and 80% population

345 immunity. These cities were chosen because they represent some of the most

- 346 populous urban areas across South America and throughout the world.
- 347

348 Model Sensitivity and Uncertainty Analysis

349 To characterize uncertainty in the model, we sampled 50 joint posterior estimates

- 350 for *c*, *T_{min}*, and *T_{max}* for each life history trait provided by Mordecai et al. [24]. We
- asian examined the variability in epidemic dynamics with starting temperatures under
- ach parameterization and report the 95% credible interval for the epidemiological

353 indices. We similarly characterize uncertainty in our estimates of the final epidemic

354 size as a function of the seasonal temperature regime by simulating under each

355 parameterization and reporting the 95% credible interval.

356

357 Results

358 Variability in Epidemic Dynamics with Constant Temperature

- 359 Holding temperature constant, we examined variability in epidemic dynamics
- across four temperatures: 20°C, 25°C, 30°C, and 35°C. As temperature increased
- 361 from 20°C to 30°C, the number of susceptible individuals depleted more rapidly
- 362 (Fig. 2, *S_H*). At 20°C and 35°C, the epidemics were small (1.33% and 5.92% of the
- 363 population infected, respectively) and burned out rapidly. Although simulations run
- at 25°C and 30°C produced final epidemic sizes of 94.73% and 99.98% of the

365 population infected, respectively (Fig. 2, R_H), the epidemic peaked much faster at 366 30°C.

367

Fig 2. Variation in epidemic dynamics by temperature. The model was simulated
under default parameters at four constant temperatures: 20°C, 25°C, 30°C, and 35°C.

370

371 Variability in Epidemic Dynamics with Starting Temperature

372 Next, we examined variability in epidemic dynamics due to the temperature at

373 which the epidemic began, given two seasonal temperature regimes (25°C mean and

a seasonal range of 10°C to 40°C or 20°C to 30°C, respectively). Given that an

375 epidemic occurred, epidemic length monotonically decreased as a function of

376 starting temperature for the first temperature regime (Fig. 3, A): warmer

377 temperatures at the start of the epidemic produced shorter epidemics, and vice

378 versa. In the second temperature regime, epidemic length monotonically decreased

as a function of starting temperature until ~29°C. When temperature varied from

380 10°C to 40°C, the longest epidemic simulated was 137.8 days and occurred at

381 starting temperatures of 11.2°C, and the shortest epidemic lasted 16.82 days and

382 occurred when the temperature at the epidemic start was 35.7°C. When the

temperature was 35.8°C or higher or 10.2°C or lower, no epidemic occurred. When

temperature was constrained between 20°C and 30°C, the longest epidemic

385 simulated was 253.64 days at a starting temperature of 20°C, and the shortest

epidemic lasted 136.1 days at a starting temperature of 28.9°C.

387

388 Fig 3. Epidemiological indices as a function of starting temperature, within a

given seasonal temperature regime. The red curve represents the maximum number of humans in the infected class (I_H) at any given point during the simulation. The blue curve represents the final (or cumulative) epidemic size (R_H at the final time step). The green curve represents the length of the epidemic (i.e., the point at which the number of infected individuals was below one). Here, simulations were run with the temperature conditions: $T_{min} = 10^{\circ}$ C, $T_{mean} = 25^{\circ}$ C, and $T_{max} = 40^{\circ}$ C (A)

395 and $T_{min} = 20^{\circ}$ C, $T_{mean} = 25^{\circ}$ C, and $T_{max} = 30^{\circ}$ C (B).

396

397 In contrast to epidemic length, the response of final epidemic size and 398 maximum number of infected individuals to the temperature at epidemic onset 399 depended on the amount of seasonal temperature variation. When temperature 400 varied widely, from 10°C to 40°C, both final epidemic size and the maximum 401 number of infected individuals responded unimodally to starting temperature, with 402 peaks at 23.9°C and 24.1°C, respectively (Fig. 3, A). By contrast, when temperature 403 varied more narrowly from 20°C to 30°C, the final epidemic size and the maximum 404 number of infected individuals were insensitive to starting temperature (Fig. 3, B). 405 Taken together, these results show that epidemics introduced at different times 406 within identical seasonal temperature regimes can produce very similar final 407 epidemic sizes and maximum infection rates, provided that the temperature range is 408 sufficiently constrained. If temperature variation is large, dramatically different final 409 epidemic sizes and maximum infection rates may result.

410

411 Seasonal Variability of Final Epidemic Size

412	To address how mean temperature and seasonal variance combined to influence the
413	final epidemic size, we simulated over a wide range of temperature regimes that
414	accounted for variation in the mean and temperature range over a calendar year.
415	We calculated relative epidemic suitability, defined as the final epidemic size as a
416	proportion of the human population, for twenty major cities worldwide (Table 3).
417	In a low-variation thermal environment, a band of mean temperatures
418	between approximately 25°C and 35°C supports the highest epidemic suitability
419	(Fig. 4). As the seasonal temperature range increases, lower mean temperatures are
420	capable of supporting large epidemics. However, outside this narrow band of
421	temperature regimes, epidemic suitability rapidly diminishes, and most
422	temperature regimes did not produce epidemics.
423	
424	Table 3. Estimates of epidemic suitability for major cities. Epidemic suitability was
425	calculated as the proportion of the population that became infected in simulations
426	run with 0, 20, 40, 60, or 80% initial population immunity. Temperature at
427	simulation onset was set to the mean of the temperature regime. Each city was
428	simulated with its respective temperature regime from the 2016 calendar year.
429	

Epidemic Suitability

City	0% Immunity	20% Immunity	40% Immunity	60% Immunity	80% Immunity

Buenos	0.03656	0.02169	0.01203	0.005975	0.002295
Aires,					
Argentina					
Sao Paulo,	0.6056	0.3386	0.1518	0.05351	0.01385
Brazil					
Rio de	0.9984	0.7962	0.5891	0.3618	0.09862
Janeiro,					
Brazil					
Salvador,	0.9990	0.7976	0.5937	0.3804	0.1335
Brazil					
Fortaleza,	0.9993	0.7982	0.5953	0.3861	0.1535
Brazil					
Belo	0.5909	0.3344	0.1544	0.05771	0.01633
Horizonte,					
Brazil					
Recife, Brazil	0.9994	0.7985	0.5959	0.3871	0.1517
Shanghai,	0.9966	0.7878	0.5507	0.2484	0.03456
China					
Beijing,	0.5268	0.2526	0.09058	0.02298	0.003587
China					
Guangzhou,	0.9996	0.7989	0.5965	0.3848	0.1254
China					

Bogotá,	0.0001000	0.0001000	0.0001000	0.0001000	0.0001000
Colombia					
Medellin,	0.002544	0.002048	0.001556	0.001068	0.0005820
Colombia					
Cali,	0.9909	0.7822	0.5617	0.3122	0.07217
Colombia					
Barranquilla,	0.9997	0.7993	0.5979	0.3928	0.1703
Colombia					
Cartagena,	0.9997	0.7993	0.5978	0.3923	0.1688
Colombia					
Delhi, India	0.9537	0.7215	0.4759	0.2388	0.06803
Tokyo, Japan	0.7269	0.4149	0.1758	0.05159	0.009489
Kobe, Japan	0.9435	0.6669	0.3522	0.1090	0.01632
Manila,	0.9998	0.7994	0.5981	0.3933	0.1720
Philippines					
New York,	0.04088	0.02159	0.01041	0.004390	0.001425
USA					

430

431 Table 4. Estimates of epidemic suitability for major cities under different

432 starting temperatures. Epidemic suitability was calculated as the proportion of the
433 population that became infected in simulations that began at the minimum, mean, or
434 maximum temperature of the seasonal temperature regime. Each city was simulated

435 with its respective temperature regime from the 2016 calendar year with 0%

436 population immunity.

437

Epidemic Suitability

City	Minimum Starting	Mean Starting	Maximum Starting
	Temperature	Temperature	Temperature
Buenos Aires, Argentina	0.0001000	0.03656	0.1166
Sao Paulo, Brazil	0.02026	0.6056	0.3480
Rio de Janeiro, Brazil	0.9978	0.9984	0.9760
Salvador, Brazil	0.9965	0.9990	0.9963
Fortaleza, Brazil	0.9986	0.9993	0.9990
Belo Horizonte, Brazil	0.09404	0.5909	0.3273
Recife, Brazil	0.9973	0.9994	0.9987
Shanghai, China	0.0001000	0.9966	0.8905
Beijing, China	0.0001000	0.5268	0.5792
Guangzhou, China	0.9983	0.9996	0.9912
Bogotá, Colombia	0.0001000	0.0001000	0.0001000
Medellin, Colombia	0.0002177	0.002544	0.004472
Cali, Colombia	0.9858	0.9909	0.9623
Barranquilla, Colombia	0.9994	0.9997	0.9997
Cartagena, Colombia	0.9993	0.9997	0.9997
Delhi, India	0.5615	0.9537	0.6954

Tokyo, Japan	0.0001000	0.7269	0.5121
Kobe, Japan	0.0001000	0.9435	0.6890
Manila, Philippines	0.9994	0.9998	0.9998
New York, USA	0.0001000	0.04088	0.1863

439	Fig 4. Variation in epidemic suitability across different seasonal temperature
440	regimes. The heat map shows the epidemic suitability (represented as the
441	proportion of the total human population infected during an epidemic) as a function
442	of mean annual temperature and temperature range. Here, temperature range is
443	defined as the seasonal variation about the annual mean temperature. Twenty large,
444	globally important cities are plotted to illustrate their epidemic suitability.
445	
446	Of the focal 20 major cities, those with high mean temperature and small
447	average temperature variation exhibited the highest epidemic suitability. For
448	instance, Manila, Philippines, which has a monthly mean temperature of 29°C and
449	average seasonal amplitude in mean temperature of 1.50°C, had an epidemic
450	suitability of 0.9998. Cartagena and Barranquilla, Colombia had epidemic suitability
451	of 0.9997. On the other hand, areas with low average temperature and greater
452	temperature variation, such as Beijing and New York, exhibited lower—but still
453	non-zero—epidemic suitabilities of 0.5268 and 0.04088 respectively. Notably,
454	Guangzhou and Shanghai, China have high epidemic suitability (0.9996 and 0.9966,
455	respectively) despite moderate mean temperatures (22.9 and 17.6°C, respectively)
456	due to high seasonal variation in temperature. By contrast, high seasonal variation

reduced suitability to 0.9537 in Delhi, India, which has a high mean temperature of
26.3°C (Fig. 4).

459	The relationship between epidemic suitability and seasonal temperature
460	regime was consistent across varying levels of population immunity. Locations with
461	high mean temperatures and small average temperature variation had higher
462	epidemic suitability, regardless of the level of population immunity (Figures S2-S5).
463	However, as the level of immunity increased from 20% to 80%, the epidemic
464	suitability at given seasonal temperature regime decreased (Table 3).
465	Epidemic suitability also varied by starting temperature, depending on the
466	seasonal temperature regime. The epidemic suitability of cities with high mean
467	temperature and small average temperature variation—such as Manila, Philippines
468	and Cartagena and Barranquilla, Colombia—did not depend on starting temperature
469	(Table 4). However, areas with low to moderate mean temperature and large
470	average temperature variation (e.g., Kobe, Japan and Shanghai, China) exhibited low
471	epidemic suitability (both 0.0001000) at the minimum starting temperature and
472	moderate-to-high epidemic suitability at the maximum starting temperature
473	(0.6890 and 0.8905, respectively) (Fig. 5). The opposite occurred in regimes with
474	high mean temperature and large temperature variation, though these temperature
475	regimes are rarer.
476	Estimated epidemic suitability is close to one in the most suitable

477 temperature regimes because we assumed that: (i) the population was fully

478 susceptible at the start of the epidemic; (ii) mixing was homogeneous among

479 humans and mosquitoes; (iii) all cases of infection are included regardless of

480	whether or not they are symptomatic; and (iv) no other environmental or social
481	drivers are limiting transmission. As a result, the epidemic suitability metric should
482	be considered an upper bound on the proportion of the population that could
483	become infected based on temperature alone.
484	
485	Fig 5. Variation in epidemic suitability across different seasonal temperature
486	regimes averaged across starting temperatures. The heat map shows the
487	epidemic suitability (represented as the proportion of the total human population
488	infected during an epidemic) as a function of mean annual temperature and
489	temperature range averaged across simulations where the initial temperature was
490	set to the seasonal temperature regime's minimum, mean, or maximum
491	temperature. Here, temperature range is defined as the seasonal variation about the
492	annual mean temperature. Twenty large, globally important cities are plotted to
493	illustrate their epidemic suitability.
494	
495	Model Sensitivity and Uncertainty Analysis
496	Final epidemic size was not sensitive to life history trait parameterization (Figs. S8-
497	S10), using samples from the posterior distribution of thermal response fits for each
498	temperature-dependent trait.
499	There was uncertainty in the specific numerical values of the epidemiological
500	indices across starting temperatures (Fig. S1). However, the overall functional

501 response of the final epidemic size, maximum number of infected individuals, and

the epidemic length to starting temperature was consistent across the samples fromthe joint posterior distribution.

504

505 **Discussion**

506	Recent outbreaks of DENV, CHIKV, and ZIKV in Latin America and across the

507 globe have captured the attention of the public health community and underscore

508 the importance of preparation for future outbreaks. As temperatures rise, the global

- 509 landscape suitable for such outbreaks will expand and shift geographically,
- 510 potentially placing a larger proportion of the world's population at risk [24,29,31].

511 Understanding how local temperature regimes govern epidemic dynamics is

512 increasingly important for determining resource allocation and control

513 interventions [41]. While previous work has investigated the effects of temperature

on DENV, CHIKV, and/or ZIKV transmission, until now we have lacked

515 comprehensive, mechanistic, and dynamic understanding of the effects of seasonally

516 varying temperature on transmission via its (nonlinear) effects on mosquito and

517 parasite traits [27–34]. With our model, which expands on [24] and [25], we show

that seasonal temperature mean and amplitude interact with the temperature at

519 epidemic onset to shape the speed and magnitude of epidemics.

At constant temperature, epidemics varied substantially in the rate at which susceptible individuals were depleted. Epidemics simulated at 25°C and 30°C reached similar sizes but the epidemic at 25°C proceeded at a much slower rate (Fig. 2). This "slow burn" phenomenon occurs because slower depletion of susceptible

524 individuals can produce epidemics of similar size to epidemics that infect people

very rapidly. This phenomenon also occurs in more realistic, seasonally varyingtemperature regimes.

527	The temperature at which an epidemic started affected dynamics only under
528	large ranges of temperature variation. When temperature ranged from 10° C to 40° C,
529	the final epidemic size peaked at intermediate starting temperatures (24°C; Fig. 3,
530	A). However, in highly suitable seasonal environments, final epidemic size was large
531	regardless of the starting temperature (Fig. 3, B).
532	At mean starting temperatures, epidemic suitability was sensitive to the
533	interaction between annual temperature mean and seasonal variation. Under low
534	seasonal temperature variation, a narrow band of annual mean temperatures
535	(approximately 25-35°C) had the highest epidemic suitability (Figs. 4 & S2-S5).
536	Outside this band of temperature regimes, suitability diminishes rapidly. Larger
537	seasonal variation in temperature lowers the range of optimal annual mean
538	temperatures (i.e., suitability is high in cooler places with larger seasonal variation
539	in temperature; Fig. 4).
540	The relationship between epidemic suitability and the seasonal temperature
541	regime also depended on the temperature at the epidemic onset. Three distinct
542	relationships emerged (Figs. 5 & S6-S7). At intermediate annual mean temperatures
543	of ~25-35°C and low seasonal temperature variation (~0-10°C), epidemic suitability

544 is insensitive to starting temperature because temperature is suitable for

545 transmission year-round. At lower annual mean temperatures (~10-25°C) and

546 higher seasonal temperature variation (~10-15°C), epidemic suitability is highest

547 when epidemics start in moderate to warm seasons, and lower when epidemics

548	start during cooler seasons. Finally, at high annual mean temperatures (> 35°C) and
549	low seasonal temperature variation (\sim 0-10°C), epidemic suitability is high only
550	when epidemics start at the coldest period of the year, because otherwise the
551	temperature is too warm for efficient transmission. The interaction between
552	temperature mean, annual variation, and starting point sharply illustrates the
553	unimodal effect of temperature on transmission. Models that do not include
554	unimodal effects of temperature (e.g., those with sinusoidal forcing on a
555	transmission parameter) may fail to capture the limits on transmission in warm
556	environments.
557	With rising mean annual temperatures and increasing seasonal temperature
558	variation due to climate change, the landscape of epidemic suitability is likely to
559	shift. Importantly, areas with previously low epidemic suitability may have
560	increasing potential for transmission year-round. By contrast, warming
561	temperatures may drive epidemics in cities with high current suitability (e.g.,
562	Manila, Philippines, Barranquilla, Colombia, and Fortaleza, Brazil) to shift toward
563	cooler months. Thus, climate change may alter not only epidemic size and duration
564	but also seasonal timing globally, as it interacts with other important drivers like
565	rainfall and human behavior.
566	It is important to note that model-estimated epidemic suitability should be
567	treated as an upper bound on the potential for large epidemics because within

568 highly suitable climate regimes, epidemics can vary in magnitude due to human

569 population size and movement dynamics [28], effective vector control, and other

570	mitigating factors. Likewise, our estimates are conditioned on Aedes aegypti
571	presence and virus introduction to support an outbreak.
572	Although seasonal temperature dynamics provide insight into vector-borne
573	transmission dynamics, other factors like mosquito abundance, vector control, and
574	rainfall also determine transmission dynamics. Thus, temperature must be
575	considered jointly with these factors. Moreover, accurately describing epidemic
576	dynamics of emerging and established vector-borne pathogens will ultimately
577	require integrating realistic models of environmental suitability, as presented here,
578	with demographic, social, and economic factors that promote or limit disease
579	transmission [42,43]. Conversely, we show that the interaction between
580	temperature and the availability of susceptible hosts alone can drive epidemic
581	burnout even in the absence of other limiting factors like vector control and
582	seasonal precipitation. This suggests that correctly representing the nonlinear
583	relationship between temperature and epidemic dynamics is critical for accurately
584	inferring mechanistic drivers of epidemics and, in turn, predicting the efficacy of
585	control interventions.

586 **References**

587 Gubler DJ. The global emergence/resurgence of arboviral diseases as public 1. 588 health problems. Arch Med Res. 2002;33: 330-342. 589 2. Faria NR, Azevedo R do S da S, Kraemer MUG, Souza R, Cunha MS, Hill SC, et 590 al. Zika virus in the Americas: Early epidemiological and genetic findings. Science. 591 2016;352: 345-349. doi:10.1126/science.aaf5036 592 3. Staples JE, Breiman RF, Powers AM. Chikungunya Fever: An Epidemiological 593 Review of a Re-Emerging Infectious Disease. Clin Infect Dis. 2009;49: 942–948. 594 doi:10.1086/605496 595 Special Programme for Research and Training in Tropical Diseases, World Health 4. 596 Organization, editors. Dengue: guidelines for diagnosis, treatment, prevention, and 597 control. New ed. Geneva: TDR : World Health Organization; 2009. 598 Gubler DJ. Dengue/dengue haemorrhagic fever: history and current status. 5. 599 Novartis Found Symp. 2006;277: 3–16; discussion 16-22, 71–73, 251–253. 600 Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, et al. 6. 601 Refining the global spatial limits of dengue virus transmission by evidence-based 602 consensus. PLoS Negl Trop Dis. 2012;6: e1760. doi:10.1371/journal.pntd.0001760 603 Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The 7. 604 global distribution and burden of dengue. Nature. 2013;496: 504-507. 605 doi:10.1038/nature12060 606 Khan K, Bogoch I, Brownstein JS, Miniota J, Nicolucci A, Hu W, et al. Assessing 8. 607 the origin of and potential for international spread of chikungunya virus from the 608 Caribbean. PLoS Curr. 2014;6. 609 doi:10.1371/currents.outbreaks.2134a0a7bf37fd8d388181539fea2da5 610 Perkins TA, Metcalf CJE, Grenfell BT, Tatem AJ. Estimating drivers of 9. 611 autochthonous transmission of chikungunya virus in its invasion of the americas. PLoS 612 Curr. 2015;7. doi:10.1371/currents.outbreaks.a4c7b6ac10e0420b1788c9767946d1fc Nsoesie EO, Kraemer MU, Golding N, Pigott DM, Brady OJ, Moyes CL, et al. 613 10. Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. 614 615 Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2016;21. 616 doi:10.2807/1560-7917.ES.2016.21.20.30234 617 11. PAHO. Regional Zika Epidemiological Update (Americas) August 25, 2017. Pan 618 American Health Organization; 619 12. Bjornstad ON, Finkenstadt BF, Grenfell BT. Dynamics of Measles Epidemics: 620 Estimating Scaling of Transmission Rates Using a Time Series SIR Model. Ecol Monogr. 621 2002;72: 169. doi:10.2307/3100023 622 Coburn BJ, Wagner BG, Blower S. Modeling influenza epidemics and 13. 623 pandemics: insights into the future of swine flu (H1N1). BMC Med. 2009;7. doi:10.1186/1741-7015-7-30 624 625 14. Kucharski AJ, Funk S, Eggo RM, Mallet H-P, Edmunds WJ, Nilles EJ. 626 Transmission Dynamics of Zika Virus in Island Populations: A Modelling Analysis of the 627 2013–14 French Polynesia Outbreak. Barker CM, editor. PLoS Negl Trop Dis. 2016;10: 628 e0004726. doi:10.1371/journal.pntd.0004726 629 Eisen L, Monaghan AJ, Lozano-Fuentes S, Steinhoff DF, Hayden MH, Bieringer 15. 630 PE. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with

631 special reference to the cool geographic range margins. J Med Entomol. 2014;51: 496-632 516. 633 16. Rueda LM, Patel KJ, Axtell RC, Stinner RE. Temperature-dependent 634 development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: 635 Culicidae). J Med Entomol. 1990;27: 892-898. 636 Tun-Lin W, Burkot TR, Kay BH. Effects of temperature and larval diet on 17. 637 development rates and survival of the dengue vector Aedes aegypti in north Queensland, 638 Australia. Med Vet Entomol. 2000;14: 31-37. 639 18. Kamimura K, Matsuse IT, Takahashi H, Komukai J, Fukuda T, Suzuki K, et al. 640 Effect of temperature on the development of Aedes aegypti and Aedes albopictus. Med 641 Entomol Zool. 2002;53: 53–58. doi:10.7601/mez.53.53 1 642 Beserra EB, Fernandes CRM, Silva SA de O, Silva LA da, Santos JW dos. Efeitos 19. 643 da temperatura no ciclo de vida, exigências térmicas e estimativas do número de gerações 644 anuais de Aedes aegypti (Diptera, Culicidae). Iheringia Sér Zool. 2009;99: 142-148. 645 doi:10.1590/S0073-47212009000200004 646 Couret J, Dotson E, Benedict MQ. Temperature, larval diet, and density effects on 20. 647 development rate and survival of Aedes aegypti (Diptera: Culicidae). PloS One. 2014;9: 648 e87468. doi:10.1371/journal.pone.0087468 649 Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A. Effect of 21. 650 temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med 651 Hyg. 1987;36: 143-152. 652 22. McLean DM, Clarke AM, Coleman JC, Montalbetti CA, Skidmore AG, Walters 653 TE, et al. Vector capability of Aedes aegypti mosquitoes for California encephalitis and 654 dengue viruses at various temperatures. Can J Microbiol. 1974;20: 255–262. 655 Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P. Seasonality 23. 656 and the dynamics of infectious diseases. Ecol Lett. 2006;9: 467-484. doi:10.1111/j.1461-657 0248.2005.00879.x 658 24. Mordecai EA, Cohen JM, Evans MV, Gudapati P, Johnson LR, Lippi CA, et al. 659 Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya 660 using mechanistic models. PLoS Negl Trop Dis. 2017;11: e0005568. 661 doi:10.1371/journal.pntd.0005568 662 Yang HM, Macoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV. 25. 663 Assessing the effects of temperature on dengue transmission. Epidemiol Infect. 2009;137: 664 1179-1187. doi:10.1017/S0950268809002052 665 Yang HM, Boldrini JL, Fassoni AC, Freitas LFS, Gomez MC, de Lima KKB, et 26. al. Fitting the Incidence Data from the City of Campinas, Brazil, Based on Dengue 666 667 Transmission Modellings Considering Time-Dependent Entomological Parameters. PloS 668 One. 2016;11: e0152186. doi:10.1371/journal.pone.0152186 Johansson MA, Powers AM, Pesik N, Cohen NJ, Staples JE. Nowcasting the 669 27. 670 spread of chikungunya virus in the Americas. PloS One. 2014;9: e104915. 671 doi:10.1371/journal.pone.0104915 672 28. Wesolowski A, Qureshi T, Boni MF, Sundsøy PR, Johansson MA, Rasheed SB, 673 et al. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc 674 Natl Acad Sci U S A. 2015;112: 11887–11892. doi:10.1073/pnas.1504964112 675 29. Liu-Helmersson J, Stenlund H, Wilder-Smith A, Rocklöv J. Vectorial capacity of 676 Aedes aegypti: effects of temperature and implications for global dengue epidemic

677 potential. PloS One. 2014;9: e89783. doi:10.1371/journal.pone.0089783 678 30. Morin CW, Monaghan AJ, Hayden MH, Barrera R, Ernst K. Meteorologically 679 Driven Simulations of Dengue Epidemics in San Juan, PR. PLoS Negl Trop Dis. 2015;9: 680 e0004002. doi:10.1371/journal.pntd.0004002 681 Caminade C, Turner J, Metelmann S, Hesson JC, Blagrove MSC, Solomon T, et 31. 682 al. Global risk model for vector-borne transmission of Zika virus reveals the role of El 683 Niño 2015. Proc Natl Acad Sci U S A. 2017;114: 119-124. 684 doi:10.1073/pnas.1614303114 685 Lourenco J, Recker M. The 2012 Madeira dengue outbreak: epidemiological 32. 686 determinants and future epidemic potential. PLoS Negl Trop Dis. 2014;8: e3083. 687 doi:10.1371/journal.pntd.0003083 688 33. Faria NR, da Costa AC, Lourenço J, Loureiro P, Lopes ME, Ribeiro R, et al. 689 Genomic and epidemiological characterisation of a dengue virus outbreak among blood 690 donors in Brazil. Sci Rep. 2017;7: 15216. doi:10.1038/s41598-017-15152-8 691 34. Lourenço J, Maia de Lima M, Faria NR, Walker A, Kraemer MU, Villabona-692 Arenas CJ, et al. Epidemiological and ecological determinants of Zika virus transmission 693 in an urban setting. eLife. 2017;6. doi:10.7554/eLife.29820 694 Duong V, Lambrechts L, Paul RE, Ly S, Lay RS, Long KC, et al. Asymptomatic 35. 695 humans transmit dengue virus to mosquitoes. Proc Natl Acad Sci U S A. 2015;112: 696 14688-14693. doi:10.1073/pnas.1508114112 697 Appassakij H, Khuntikij P, Kemapunmanus M, Wutthanarungsan R, Silpapojakul 36. 698 K. Viremic profiles in asymptomatic and symptomatic chikungunya fever: a blood 699 transfusion threat? Transfusion (Paris). 2013;53: 2567–2574. doi:10.1111/j.1537-700 2995.2012.03960.x 701 37. Murphy BR, Whitehead SS. Immune response to dengue virus and prospects for a 702 vaccine. Annu Rev Immunol. 2011;29: 587-619. doi:10.1146/annurev-immunol-031210-703 101315 704 38. Weaver SC, Osorio JE, Livengood JA, Chen R, Stinchcomb DT. Chikungunya 705 virus and prospects for a vaccine. Expert Rev Vaccines. 2012;11: 1087-1101. 706 doi:10.1586/erv.12.84 707 39. Le Menach A, McKenzie FE, Flahault A, Smith DL. The unexpected importance 708 of mosquito oviposition behaviour for malaria: non-productive larval habitats can be 709 sources for malaria transmission. Malar J. 2005;4: 23. doi:10.1186/1475-2875-4-23 710 40. Palamara GM, Childs DZ, Clements CF, Petchey OL, Plebani M, Smith MJ. 711 Inferring the temperature dependence of population parameters: the effects of 712 experimental design and inference algorithm. Ecol Evol. 2014;4: 4736-4750. 713 doi:10.1002/ece3.1309 714 Perkins TA. Retracing Zika's footsteps across the Americas with computational 41. 715 modeling. Proc Natl Acad Sci U S A. 2017;114: 5558-5560. 716 doi:10.1073/pnas.1705969114 717 Zhang Q, Sun K, Chinazzi M, Pastore Y Piontti A, Dean NE, Rojas DP, et al. 42. 718 Spread of Zika virus in the Americas. Proc Natl Acad Sci U S A. 2017;114: E4334-719 E4343. doi:10.1073/pnas.1620161114 720 Alex Perkins T, Siraj AS, Ruktanonchai CW, Kraemer MUG, Tatem AJ. Model-43. 721 based projections of Zika virus infections in childbearing women in the Americas. Nat

722 Microbiol. 2016;1: 16126. doi:10.1038/nmicrobiol.2016.126

724 Supporting Information Legends

725 S1 Fig. Sensitivity of epidemiological indices as a function of starting

726 temperature to the parametrization of life history traits. The red curve

- represents the median maximum number of humans in the infected class (I_H) at any
- given point during the simulation. The blue curve represents the median final (or
- cumulative) epidemic size (R_H at the final time step). The green curve represents the
- 730 median length of the epidemic (i.e., the point at which the number of infected
- individuals was below one). Each shaded area represents the 95% credible interval
- for the epidemiological indices ran under 50 different parameterizations of the life
- history traits. Here, simulations were run with the temperature conditions: T_{min} =

734 10°C, $T_{mean} = 25$ °C, and $T_{max} = 40$ °C (A) and $T_{min} = 20$ °C, $T_{mean} = 25$ °C, and $T_{max} = 30$ °C

735 (B).

736 S2 Fig. Variation in epidemic suitability across different seasonal temperature

737 **regimes with 20% population immunity.** The heat map shows the epidemic

suitability (represented as the proportion of the total human population infected

during an epidemic) as a function of mean annual temperature and temperature

range assuming 20% population immunity. Here, temperature range is defined as

the seasonal variation about the annual mean temperature. Twenty large, globally

important cities are plotted to illustrate their epidemic suitability.

743 S3 Fig. Variation in epidemic suitability across different seasonal temperature

- 744 **regimes with 40% population immunity.** The heat map shows the epidemic
- suitability (represented as the proportion of the total human population infected
- during an epidemic) as a function of mean annual temperature and temperature

747 range assuming 40% population immunity. Here, temperature range is defined as 748 the seasonal variation about the annual mean temperature. Twenty large, globally 749 important cities are plotted to illustrate their epidemic suitability. 750 S4 Fig. Variation in epidemic suitability across different seasonal temperature 751 regimes with 60% population immunity. The heat map shows the epidemic 752 suitability (represented as the proportion of the total human population infected 753 during an epidemic) as a function of mean annual temperature and temperature 754 range assuming 60% population immunity. Here, temperature range is defined as 755 the seasonal variation about the annual mean temperature. Twenty large, globally 756 important cities are plotted to illustrate their epidemic suitability. 757 S5 Fig. Variation in epidemic suitability across different seasonal temperature 758 regimes with 80% population immunity. The heat map shows the epidemic 759 suitability (represented as the proportion of the total human population infected 760 during an epidemic) as a function of mean annual temperature and temperature 761 range assuming 80% population immunity. Here, temperature range is defined as 762 the seasonal variation about the annual mean temperature. Twenty large, globally 763 important cities are plotted to illustrate their epidemic suitability. 764 S6 Fig. Variation in epidemic suitability across different seasonal temperature 765 **regimes with minimum starting temperature.** The heat map shows the epidemic 766 suitability (represented as the proportion of the total human population infected 767 during an epidemic) as a function of mean annual temperature and temperature 768 range. Here, temperature range is defined as the seasonal variation about the annual

769 mean temperature, and the simulation began at the minimum temperature of the

regime. Twenty large, globally important cities are plotted to illustrate their

771 epidemic suitability.

772 S7 Fig. Variation in epidemic suitability across different seasonal temperature

773 **regimes with maximum starting temperature.** The heat map shows the epidemic

suitability (represented as the proportion of the total human population infected

during an epidemic) as a function of mean annual temperature and temperature

range. Here, temperature range is defined as the seasonal variation about the annual

mean temperature, and the simulation began at the maximum temperature of the

regime. Twenty large, globally important cities are plotted to illustrate their

779 epidemic suitability.

780 **S8** Fig. The 2.5% quantile of epidemic suitability to the parameterization of

781 life history traits. Epidemic suitability (represented as the proportion of the total

human population infected during an epidemic) as a function of mean annual

temperature and the temperature range. Temperature varied according to a

seasonal temperature regime, and 50 samples of c, T_{min} , and T_{max} were taken from

the joint posterior distribution of each trait thermal response from Mordecai et al.

786 [24].

787 **S9** Fig. The 50% quantile of epidemic suitability to the parameterization of life

788 history traits. Epidemic suitability (represented as the proportion of the total

human population infected during an epidemic) as mean annual temperature and

the temperature range. Temperature varied according to a seasonal temperature

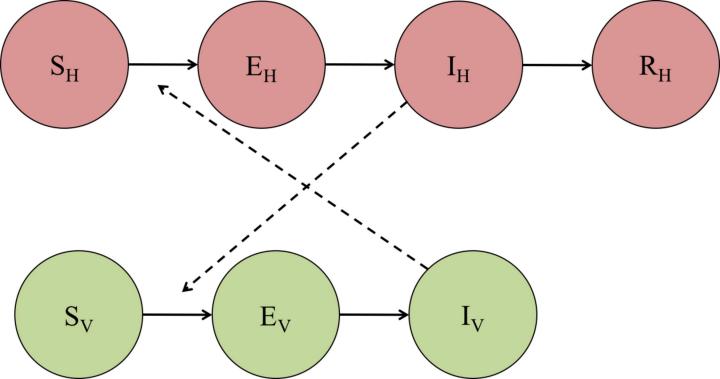
regime, and 50 samples of c, T_{min}, and T_{max} were taken from the joint posterior

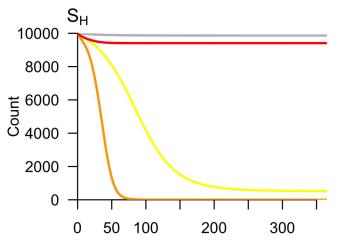
distribution of each trait thermal response from Mordecai et al. [24].

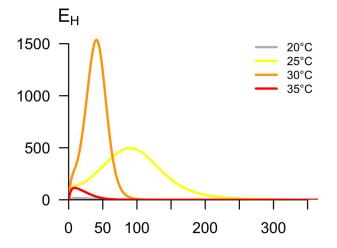
793 **S10** Fig. The 97.5% quantile of epidemic suitability to the parameterization of

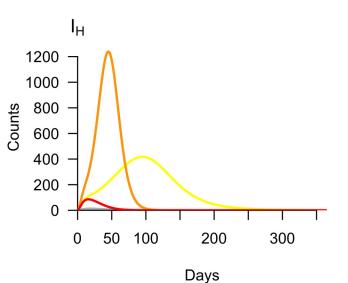
- 794 **life history traits.** Epidemic suitability (represented as the proportion of the total
- human population infected during an epidemic) as mean annual temperature and
- the temperature range. Temperature varied according to a seasonal temperature
- regime, and 50 samples of c, T_{min}, and T_{max} were taken from the joint posterior
- distribution of each trait thermal response from Mordecai et al. [24].

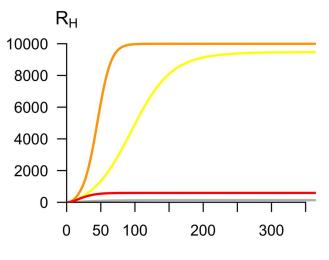
799



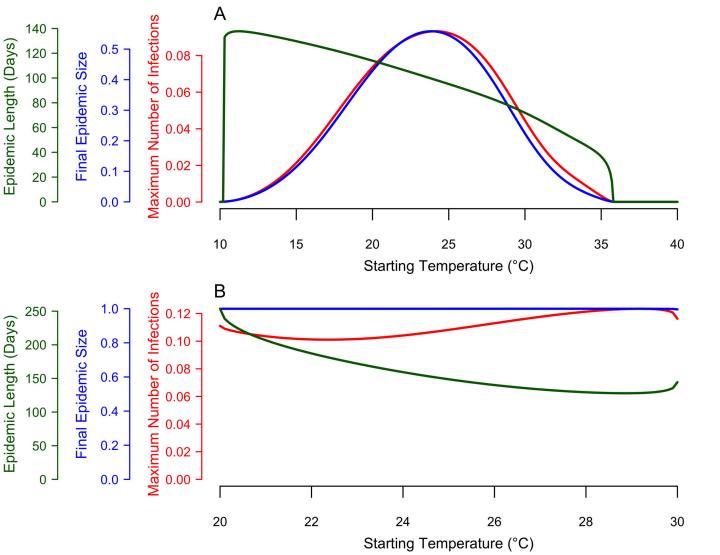


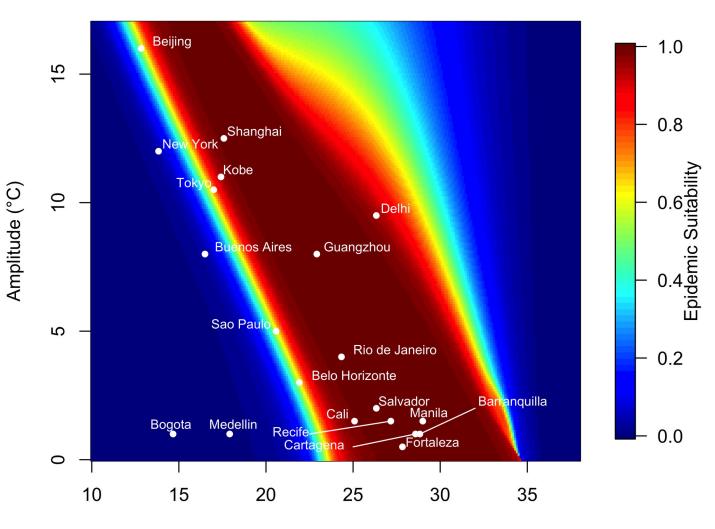




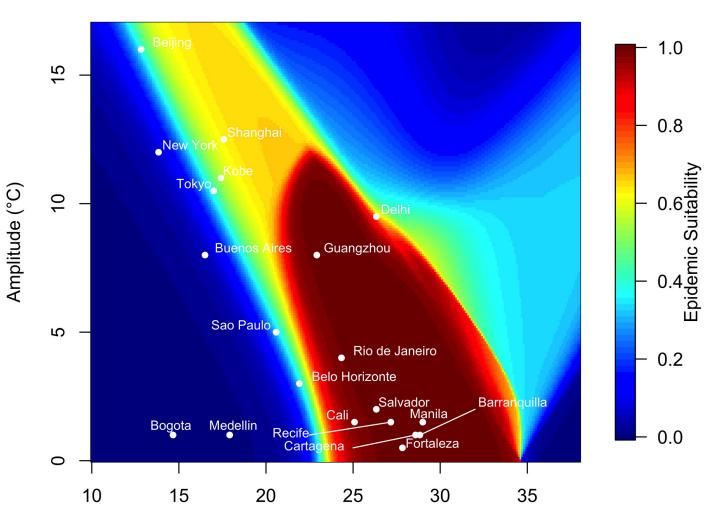


Days





Oscillation Mean Temperature (°C)



Oscillation Mean Temperature (°C)