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 2

Abstract 26 

Single-molecule full-length cDNA sequencing can aid genome annotation by 27 

revealing transcript structure and alternative splice-forms, yet current annotation 28 

pipelines do not incorporate such information. Here we present LoReAn (Long 29 

Read Annotation) software, an automated annotation pipeline utilizing short- and 30 

long-read cDNA sequencing, protein evidence, and ab initio prediction to 31 

generate accurate genome annotations. Based on annotations of two fungal and 32 

two plant genomes, we show that LoReAn outperforms popular annotation 33 

pipelines by integrating single-molecule cDNA sequencing data generated from 34 

either the PacBio or MinION sequencing platforms, and correctly predicting gene 35 

structure and capturing genes missed by other annotation pipelines. 36 
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Background 42 

Genome sequencing has advance nearly every discipline within the biological 43 

sciences, as the ongoing decreasing sequencing costs and increasing 44 

computational capacity allows many laboratories to pursue genomics-based 45 

answers to biological questions. New sequencing technologies designed to 46 

sequence longer contiguous DNA molecules, such as Pacific Biosciences’ 47 

(PacBio) Single Molecule Real Time sequencing (SMRT) and Oxford Nanopore 48 

Technologies’ (ONT) MinION, have ushered the most recent genomics revolution 49 

[1]. These advances are further enhancing the ability to generate high-quality 50 

genome assemblies of large, complex eukaryotic genomes [2-5].  51 

A high-quality genome assembly, represented by (near-)chromosome 52 

completion, can help to address many biological questions, but often requires 53 

functional features to be further defined [6]. The process of genome annotation, 54 

i.e. the identification of protein-coding genes and their structural features such as 55 

intron-exons boundaries, is important to capture biological values of a genome 56 

assembly [7]. Genomes can be annotated using computer algorithms in so-called 57 

ab initio gene predictions, as well as using wet-lab generated data, such as 58 

cDNA or protein datasets for evidence-based predictions, and current annotation 59 

pipelines typically incorporate both types of data [7,8]. Ab initio gene prediction 60 

tools are based on statistical models, most often Hidden Markov Models (HMMs), 61 

that are trained using known proteins, and typically perform well at predicting 62 

conserved or core genes [7,9]. However, the ab initio prediction accuracy 63 

decreases for organism-specific genes, for genes encoding small proteins and 64 
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those containing introns in untranslated regions (UTRs). Furthermore, ab initio 65 

annotation of non-model genomes remains challenging as appropriate training 66 

data is not always available. To improve genome annotations, cDNA sequencing 67 

(RNA-seq) data can be incorporated to train ab initio software [10] and to provide 68 

additional evidence for defining accurate gene models [11]. However, it remains 69 

challenging to annotate a genome with short-read RNA-seq data due to 70 

difficulties in unequivocally mapping these reads, and because single reads do 71 

not span a gene’s full length. Consequently, the coding structure must be 72 

computational inferred.  73 

Current annotation pipelines use a combination of ab initio and evidence-74 

based predictions to generate accurate consensus annotations. MAKER2 is a 75 

user-friendly, fully automated annotation pipeline that incorporates multiple 76 

sources of gene prediction information and has been extensively used to 77 

annotate eukaryotic genomes [12-16]. The Broad Institute Eukaryotic Genome 78 

Annotation Pipeline (here referred to as BAP) has mainly been used to annotate 79 

fungal genomes [17-19] and integrates multiple programs and evidences for 80 

genome annotation [20,21]. CodingQuarry is another gene prediction software 81 

that utilizes general HMMs for gene prediction using both RNA-seq data and 82 

genome sequence [22]. A limitation of these annotation pipelines is that they give 83 

little weight to experimental evidence such as short read RNA-seq and cannot 84 

exploit gene structure information from single-molecule cDNA sequencing. 85 

In addition to improving the genome assembly [23], long-read sequencing 86 

data can be used to improve genome annotation. The use of single-molecule 87 
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cDNA sequencing can increase the accuracy of automated genome annotation 88 

by improving genome mapping of sequencing data, correctly identifying intron-89 

exon boundaries, directly identifying alternatively spliced transcripts, identifying 90 

transcription start and end sites, and providing precise strand orientation to single 91 

exons genes  [24-26]. However, several hurdles limit the implementation of long-92 

read sequencing data into automated genome annotation, such as the higher 93 

per-base costs when compared to short-read data, the relatively high error rates 94 

for long-read sequencing technologies, and the lack of bioinformatics tools to 95 

integrate long-read data into current annotation pipelines [27,28]. The first two 96 

limitations are addressed by the continual reduction in sequencing cost and 97 

improving base calling by long-read sequencing providers, and the development 98 

of bioinformatics methods to correct for sequencing errors [29,30]. To address 99 

the disconnection between genome annotation pipelines and the latest 100 

sequencing technologies, we developed the Long Read Annotation (LoReAn) 101 

pipeline. LoReAn is an automated annotation pipeline that takes full advantage of 102 

MinION or PacBio SMRT long-read sequencing data in combination with protein 103 

evidence and ab initio gene predictions for full genome annotation. Short-read 104 

RNA-seq can be used in LoReAn to train ab initio software. Based on the re-105 

annotation of two fungal and two plant species, we demonstrate that LoReAn can 106 

provide annotations with increased accuracy by incorporating single-molecule 107 

cDNA sequencing data from different sequencing platforms. 108 

 109 

 110 
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Results  111 

Long-read annotation (LoReAn) design and implementation 112 

The LoReAn pipeline can be conceptualized in two phases. The first phase 113 

involves genome annotation based on ab initio and evidence-based predictions 114 

(Fig. 1a: blue arrows) and largely follows the workflow previously described in the 115 

BAP [20,21]. This first phase produces a full-genome annotation and requires the 116 

minimum input of a reference genome, protein sequence of known and, possibly, 117 

related species, and a species name from the Augustus prediction software 118 

database [31]. Two changes were implemented into the first phase of LoReAn, 119 

which we refer to as BAP+. One alteration is that LoReAn uses RNA-seq reads 120 

as input in combination with the BRAKER1 software [10] to produce a species-121 

specific database for the Augustus prediction software. Additionally, RNA-seq 122 

data is assembled into full-length cDNA using Trinity software [32] and the 123 

assembled transcripts are aligned to the genome using both PASA [20] and 124 

GMAP [33]. The output of PASA software is passed to Evidence Modeler (EVM) 125 

[20] as cDNA evidence while the output of GMAP is given to EVM as ab initio 126 

software. GMAP output passed as ab initio-evidence guarantees that genes not 127 

predicted by ab initio software like Augustus and GeneMark but present in the 128 

transcriptome are passed to Evidence Modeler.  129 

 The second phase of LoReAn incorporates single-molecule cDNA 130 

sequencing with the annotation results of the first phase by utilizing a novel 131 

approach to reconstruct full-length transcripts (Fig. 1a: red arrows). Single-132 

molecule long-read sequencing reads are mapped to the genome using GMAP, 133 
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which allows the determination of transcript structure (i.e. start, stop and exon 134 

boundaries) from a single cDNA molecule [34]. The underlying reference 135 

sequence is extracted to overcome sequence errors associated with long-read 136 

sequencing, and these sequences are combined with the gene models from the 137 

first phase in a process we refer to as ‘clustered transcript reconstruction’ (Fig 1a 138 

and b). Through this process, consensus gene models are built by combining the 139 

first and second phase gene models that cluster at the same locus. Optionally, 140 

model clustering can be done in a strand-specific manner (LoReAn stranded, 141 

main text in Additional file 1 for details) where only gene models mapping on the 142 

same DNA coding strand are used to build a consensus model. These high-143 

confidence models are mapped back to the reference using GMAP to correct 144 

open reading frames and subsequently, PASA is used to update the gene 145 

models by identifying untranslated regions (UTRs) and alternatively spliced 146 

transcripts to generate a final annotation. Sequence-based support for the final 147 

gene models (Fig. 1b orange models) can come from the first phase annotation 148 

alone (Fig. 1b i), the second phase given a sufficient level of support (Fig. 1b ii, 149 

iii), or through a combination of the two phases (Fig. 1b iv, v). If a single 150 

consensus annotation cannot be reached between the two phases, both 151 

annotations are kept in the final output (Fig. 1b v).  152 

 153 

LoReAn produces the highest accuracy gene predictions 154 

To test the performance of LoReAn, we re-annotated the genome sequence of 155 

the haploid fungus Verticillium dahliae, an important pathogen of hundreds of 156 
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plant species including many crops [35,36]. The genome of V. dahliae strain JR2 157 

was used for testing LoReAn because it is assembled into complete 158 

chromosomes and has a manually curated annotation, providing a high-159 

confidence resource for reference [2]. The output of 54 annotations were 160 

compared, of which 24 were produced using LoReAn, 12 using BAP and 12 161 

using BAP+ with different genome masking and ab initio options (description in 162 

Additional file 1), along with output from the annotation software MAKER2, 163 

CodingQuarry, BRAKER1, Augustus and two from GeneMark-ES (Fig 2a; 164 

Additional file 2: Table S1). The quality of the annotation outputs were 165 

determined by comparing each to the reference annotation for exact matches to 166 

either genes, transcripts or exon locations. These comparisons were used to 167 

calculate sensitivity (how much of the reference is correctly predicted), specificity 168 

(how much of the prediction is in the reference), and accuracy (an average of 169 

sensitivity and specificity). We calculated these metrics based on commonly 170 

described methods used within the gene prediction community (see methods and 171 

references [7,37,38]). Genome masking prior to annotation significantly affected 172 

the accuracy of predicted gene models, with partially masked or non-masked 173 

genome inputs producing the most accurate annotations (Fig 2a; Additional file 1: 174 

Fig S1a - S3a, Additional file 2: Table S2). On average, the ‘fungus’ option of the 175 

ab initio software GeneMark-ES produced the most accurate gene, transcript, 176 

and exon predictions (Fig 2a; Additional file 1: Fig S1b - S3b; Additional file 2: 177 

Table S2 – S4). Gene predictions from LoReAn using coding strand information 178 
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(LoReAn-s) had the highest accuracy across the tested conditions for exact 179 

match genes to the reference annotation (Fig. 2a; Table 1).  180 

 A single output from LoReAn, BAP, MAKER2 and CodingQuarry were 181 

selected for in-depth comparison (Fig. 2a, horizontal lines highlighted in yellow; 182 

Fig. 2b). The LoReAn-stranded run using the ‘fungus’ option of GeneMark-ES 183 

(referred to as LoReAn-sF throughout) and the BAP run using the fungus option 184 

of GeneMark-ES (referred to as BAP-F throughout) using a non-masked genome 185 

as input were selected because they had the highest accuracy and used similar 186 

settings, thereby enabling comparisons (Additional file 2: Table S1). Default 187 

settings for MAKER2 and CodingQuarry were run with as similar input to the 188 

LoReAn and BAP pipelines as possible. The LoReAn-sF output had the highest 189 

gene and exon sensitivity and specificity compared to the other three pipelines, 190 

showing a 13% increase in gene sensitivity and 9% increase in gene specificity 191 

compared to the next best performing pipeline, BAP-F (Fig. 2b). 192 

 Collectively, the results from testing gene prediction options and pipelines 193 

show that genome masking prior to annotation and ab initio options can impact 194 

the quality of a genome annotation. Across the tested settings, the LoReAn 195 

pipeline produces the highest quality gene predictions when compared to the 196 

reference annotation. Overall, LoReAn-stranded produced the best annotation 197 

predictions, highlighting that incorporating single-molecule cDNA information in 198 

the annotation process significantly improves the output.  199 

 200 

 201 

 202 
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Table 1: Annotation quality metrics for exact match genes for 203 

the tested pipelines  204 

Pipelinec Sensitivityb Specificityb Accuracyb 

BAPa 50.0% 60.5% 55.3% 

BAP+a 50.7% 58.7% 54.7% 

LoReAna 57.3% 61.0% 59.2% 

LoReAn-sa 57.5% 63.2% 60.3% 

MAKER2 49.8% 54.5% 52.1% 

CodingQuarry 50.7% 57.0% 53.8% 

Augustus 47.8% 53.0% 50.4% 

BRAKER1 43.4% 54.4% 49.9% 

GeneMark-ES 42.4% 50.7% 46.6% 

GeneMark-ES+Fungus 47.5% 54.4% 51.0% 
a
Results from the highest quality annotation are shown 205 

b
Each quality metric was calculated against the V. dahliae strain JR2 reference. Details 206 

on how each was calculated and their definitions can be found in the Methods section. 207 

cPipelines: BAP - Broad Annotation Pipeline; BAP+ - modified BAP; LoR_M - LoReAn 208 

using masked input genome; LoR - LoReAn; LoR_S_M - LoReAn stranded mode using 209 

masked input genome; LoR_S - LoReAn stranded mode. 210 

  211 

LoReAn predicts the greatest number of high-confidence genes compared 212 

to other pipelines 213 

The four best gene predictions; LoReAn-sF, BAP-F, MAKER2 and 214 

CodingQuarry, were compared head-to-head in the absence of a reference 215 

annotation to determine differences in gene prediction. There were 4,584 genes 216 

with the same predicted structure (i.e. start, stop, intron position) from the 4 217 

pipelines, equivalent to approximately 40% of the genes in the reference 218 

annotation (Fig. 3a). BAP predicted the fewest unique genes (1,352), while 219 

MAKER2 predicted the most (3,157) (Fig. 3a). However, the use of exact match 220 

gene structure to identify unique coding sequence is potentially misleading, as 221 

two gene predictions can code for the same or a similar protein without the exact 222 

same structure. To generate a more biologically relevant comparison of unique 223 
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protein coding differences, we grouped translated protein sequences of each 224 

annotation into homologous groups using orthoMCL [39,40]. Using these groups, 225 

we identified protein coding sequences that were unique to a single annotation 226 

pipeline, referred to as singletons. We identified 1,429 singletons across the four 227 

annotations, with CodingQuarry predicting the most (461) and BAP-F predicting 228 

the fewest (180). The validity of the singletons were analyzed by checking their 229 

support from short-read RNA-seq data. Coding sequences from the LoReAn-sF 230 

protein singletons averaged 80% coverage across the predicted gene model’s 231 

length, statistically significantly greater than the singleton coverage from the 232 

other pipelines (Fig. 3b). The log2 length of the singletons did not significantly 233 

change across the LoReAn-sF, BAP-F and MAKER2 results (Fig. 3c). 234 

Additionally, we checked the singletons for introns, and grouped them by RNA-235 

seq coverage, as genes with introns and RNA-seq support are more likely to be 236 

true genes. Singletons that contain at least one intron and have RNA-seq reads 237 

covering at least 75% of their length were considered the highest-confidence 238 

models. The LoReAn-sF pipeline had the greatest number of singletons in this 239 

high-confidence category, 241, which represents 55.1% of the total singletons 240 

predicted by the pipeline. MAKER2 also predicted many singletons in this 241 

category, 176, which was 50.1% of the singletons predicted by the pipeline (Fig. 242 

3d, green wedge). In contrast, the CodingQuarry and BAP-F pipelines predicted 243 

the most low-confidence singletons, those with no introns and lower RNA-seq 244 

support, representing a greater proportion of the singletons predicted by the 245 

pipelines (Fig. 3d).  For research projects aimed at identifying new protein coding 246 
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genes, these results suggest the LoReAn-sF pipeline offers the greatest chance 247 

at identifying novel, high-confidence protein coding genes.  248 

 249 

LoReAn gene predictions are the most accurate based on reference 250 

independent analysis  251 

To evaluate the annotation output in the absence of a reference, we devised an 252 

approach to quantify annotation accuracy based on empirical data. The locations 253 

of predicted introns from the annotation outputs were compared to the locations 254 

of the inferred introns from long- and short-read mapped data. This analysis 255 

shows that LoReAn outputs using non- or partially masked genomes have the 256 

highest exact match intron accuracy (Fig. 4, points closest to top right corner). To 257 

validate this approach, the exact match intron accuracy from mapped reads were 258 

correlated with the to exact match gene accuracy from the reference annotation. 259 

This analysis shows a significant positive correlation between the reference 260 

dependent and independent assessments (r = 0.88, p-value < 2.2e-16, spearman 261 

correlation) (Additional file 1: Fig. S4). This indicates that the empirical annotation 262 

assessment is an alternative method to assess gene prediction accuracy in the 263 

absence of an annotation or the absence of a high-confidence annotation. 264 

 265 

Only the LoReAn pipeline correctly annotates the Ave1 effector locus 266 

Plant-pathogenic fungi encode in planta-secreted proteins, termed effectors, 267 

which serve to facilitate infection [41,42]. Effectors are generally characterized as 268 

lineage-specific small, secreted, cysteine-rich proteins with generally no 269 
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characterized protein domains or homology, characteristics which can make 270 

effectors difficult to predict with automated annotation [43]. To test how LoReAn 271 

and the other annotation pipelines performed at a specific effector locus, we 272 

detailed the annotation results for the V. dahliae Ave1 locus, which encodes a 273 

small-secreted protein that functions to increase virulence during plant infection 274 

[44]. As previously reported, a considerable number of short RNA-seq reads 275 

uniquely map to the Ave1 locus [44], along with single-molecule cDNA reads 276 

identified here (Fig. 5a). Interestingly, the MAKER2, BAP, and CodingQuarry 277 

pipelines, along with the Augustus and GeneMark-ES software fail to predict the 278 

previously characterized Ave1 gene, despite the abundance of uniquely-mapped 279 

reads (Fig. 5b; Additional file 1: Fig. S5). Intriguingly, the MAKER2 and BAP 280 

pipelines predict a separate gene on the opposite strand located to the 3’ end of 281 

the Ave1 gene that is absent in the reference annotation. The LoReAn-sF and 282 

BAP+ pipelines predict two genes at the locus, one corresponding to the known 283 

Ave1 gene, and an additional gene to the 3’ end of Ave1 (called Ave1c), similar 284 

to the gene model identified by MAKER2 and BAP (Fig. 5b; Additional file 1: Fig. 285 

S5). 286 

 LoReAn-sF additionally predicts two mRNAs corresponding to the 287 

previously characterized Ave1 gene, termed isoform-1 and -2 (Fig. 5b). To 288 

confirm the presence of two Ave1 isoforms, cDNAs were amplified and cloned 289 

into vectors, and 18 clones were randomly selected for sequencing. A majority of 290 

the sequenced transcripts, 15 of 18, have a sequence corresponding to isoform-291 

1, the known Ave1 transcript, while the other 3 were the isoform-2 sequence (Fig. 292 
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5c). The isoform-2 transcript is the result of an alternative splice junction 5 bp 293 

upstream of the previously identified splice site in the Ave1 5’ UTR intron, and is 294 

not predicted to alter the protein coding sequence. The accuracy of the new gene 295 

prediction at the Ave1 locus (two Ave1 isoforms and one additional gene model) 296 

was additionally tested by showing the expression of the Ave1c gene. Two sets 297 

of primers (Ave1 and Ave1c fw and rev) amplified bands of the expected sizes, 298 

confirming the expression of both genes across various V. dahliae growth 299 

conditions (Fig. 5d).  We also attempted to amplify a specific product from both 300 

gDNA and cDNA to confirm the orientation and rule out a transcriptional fusion 301 

(Fig. 4d, primers Ave1 fw + Ave1c fw). Consistent with the annotation, the 302 

amplification using a gDNA template was successful, while the cDNA template 303 

failed to amplify a product. Collectively, these results confirm that LoReAn 304 

predicts the most accurate gene models at the Ave1 locus, including a splice-305 

variant of Ave1. 306 

 307 

LoReAn produces the most accurate annotation of a second fungal 308 

genome using PacBio Iso-seq reads 309 

The basidiomycete Plicaturopsis crispa, mostly known for its wood-degrading 310 

abilities, has a relatively complex transcriptome with high levels of exons per 311 

gene; 5.6 exons per gene compared to V. dahliae’s 2.5 exons per gene [45]. 312 

Using the settings identified for the V. dahliae genome annotation, nine 313 

annotations of the P. crispa genome were generated using publicly available 314 

short-read Illumina RNA-seq and single-molecule PacBio Iso-seq data [46]. The 315 
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LoReAn annotations predicted the greatest number of genes, transcripts and 316 

exons, while BAP and BAP+ had the greatest number of genes, transcripts and 317 

exons exactly matching the reference (Table 2). Likewise, the BAP and BAP+ 318 

gene, transcript and exon prediction had the highest accuracy when compared to 319 

the reference annotation (Fig. 6a). However, the validity of these results is 320 

dependent on the quality of the reference annotation. To better understand the 321 

output from the annotations in the absence of a potentially confounding 322 

reference, the empirical intron analysis was used. Using this analysis of exact 323 

match introns, all four LoReAn-based predictions had the highest accuracy, and 324 

were even better than the current public reference (Fig. 6b). These results 325 

indicate the LoReAn pipeline produces an improved annotation to the current 326 

reference based on the mapped RNA-seq data, and that LoReAn using strand 327 

information from the sequencing data provides the most accurate annotation of 328 

the P. crispa genome.  329 

 330 

Table 2. Predicted features for P. crispa annotation analysis.  331 

 

Pipelinesc 

Genes (13,626)a Transcripts (13,636)a Exons (76,761)a 

Total 
Predicted 

Exact 
Matchb 

Total 
Predicted 

Exact 
Matchb 

Total 
Predicted 

Exact 
Matchb 

Genemark-ES 11,396 4,426 11,396 4,426 73,930 56,206 

Augustus 11,640 4,976 11,640 4,976 72,936 57,648 

BAP 11,831 5,489 11,831 5,489 74,598 59,693 

BAP+ 11,583 5,485 11,583 5,485 72,683 59,045 

MAKER2 8,602 2,477 11,196 2,477 62,312 44,201 

LoRean_M 14,690 5,114 15,760 5,114 75,158 57,921 

LoRean 14,698 5,112 15,765 5,112 75,228 57,935 

LoRean_s_M 12,821 5,118 13,931 5,118 74,514 57,773 

LoRean_s 12,828 5,132 13,943 5,132 74,512 57,749 
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aThe number of reference genes, transcripts and exons are shown in 332 

parentheses.  333 

bThe Exact match column shows the number of predicted features that have the 334 

exact genomic location as the reference feature.  335 

cPipelines: BAP - Broad Annotation Pipeline; BAP+ - modified BAP; LoRean_M - 336 

LoReAn using masked input genome; LoRean - LoReAn; LoRean_s_M - LoReAn 337 

stranded mode using masked input genome; LoRean_s - LoReAn stranded 338 

mode. 339 

 340 

 341 

LoReAn produces high quality annotations for larger plant genomes using 342 

PacBio Iso-seq data 343 

To further test LoReAn, the 135 megabase (Mb) Arabidopsis thaliana and 375 344 

Mb Oryza sativa (rice) genomes were re-annotated using Pacbio Iso-seq data. 345 

These genomes are larger and contain a higher percentage of repetitive 346 

elements than the two fungal genomes tested. The Arabidopsis annotations 347 

generated here were compared to the reference annotation, TAIR10, which is 348 

highly curated and represents one of the most complete plant genome 349 

annotations [47,48]. The LoReAn outputs using a non-masked genome had the 350 

highest number of genes and transcripts exactly matching the reference, while 351 

BAP+ had the highest number of exact match exons (Table 3). The four LoReAn 352 

predictions had the highest exact match accuracy compared to the reference for 353 

genes, transcripts, and exons (Fig. 7a) We additionally tested the quality of the 354 

annotations using exact intron matches to the mapped reads as described 355 

earlier. This analysis also shows that the LoReAn outputs were the most 356 

accurate and most closely match the TAIR10 reference annotation (Fig. 7b). 357 

 358 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/230359doi: bioRxiv preprint 

https://doi.org/10.1101/230359


 17

Table 3. Predicted features for Arabidopsis thaliana annotation analysis 359 

 
Pipelinesc 

Genes (27,416)a Transcripts (35,386)a Exons (147,492)a 

Total 
Predicted 

Exact 
Matchb 

Total 
Predicted 

Exact 
Matchb 

Total  
Predicted 

Exact  
Matchb 

Genemark-ES 31,358 13,758 31,358 14,975 173,189 118,265 
Augustus 27,954 15,288 27,954 16,797 161,197 121,196 
BAP 29,640 15,341 29,640 16,825 163,015 121,083 
BAP+ 29,152 17,246 29,152 18,993 153,341 122,826 
MAKER2 14,881 8,424 15,138 9,554 99,905 88,676 

LoReAn_M 24,665 17,053 25,302 19,036 133,837 119,641 

LoReAn 29,313 17,416 29,946 19,412 152,154 122,214 

LoReAn_s_M 24,504 17,072 25,144 19,040 133,693 119,559 

LoReAn_s 29,145 17,419 29,782 19,405 152,105 122,230 
aThe number of reference genes, transcripts and exons are shown in 360 

parentheses.  361 

bThe Exact match column shows the number of predicted features that have the 362 

exact genomic location as the reference feature.  363 

cPipelines: BAP - Broad Annotation Pipeline; BAP+ - modified BAP; LoRean_M - 364 

LoReAn using masked input genome; LoRean - LoReAn; LoRean_s_M - LoReAn 365 

stranded mode using masked input genome; LoRean_s - LoReAn stranded 366 

mode. 367 

 368 

Comparable results were obtained for the O. sativa annotation. The BAP 369 

pipeline had the highest number of predicted genes, transcripts and exons 370 

exactly matching to the reference annotation, followed by the outputs from the 371 

LoReAn predictions (Table 4). However, the four LoReAn predictions had the 372 

greatest specificity and accuracy for genes, transcripts and exons compared to 373 

the reference annotation (Fig. 7c). The overall level of agreement between the 374 

pipelines and the reference is lower for O. sativa than for Arabidopsis (compare 375 

x-axis, Fig. 7a and 7c), likely reflecting the difference in reference annotation 376 

quality. Using the exact intron matches to the mapped reads analysis, the 377 

LoReAn gene predictions have the highest accuracy for exact intron matches, 378 
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even greater than the reference annotation (Fig. 7d). These data suggest 379 

LoReAn produced annotations are more accurate than the currently used 380 

reference annotation with respect to RNA-seq mapping data.  381 

 382 

Table 4. Predicted features for Oryza sativa annotation analysis.  383 

 

Pipelinesc 

Genes (35,679) a Transcripts (42,132) a Exons (140,914) a 
Total 
Predicted 

Exact 
Matchb 

Total 
Predicted 

Exact 
Matchb 

Total 
Predicted 

Exact  
Matchb 

Genemark-ES 62,836 1,132 62,836 1,190 512,183 4552 
Augustus 46,264 7,705 46,264 8,310 205,377 79,968 
BAP 75,360 11,253 75,360 12,241 209,909 88,114 
BAP+ 35,420 7,254 35,420 7,921 150,207 76,298 
MAKER2 26,142 4,267 32,897 4,690 159,907 78,609 
LoReAn_M 27,543 9,686 32,296 10,648 122,167 78,292 

LoReAn 37,365 10,134 41,846 11,102 152,682 82,217 

LoReAn_s_M 27,251 9,609 31,998 10,649 122,215 78,397 

LoReAn_s 37,024 10,037 41,516 11,107 152,760 82,362 
aThe number of reference genes, transcripts and exons are shown in 384 

parentheses.  385 

bThe Exact match column shows the number of predicted features that have the 386 

exact genomic location as the reference feature.  387 

cPipelines: BAP - Broad Annotation Pipeline; BAP+ - modified BAP; LoRean_M - 388 

LoReAn using masked input genome; LoRean - LoReAn; LoRean_s_M - LoReAn 389 

stranded mode using masked input genome; LoRean_s - LoReAn stranded 390 

mode. 391 

392 
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Discussion 393 

High throughput sequencing continues to have profound impacts on biological 394 

systems and the questions researchers are addressing. The technical 395 

improvements and associated reduction in cost have resulted in a deluge of high 396 

quality model and non-model genomes from across the kingdoms of life. To 397 

capture the value of these assembled genomes, equal advances are needed in 398 

defining the functional elements of the genome. One such technical advance is 399 

the ability to sequence full-length single-molecule cDNAs that directly contain 400 

information on transcript structure and alternative forms. This information has 401 

previously helped identify alternatively spliced transcripts [26,49], but single-402 

molecule long-reads have not been systematically incorporated into annotation 403 

pipelines. The newly developed LoReAn pipeline integrates both short-read 404 

RNA-seq and long-read single-molecule cDNA sequencing with ab initio gene 405 

prediction to generate high accuracy gene predictions. In total, three separate 406 

analyses using a reference annotation, head-to-head comparison, or comparison 407 

to empirical data indicate that LoReAn produces the highest quality annotations 408 

of the four genomes tested. These results show that LoReAn has improved 409 

performance for predicting gene structures. 410 

 Whereas several genome annotation tools use experimental data (i.e. 411 

RNA-seq) for gene prediction, none of them fully utilize this information. This is 412 

apparent for genes such as Ave1, where there is ample RNA-seq evidence 413 

supporting the gene model, but most of the tested software fail to predict the 414 

gene. This result may be related to the small size of the Ave1 transcript and the 415 
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lack of homologs present in fungal databases. The ability to correctly annotate 416 

genes with unique features or restricted taxonomic distribution is relevant to 417 

many biological questions and will aid comparative genomic studies. We 418 

designed LoReAn to provide more weight and incorporate more information from 419 

both short- and long-read RNA-seq data as we believe with increasing 420 

sequencing depth, length and accuracy this significant source of empirical 421 

evidence will greatly improve gene prediction.  422 

The technical and biological characteristics of a genome impacts the 423 

annotation options that will influence annotation quality. Genome masking 424 

significantly affected the gene prediction output of the V. dahliae annotation. 425 

From a technical aspect, genome masking prior to annotation likely has the 426 

greatest impact when annotating highly contiguously assembled genomes. 427 

Fragmented genome assemblies often lack repetitive regions and are de facto 428 

masked. Masking the telomere-to-telomere complete V. dahliae strain JR2 429 

genome resulted in gene predictions which were fragmented because of coding 430 

regions overlapping masked regions. Our results indicate that genome masking 431 

of short repetitive DNA decreases the quality of the genome annotation, and that 432 

using a partial- or non-masked genome may improve annotation results when 433 

using long-read data. From a biological perspective, our results show that strand 434 

information had a significant impact on annotation quality for the two smaller, 435 

more compact fungal genomes. Compact fungal genomes have genes with 436 

overlapping UTRs which make gene prediction difficult. Using strand information, 437 

LoReAn can assign transcripts to the correct coding strand and avoid the 438 
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prediction of fused genes. Additionally, strand information is used to assign 439 

single exon genes to the correct strand. These results need to be confirmed on a 440 

greater number of genomes with diverse characteristics before being fully 441 

generalizable. Collectively, our results suggest that both technical and biological 442 

information, such as assembly completeness, coding sequence overlap, and 443 

intron number per coding sequence impact genome annotation quality and 444 

should be considered early during project design.  445 

Our results show that LoReAn can successfully use single-molecule cDNA 446 

sequencing data from different platforms to produce high-quality genome 447 

annotations, similar to or better than the current community references for four 448 

diverse genomes. This shows that the LoReAn pipeline can effectively use 449 

single-molecule cDNA sequencing data across the current sequencing platforms 450 

and performs well for annotating a small fungal genome of 35 Mb to the rice 451 

genome of ~375 Mb. We speculate that the use of annotation software such as 452 

LoReAn that incorporates single-molecule cDNA sequencing into the annotation 453 

process will significantly improve genome annotation and aid in answering 454 

biological questions across all domains of life. 455 

 456 

Conclusions 457 

We present the automated genome annotation software Long Read Annotation 458 

(LoReAn) that builds on previous annotation software to incorporate both short- 459 

and long-read sequencing data. This pipeline is shown to perform well using both 460 

Oxford Nanopore and Pacific Biosciences produced long-reads and for 461 
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annotation projects ranging from compact fungal genomes to larger more 462 

complex plant genomes. As more labs utilize single-molecule cDNA sequencing 463 

to address their specific biological questions, LoReAn will provide an efficient and 464 

effective automated annotation pipeline for diverse projects.  465 

 466 

467 
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Methods 468 

Growth conditions and RNA extraction  469 

Verticillium dahliae strain JR2 [2], was maintained on potato dextrose agar (PDA) 470 

plates grown at approximately 22⁰C and stored in the dark. Conidiospores were 471 

collected from two-week-old PDA plates using half-strength potato dextrose broth 472 

(PDB), and subsequently 1x106 spores were inoculated into glass flasks 473 

containing 50 mL of either PDB, half-strength Murashige and Skoog (MS) 474 

medium supplemented with 3% sucrose, or xylem sap collected from greenhouse 475 

grown tomato plants of the cultivar Moneymaker. The cultures were grown for 476 

four days in the dark at 22⁰C and 160 RPM. The cultures were strained through 477 

miracloth (22 μm) (EMD Millipore, Darmstadt, Germany), pressed to remove 478 

liquid, and flash frozen in liquid nitrogen. Next, the cultures were to ground to 479 

powder with a mortar and pestle using liquid nitrogen to ensure samples 480 

remained frozen.  481 

RNA extraction was carried out using TRIzol (Thermo Fisher Science, 482 

Waltham, MA, USA) following manufacturer guidelines. Following RNA re-483 

suspension, contaminating DNA was removed using the TURBO DNA-free kit 484 

(Ambion, Thermo Fisher Science, Waltham, MA, USA) and the RNA was 485 

checked for integrity by separating 2 μL of each sample on a 2% agarose gel. 486 

RNA samples were quantified using a Nanodrop (Thermo Fisher Science, 487 

Waltham, MA, USA) and stored at -80⁰C.  488 

 489 

 490 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/230359doi: bioRxiv preprint 

https://doi.org/10.1101/230359


 24

Library preparation and sequencing – Illumina  491 

Each RNA sample from V. dahliae strain JR2 grown in PDB, half-strength MS, 492 

and xylem sap was used to construct an Illumina sequencing library for RNA-493 

sequencing by the Beijing Genomics Institute (BGI) following manufacturer 494 

guidelines (Illumina Inc., San Diego, CA, USA). Briefly, messenger RNA (mRNA) 495 

was enriched using oligo(dT) magnetic beads. The RNA was then fragmented 496 

and double stranded cDNA synthesized following manufacturer guidelines 497 

(Illumina Inc., San Diego, CA, USA). The fragments were then end-repaired and 498 

poly-adenylated to allow for the addition of sequencing adapters, followed by 499 

fragment enrichment using polymerase chain reaction (PCR) amplification. 500 

Library quality was assessed using the Agilent 2100 Bioanalyzer (Agilent 501 

Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an 502 

Illumina HiSeq-2000 (Illumina Inc., San Diego, CA, USA) at the Beijing Genomics 503 

Institute.  504 

 505 

cDNA synthesis and normalization, library preparation and sequencing – 506 

Oxford Nanopore Technologies 507 

For the synthesis of single-stranded cDNA, 1 μg of each RNA sample was 508 

reverse-transcribed using the Mint-2 cDNA synthesis kit as described by the 509 

manufacturer (Evrogen, Moscow, Russia), using the primers PlugOligo-1 (5’ end) 510 

and CDS-1 (3’ end). For each sample, 1 μl of cDNA was amplified with PCR for 511 

15 cycles (95ºC for 15 seconds, 66ºC for 20 seconds and 72ºC for 3 minutes) to 512 
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generate double-stranded cDNA, and purified with 1.8x volume Agencourt 513 

AMPure XP magnetic beads (Beckman Coulter Inc., Indianapolis, IN, USA).  514 

Three cDNA samples were normalized with the Trimmer-2 cDNA 515 

normalization kit following the manufacturer’s guidelines (Evrogen, Moscow, 516 

Russia). The cDNA was precipitated, denatured and hybridized for 5 hours. Next, 517 

the double stranded cDNA fraction was cleaved and the remaining single 518 

stranded cDNA amplified with PCR for 18 cycles (95ºC for 15 seconds, 66ºC for 519 

20 seconds and 72ºC for 3 minutes).  520 

Library preparation for the three samples was performed using the 521 

Nanopore Sequencing Kit (v. SQK-MAP006) following the manufacturer’s 522 

guidelines (Oxford Nanopore Technologies [ONT], Oxford, UK). The cDNA was 523 

end-repaired and dA-tailed using the NEBNext End Repair and NEBNext dA-524 

Tailing Modules following the manufacturer’s instructions (New England BioLabs 525 

[NEB], Ipswich, MA, USA). The reactions were cleaned using an equal volume of 526 

Agencourt AMPure XP magnetic beads (Beckman Coulter Inc., Indianapolis, IN, 527 

USA), followed by ONT adapter ligation using Blunt/TA ligation Master Mix (NEB, 528 

Ipswich, MA, USA). The adapter-ligated fragments were purified using 529 

Dynabeads MyOne Streptavidin C1 (Thermo Fisher Science, Waltham, MA, 530 

USA). 531 

Sequencing was performed on three different MinION flow cells (v. FLO-532 

MAP103, ONT, Oxford, UK). After priming the flow cells with sequencing buffer, 6 533 

μl of the library preparation was added. Additional library preparation (6 μl) was 534 

added to the flow cells at 3, 17 and 24 hours after the run was started. Base-535 
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calling was performed using the Metrichor app (v. 2.39.1, ONT, Oxford, UK) and 536 

Poretools (v. 0.5.1) was used to generate FASTQ files from the Metrichor 537 

produced FAST5 files [50]. 538 

 539 

Software in LoReAn pipeline 540 

LoReAn is implemented in Python3. Usage and parameters to run LoReAn, 541 

including default settings are detailed at 542 

https://github.com/lfaino/LoReAn/blob/master/OPTIONS.md. Mandatory 543 

parameters are protein sequences of related organisms, a reference genome 544 

sequence and an identification name for the species form the Augustus 545 

database. Other inputs are: short-reads (i.e. Illumina RNA-seq) which may be 546 

single or paired-end; and long-reads from either MinION or SMRT sequencing 547 

platforms. LoReAn outputs a GFF3 file with genome annotations. 548 

The most convenient way to install and run LoReAn is by using the Docker 549 

(https://www.docker.com/) image. Information about the software and how to use 550 

it can be found at https://github.com/lfaino/LoReAn repository. LoReAn uses the 551 

following programs and versions: for read mapping, STAR (version 2.5.3a) [51] 552 

and GMAP (v. 2017-06-20) [33]; to assemble and reconstruct transcripts from 553 

short reads, Trinity (v. 2.2.0) [32] ran on “genome-guided mode”, followed by 554 

PASA (v. 2.1.0) [20]; to map protein sequences, AAT is utilized (v. 03-05-2011) 555 

[52]; for gene prediction GeneMark-ES  (v4.34) [53] and Augustus (v3.3) [31] are 556 

used as ab initio software; BRAKER1 (v. 2) [10] is used in substitution of 557 

Augustus to generate ab initio gene prediction for organism not present in the 558 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/230359doi: bioRxiv preprint 

https://doi.org/10.1101/230359


 27

Augustus catalogue when RNA-seq is supplied; GMAP (v. 2017-06-20) [33] is 559 

used for long reads mapping and for assembled ESTs after Trinity assembly; 560 

Evidence Modeler (EVM, v. 1.1.1) [20] is used to combine the output from the 561 

previous tools to generate a combined annotation model. To extract the genomic 562 

sequence, merge and cluster the long-reads, Bedtools suite (v. 2.21.0) [54] is 563 

used. iAssembler (v. 1.32) [55] calls a consensus on the clusters (i.e. the process 564 

of transcript reconstruction). GenomeTools (v. 1.5.9) software is used at several 565 

stages in the LoReAn pipeline [56]. Additional informations about the tools used 566 

can be found at https://github.com/lfaino/LoReAn/blob/master/README.md. 567 

 568 

Genome Masking 569 

To study the effect of genome masking on automated genome annotation with 570 

LoReAn, we ran the pipeline on stranded mode using three reference genomes 571 

with different levels of repetition masking: a fully masked genome with all 572 

repetitive sequences masked, a partially masked genome where only repetitions 573 

larger than 400 base pairs (bps) were masked and a full genome with no 574 

repetition masking. Repeats were masked using RepeatMasker software as 575 

previously described [57]. 576 

 577 

LoReAn Stranded Mode 578 

To use the software in strand mode efficiently, sequences from the same 579 

transcript need to have the same strand. However, sequencing is random and, 580 

depending from which fragment and sequencing starts, we can have fragments 581 
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from the same transcript sequenced in forward or reverse orientation compared 582 

to the transcription direction. Unlike DNA sequencing, in cDNA long-read 583 

sequencing, the direction of the sequencing can be inferred by localizing only 584 

one between the 3’ adapter or the 5’ adapter used during the cDNA production or 585 

localizing both. Using the Smith-Waterman alignment, we can identify the 586 

location of the adapter/s in the sequenced fragments and adjust the sequencing 587 

orientation based on the adapter alignment onto the fragments. For the MinION 588 

data we generated, we used the 5’ PlugOligo-1 589 

AAGCAGTGGTATCAACGCAGAGTACGCGGG and 3’-CDS 590 

AAGCAGTGGTATCAACGCAGAGTACTGGAG primer sequences associated 591 

with the cDNA synthesis and normalization process to identify the coding strand 592 

for each long read. For PacBio Arabidopsis thaliana experiment, we used the 593 

primers AAGCAGTGGTATCAACGCAGAGTACGCGGG and the primer 594 

AAGCAGTGGTATCAACGCAGAGTACTTTTT for the correction of the transcript 595 

orientation. Oryza sativa and Plicaturopsis crispa PacBio transcripts were 596 

oriented by using the sequence 597 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAGTACTCTGCGTTGATACCACTGCTT598 

. 599 

 600 

 601 

Annotation quality definitions 602 

We utilized the common metrics sensitivity, specificity and accuracy to compare 603 

the annotation features. These metrics have been previously discussed in the 604 
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context of annotations [7]. Briefly, Sensitivity is a measure of how well an 605 

annotation identifies the known features of a reference, also called a true positive 606 

rate. For our comparisons, sensitivity can be represented as [(Annotation 607 

matching reference / total Reference) * 100] for a specific feature of interest and 608 

represents the percentage of known reference features captured. Specificity is a 609 

measure of how many of the annotated features are in the reference, also called 610 

positive predictive value. For our comparisons, specificity can be represented as 611 

the [(Annotation matching reference / total Annotation) * 100] for a specific 612 

feature of interest and represents the percentage of all the annotation features 613 

that match the reference. These comparisons can be for any annotation feature 614 

such as genes, transcripts, or individual exons for exact matches or for a 615 

specified overlap to a reference. Accuracy takes both sensitivity and specificity 616 

into account and can be represented as [(Sensitivity + Specificity) / 2].  617 

 618 

Head to head comparisons between annotations 619 

To determine the unique protein coding genes annotated between LoReAn-sF, 620 

BAP-F, MAKER2 and CodingQuarry we compared the annotations using 621 

orthoMCL [40]. OrthoMCL was downloaded from 622 

https://github.com/apetkau/orthomcl-pipeline and run using default settings. 623 

 624 

Intron analysis 625 

Introns were extracted from mapped reads using the same methodology from 626 

BRAKER1 [10]. Introns supported from at least two reads were extracted and 627 
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used in the intron set. Genome tool software [56] was used to annotate introns in 628 

the gff3 file. Custom scripts were used to identify exact match intron coordinates 629 

from the annotation files were overlapped to the intron coordinates from the 630 

RNA-seq data. Sensitivity, specificity and accuracy were calculated as described 631 

before. 632 

 633 

Ave1 isoform analysis 634 

Ave1 isoforms were confirmed using cDNA-PCR of infected plant material with V. 635 

dahliae strain JR2. Specific primer for the Ave1 gene (F- 636 

TTTAACACTTCACTCTGCTCTCG; R-CCTTGTGTGCTGCTTTGGTA ) and for 637 

Ave1c gene (F-CGCCGGCAATACTATCTCAA; R-638 

ATCCTGTGGGCAACAATAGC) were used to identify the two Ave1 isoforms. 639 

The two forward primers were used to confirm a genomic amplification product, 640 

but to disprove a cDNA fusion.  641 

 642 
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available at https://github.com/lfaino/LoReAn. The software can run on all 651 

platforms when deployed via Docker (https://www.docker.com/). 652 

The V. dahliae strain JR2 reference annotation version 5 was used in the 653 

analysis. The version 5 was generated by comparing the concordance of all gene 654 

models of version 4 with the long reads information. Subsequently, the improved 655 

version 5 was deposited at ENSEMBL fungi database and can be downloaded at 656 

http://fungi.ensembl.org/Verticillium_dahliaejr2/Info/Index.  657 

The P. crispa reference genome and annotation were downloaded from JGI 658 

(http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism=Plicr659 

1). The Arabidopsis genome sequence and reference annotation were 660 

downloaded from the TAIR database 661 

(ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes/; 662 

https://www.arabidopsis.org/download_files/Genes/TAIR10_genome_release/TAI663 

R10_gff3/TAIR10_GFF3_genes.gff). The rice genome sequence and annotation 664 

were retrieved from the ENSEMBL plant database 665 

(http://plants.ensembl.org/Oryza_sativa/Info/Index). The sequencing data are 666 

accessible at the NCBI SRA database. The short-read A. thaliana data set is 667 

deposited under SRA accession number SRR5446746 and the PacBio dataset 668 

under SRA accession number SRR5445910. The V. dahliae Illumina 669 

transcriptome is deposited under accession number SRR5440696 while the 670 

Nanopore transcriptome data is deposited as SRR5445874. The P. crispa 671 

PacBio reads were downloaded from the publicly accessible NCBI SRA site, runs 672 

SRR5077068 to SRR5077144 and Illumina data from run SRR1577770. The O. 673 
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sativa data were downloaded from the European Nucleotide Archive (ENA) under 674 

runs ERR91110 and ERR911111 and the Illumina data from run ERR748773.   675 

All genome annotations, scripts and additional files generated and/or analyzed in 676 

the paper can be found at https://github.com/lfaino/files-paper-LoReAn.git. 677 

A dataset to test the correct installation of the tool can be found at 678 

https://github.com/lfaino/LoReAn_Example.git. This dataset contains all the data 679 

to annotate a single chromosome of V. dahliae strain JR2. 680 
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 705 

Figure Legends 706 

Fig. 1 Schematic overview of the LoReAn pipeline and clustered transcript 707 

reconstruction 708 

a Illustration of the computational workflow for the LoReAn pipeline. Grey boxes 709 

represent input data and each white box represents a step in the annotation 710 

process with mention of the specific software. The boxes connected by blue 711 

arrows integrate the steps from the previously described BAP [20]. The LoReAn 712 

pipeline (boxes connected by red arrows) integrates the BAP workflow, but 713 

additionally incorporates long-read sequencing data. The orange box, ‘Final BAP 714 

annotation’ represents the annotation results from the BAP pipeline used for 715 

comparison in this study. Dashed arrows represent optional steps for the 716 

pipeline. b Illustration of the clustered transcript reconstruction. Gene models are 717 

depicted as exons (boxes) and connecting introns (lines). Blue models represent 718 

BAP annotations, while red models represent hypothetical long-reads mapped to 719 
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the genome. Orange models represent consensus annotations reported in the 720 

final LoReAn output. Various scenarios can occur: i: High confidence predictions 721 

from the BAP are kept regardless of whether they are supported by long-reads. ii 722 

& iii: Clusters of mapped long-reads are used to generate a consensus prediction 723 

model, unless the model is supported by less than a user-defined minimum 724 

depth. iv: Overlapping BAP and mapped long-reads are combined to a 725 

consensus model. v: Two annotations are reported if no consensus can be 726 

reached for the BAP and clustered long-read data. 727 

 728 

Fig. 2 Annotation quality summary for exact match genes to the reference. a 729 

Each horizontal bar represents an annotation output, and each colored dot 730 

represents the sensitivity (green), specificity (purple) and accuracy (red). The 731 

annotations are labelled using the left grid table, where the group of horizontal 732 

black dots defines the parameters used in the annotation. Possible parameters 733 

include using the LoReAn, BAP or BAP+ pipeline, stranded mode for LoReAn 734 

(Stranded), the fungus option for GeneMark-ES (Fungus), or the BRAKER1 735 

program for Augustus (BRAKER1). Each set of 16 annotations are grouped by 736 

the level of reference masking, Partially Masked, Non-Masked or Fully Masked 737 

(right label). The results from additionally tested annotation pipelines are shown 738 

at the bottom. The four annotations highlighted with a yellow horizontal bar were 739 

used for subsequent analysis. b Sensitivity and specificity for exact match genes 740 

and exons for the best annotations highlighted in yellow in a. For the sensitivity 741 

column, the number N represents the number of reference features, and the 742 
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green sector of the pie chart shows the sensitivity. For example, the top 743 

sensitivity chart indicates that the LoReAn-sF pipeline annotated 57.5% (6,546) 744 

of the reference annotations 11,385 genes with exact feature matches. 745 

 746 

Fig. 3 Comparison of the unique genes annotated from each of the four pipelines  747 

a  To directly compare the annotation output from the four pipelines against each 748 

other, we identified the number of exact match genes across the four 749 

annotations. The Venn diagram shows that 4,646 genes were annotated with the 750 

exact same features across all four pipelines. The numbers captured by only a 751 

single annotation pipeline are considered singletons- genes whose structure is 752 

uniquely annotated by a given pipeline. Note, these singletons do not necessarily 753 

represent unique loci. b The percent length of each gene model covered by 754 

RNA-sequencing data is shown as a bar chart for each annotation pipeline. Each 755 

box plot represents the standard interquartile ranges and each dot represents a 756 

data point. An ANOVA was calculated for each metric, such as singleton 757 

coverage ~ pipeline, and post-hoc tested using Tukey Honestly Significant 758 

Difference (HSD) with alpha = 0.05. Letters shown above each box plot 759 

represents the HSD groupings. c Same as in b except the lengths of each 760 

predicted model were analyzed as log2 values. d The orthoMCL singletons from 761 

each pipeline were grouped into one of four categories shown in the key 762 

representing if the singleton contained an intron or not and if the singleton’s 763 

length was covered by over 75% with RNA-seq data. The number of singletons 764 

within each of the four categories is shown.  765 
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 766 

Fig. 4 LoReAn gene predictions are the most accurate based on analysis of 767 

intron location. The quality of 55 gene predictions using the V. dahliae genome 768 

were assessed using exact intron matches Sensitivity (y-axis) and specificity (x-769 

axis) were mapped, and the symbols represent their accuracy (average of 770 

sensitivity and specificity). The dashed black and red lines represent 70% and 771 

80% accuracy respectively. Individual predictions with an accuracy greater than 772 

75% or lower than 68%, along with the independent pipelines are labeled in 773 

colored boxes connected to their corresponding points with a grey line. The 774 

results of the V. dahliae JR2 strain annotation compared to the mapped introns is 775 

shown in black, labeled VDAG_Jr2_Annotation.v5. s – stranded; B – Braker1; F – 776 

Fungus option. 777 

 778 

Fig. 5 The LoReAn pipeline most accurately annotates a specific fungal locus 779 

encoding a strain specific gene. a Short-read RNA-seq data mapped to the locus 780 

are shown as a coverage plot (grey peaks) and as representative individual 781 

reads (yellow boxes). Long-reads from single-molecule cDNA data mapped to 782 

the locus are shown as a coverage plot (grey peaks) and representative reads 783 

(purple boxes). Think black lines linked mapped reads represent gaps in the 784 

mapped reads and are indicative of introns. The long-read data was split by 785 

mapping strand and coverage plots for forward (red) and reverse (blue) coverage 786 

plots. b Gene model predictions from the four annotation pipelines are illustrated. 787 

Light blue boxes represent untranslated regions (5’ and 3’ UTR), dark blue boxes 788 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/230359doi: bioRxiv preprint 

https://doi.org/10.1101/230359


 37

represent coding sequence boundaries, and thin black lines depict introns. 789 

Arrows in the introns indicate the direction of transcription. The MAKER2 and 790 

BAP pipelines predict a single transcript coded on the reverse strand at the 3’ 791 

end of the known Ave1 transcript. Coding Quarry does not predict a gene at the 792 

locus. LoReAn predicts two transcripts corresponding to the Ave1 gene along 793 

with the similar transcript predicted by MAKER2 and BAP. The reference Ave1 794 

transcript is shown in grey. c To confirm the presence of an alternative splice site 795 

in the 5’UTR of the Ave1 transcript, 18 cDNA clones were randomly chosen and 796 

sequenced. Isoform 1 sequence is identical to the reference Ave1 sequence and 797 

was identified in 15 of the 18 clones. Isoform 2 has a 5 bp insertion in the 5’UTR 798 

resulting from an alternative exon splice site and was identified in 3 of the 18 799 

sequenced clones. The Ave1 reference sequence is shown from bases 71 800 

through 86. d The presence of Ave1 and the additional gene transcribed to the 3’ 801 

end of Ave1, termed Ave1close(Ave1c), was confirmed using PCR on gDNA and 802 

cDNA. PCR using gene specific primers, termed Ave1 fw + rev (pink arrows) or 803 

Ave1c for + rev (yellow arrows), shows that both genes are expressed in either 804 

potato dextrose broth (PDB) Czapek-dox (CPD) or half-strength Murashige-805 

Skoog (1/2MS) media. The inverse orientation of the two genes was confirmed 806 

using forward primers only, which amplified the entire locus resulting in a band of 807 

approximately 1,118 bp, but does not amplify product using cDNA as the 808 

template.  809 

 810 

 811 
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Fig. 6 LoReAn gene predictions improve the current P. crispa reference 812 

annotation.  813 

a Annotation quality metrics are shown for exact match genes, transcripts and 814 

exons labeled at the top of the respective plots. Each horizontal bar represents 815 

an annotation output, and each colored dot represents the sensitivity (green), 816 

specificity (purple) and accuracy (red). Each output is labeled on the right. 817 

LoR_NS_M - LoReAn non-stranded using masked input genome; LoR_NS – 818 

LoReAn non-stranded; LoR_S_M - LoReAn stranded using masked input 819 

genome; LoR_S - LoReAn stranded. b The quality of the annotation pipelines 820 

shown was assessed independent of a reference, using the exact match intron 821 

location between the gene predictions and those inferred from the short- and 822 

long-read mapping data. Sensitivity (y-axis) and specificity (x-axis) were mapped 823 

and the average represents their accuracy. The dashed black, red and green 824 

lines represent 70%, 80%, and 90% accuracy respectively. Abbreviations are the 825 

same as previously detailed. The result from the P. crispa reference annotation 826 

analysis is shown in black, labeled P. crispa_Annot. 827 

 828 

Fig. 7 High accuracy LoReAn genome annotations for two plant genomes.  829 

a, c   Annotation quality metrics are shown for exact match genes, transcripts 830 

and exons labeled at the top of the respective plots as detailed in figure 6. a, b 831 

Data for A. thaliana c, d Data for O. sativa b, d The quality of the annotation 832 

pipelines shown were assessed independent of a reference, using the exact 833 

match intron location between the gene predictions and those inferred from the 834 
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short- and long-read mapping data as detailed in figure 6. b The result from the 835 

A. thaliana reference annotation analysis is shown in black, labeled 836 

TAIR10_Annot. d The result from the O. sativa reference annotation analysis is 837 

shown in black, labeled O_sativa.IRGSP. 838 

 839 

Additional files 840 

Additional file 1: This file contains additional text and Figures S1-S5 841 

Additional file 2: This file contains Tables S1-S4 842 
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