4 Title: Synergistic binding of bHLH transcription factors to the promoter of the maize

Authors: Ana Rita Borba ${ }^{1,2}$, Tânia S. Serra ${ }^{1,2}$, Alicja Górska ${ }^{1,2}$, Paulo Gouveia ${ }^{1,2}$, André M. Cordeiro ${ }^{1,2}$, Ivan Reyna-Llorens ${ }^{3}$, Jana Knerovás ${ }^{3}$, Pedro M. Barros ${ }^{1}$, Isabel A. Abreu ${ }^{1,2}$, M. Margarida Oliveira ${ }^{1,2}$, Julian M. Hibberd ${ }^{*, 3}$, Nelson J.M. Saibo ${ }^{* 1,2}$

Author information

${ }^{1}$ Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal.
${ }^{2}$ Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal.
${ }^{3}$ Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK.
*Corresponding authors: email: jmh65@cam.ac.uk; saibo@itqb.unl.pt.

Abstract

C_{4} photosynthesis has evolved repeatedly from the ancestral C_{3} state to generate a carbon concentrating mechanism that increases photosynthetic efficiency. This specialised form of photosynthesis is particularly common in the PACMAD clade of grasses, and is used by many of the world's most productive crops. The C_{4} cycle is accomplished through cell-type specific accumulation of enzymes but cis-elements and transcription factors controlling C_{4} photosynthesis remain largely unknown. Using the NADP-Malic Enzyme (NADP-ME) gene as a model we aimed to better understand molecular mechanisms associated with the evolution of C_{4} photosynthesis. Two basic Helix-Loop-Helix (bHLH) transcription factors, ZmbHLH128 and ZmbHLH129, were shown to bind the C_{4} NADP-ME promoter from maize. These proteins form heterodimers and ZmbHLH129 impairs trans-activation by ZmbHLH128. Electrophoretic mobility shift assays indicate that a pair of cis-elements separated by a seven base pair spacer synergistically bind either ZmbHLH128 or ZmbHLH129. This pair of cis-elements is found in both C_{3} and C_{4} species of the PACMAD clade. Our analysis is consistent with this cis-element pair originating from a single motif present in the ancestral C_{3} state. We conclude that C_{4} photosynthesis has co-opted an ancient C_{3} regulatory code built on G-box recognition by bHLH to regulate the NADP-ME gene. More broadly, our findings also contribute to the understanding of gene regulatory networks controlling C_{4} photosynthesis.

Key words: basic Helix-Loop-Helix, cis-element evolution, C_{3} and C_{4} photosynthesis, NADP-Malic Enzyme, PACMAD grasses.

Introduction

C_{3} plants inherited a carbon fixation system developed by photosynthetic bacteria, with atmospheric carbon dioxide $\left(\mathrm{CO}_{2}\right)$ being incorporated into ribulose-1,5bisphosphate (RuBP) by the enzyme Ribulose Bisphosphate Carboxylase/Oxygenase (RuBisCO) to form the three-carbon compound (C_{3}) 3-phosphoglycerate (Calvin and Massini 1952). However, RuBisCO can also catalyse oxygenation of RuBP, which leads to the production of 2-phosphoglycolate, a compound that is toxic to the plant cell and needs to be detoxified through an energetically wasteful process called photorespiration (Bowes et al. 1971; Sharkey 1988; Sage 2004). The oxygenase reaction of RuBisCO becomes more common as temperature increases and so in C_{3} plants photorespiration can reduce photosynthetic output by up to 30\% (Ehleringer and Monson 1993). In environments such as the tropics where rates of photorespiration are high, C_{4} photosynthesis has evolved repeatedly from the ancestral C_{3} state (Lloyd and Farquhar 1994; Osborne and Beerling 2006). Phylogenetic studies estimate that the first transition from C_{3} to C_{4} occurred around 30 million years ago (MYA) (Christin et al. 2008; Vicentini et al. 2008; Christin et al. 2011). The ability of the C_{4} cycle to concentrate CO_{2} around RuBisCO limits oxygenation and so increases photosynthetic efficiency in conditions where photorespiration is enhanced (Hatch and Slack 1966; Maier et al. 2011; Christin and Osborne 2014; Lundgren and Christin 2016).

The evolution of C_{4} photosynthesis involved multiple modifications to leaf anatomy and biochemistry (Hatch 1987; Sage 2004). In most C ${ }_{4}$ plants, photosynthetic reactions are partitioned between two distinct cell types known as mesophyll (M) and bundle sheath (BS) cells (Langdale 2011). M and BS cells are arranged in concentric circles around veins in the so-called Kranz anatomy (Haberlandt 1904), which enables CO_{2} pumping from M to BS where RuBisCO is specifically located. Atmospheric CO_{2} is first converted to HCO_{3} by carbonic anhydrase (CA) and then combined with phosphoeno/pyruvate (PEP) by PEP-carboxylase (PEPC) to produce oxaloacetate in the M cells. This four-carbon acid $\left(\mathrm{C}_{4}\right)$ is subsequently converted into malate and/or aspartate that transport the fixed CO_{2} from M to BS cells (Kagawa and Hatch 1974; Hatch 1987). Three biochemical C_{4} subtypes are traditionally described based on the predominant type of C_{4} acid decarboxylase responsible for the CO_{2} release around RuBisCO in the BS: NADP-dependent Malic Enzyme (NADP-ME, e.g. Zea mays), NAD-dependent Malic Enzyme (NAD-ME, e.g. Gynandropsis gynandra formerly
designated Cleome gynandra) and phosphoenolpyruvate carboxykinase (PEPCK). However, recent reports suggest that only the NADP-ME and NAD-ME should be considered as distinct C_{4} subtypes, which in response to environmental cues may involve a supplementary PEPCK cycle (Williams et al. 2012; Y. Wang et al. 2014; Rao and Dixon 2016).

The recruitment of multiple genes into C_{4} photosynthesis involved both an increase in their transcript levels (Hibberd and Covshoff 2010) and also patterns of expression being modified from relatively constitutive in C_{3} species (Maurino et al. 1997; Penfield et al. 2004; Taylor et al. 2010; Brown et al. 2011; Maier et al. 2011) to M- or BS-specific in C_{4} plants (Hibberd and Covshoff 2010). Therefore, considerable efforts have been made to identify the transcription factors (TF) and the cis-elements they recognise that are responsible for this light-dependent and cell-specific gene expression (Hibberd and Covshoff 2010). Various studies suggest that different transcriptional regulatory mechanisms have been adopted during C_{3} to C_{4} evolution. One is the acquisition of novel cis-elements in C_{4} gene promoters that can be recognised by TFs already present in C_{3} plants (Matsuoka et al. 1994; Ku et al. 1999; Nomura et al. 2000), and a second possibility is the acquisition of novel or modified TFs responsible for the recruitment of genes into the C_{4} pathway through cis-elements that pre-exist in C_{3} plants (Patel et al. 2006; Brown et al. 2011; Kajala et al. 2012).

A small number of cis-elements found in different gene regions have been shown to be sufficient for the M - or BS-specific expression of C_{4} genes. For example, a 41 base pair (bp) Mesophyll Expression Module 1 (MEM1) cis-element was identified from the PEPC promoter of C_{4} Flaveria trinervia and shown to be necessary and sufficient for M cell-specific accumulation of PEPC transcripts in C_{4} Flaveria species (Gowik et al. 2004). A MEM1-like cis-element has also been found in the C_{4} carbonic anhydrase (CA3) promoter of Flaveria bidentis and shown to drive M cell-specific expression (Gowik et al. 2016). A second cis-element named MEM2 and consisting of 9 bp from untranslated regions has also been shown to be capable of directing M specificity in C_{4} G. gynandra (Kajala et al. 2012; Williams et al. 2016). Lastly, in the case of the NAD-ME gene from C_{4} G. gynandra a region from the coding sequence generates BS-specificity (Brown et al. 2011). In contrast to these insights into ciselements that control cell-specific expression in the C_{4} leaf, no TFs recognising these cis-elements have yet been identified.

To address this gap in our understanding, a bottom-up approach was initiated in attempt to identify TFs that regulate the important maize gene ZmC_{4}-NADP-ME (GRMZM2G085019) that encodes the Malic Enzyme responsible for releasing CO_{2} in the BS cells. Using Yeast One-Hybrid two maize TFs belonging to the superfamily of basic Helix-Loop-Helix (bHLH), ZmbHLH128 and ZmbHLH129, were identified and functionally characterized. In addition, these TFs bind two cis-elements synergistically. Analysis of the cis-elements in the NADP-ME promoters of BEP and PACMAD grass species indicated that this regulation is likely derived from an ancestral G-box that is present in C_{3} species.

Results

ZmbHLH128 and ZmbHLH129 homeologs bind FAR1/FHY3 Binding Site cis-

 elements in the ZmC_{4}-NADP-ME promoterTo identify TFs that interact with the ZmC_{4}-NADP-ME gene (GRMZM2G085019), we studied the promoter region comprising 1982 base pairs (bp) upstream of the translational start site. This region was divided into six overlapping fragments ranging from 235 to 482 bp in length (supplementary table S1) and used in Yeast One-Hybrid $(\mathrm{Y} 1 \mathrm{H})$. Each fragment was used to generate one yeast bait strain that was then used to screen a maize cDNA expression library. After screening at least 1.3 million colonies for each region of the promoter, two maize bHLH TFs known as ZmbHLH128 and ZmbHLH129 were identified. Both of these TFs bind the promoter between base pairs -389 and -154 in relation to the predicted translational start site of ZmC_{4}-NADP-ME (fig. 1A). These interactions were confirmed by re-transforming yeast bait strains harbouring each of the six sections of the promoter with cDNAs encoding ZmbHLH128 and ZmbHLH129. Consistent with the initial findings, ZmbHLH128 and ZmbHLH129 only activated expression of the HIS3 reporter when transformed into yeast containing fragment -389 to -154 bp upstream of $\mathrm{ZmC}_{4}-N A D P-M E$ (fig. $1 B$, supplementary fig. S1).

ZmbHLH128 and ZmbHLH129 possess a bHLH domain followed by a contiguous leucine zipper (ZIP) motif (fig. 1C). This bHLH domain is highly conserved between both ZmbHLHs and consists of 61 amino acids that can be separated into two functionally distinct regions. The first is a basic region located at the N-terminal end of the bHLH domain and is involved in DNA binding, and the second is a Helix-Loop-Helix region mediating dimerization towards the carboxy-terminus (fig. 1C) (Murre et al. 1989; Toledo-Ortiz et al. 2003). ZmbHLH128 and ZmbHLH129 share 91% amino acid identity (fig. 1C) and they are encoded by homeolog genes located in syntenic regions of maize chromosomes 4 and 5 (fig. 1D, supplementary table S2).

Although ZmbHLH128 and ZmbHLH129 both possess three amino acids involved in G-box binding (K9, E13, and R17) (Massari and Murre 2000; Li et al. 2006), this family of TFs has also been shown to bind to N-box (5'-CACGCG-3'), Nbox B (5'-CACNAG-3') and FBS (FAR1/FHY3 Binding Site, 5'-CACGCGC-3') motifs (Sasai et al. 1992; Ohsako et al. 1994; Fisher and Caudy 1998; Kim et al. 2016). Therefore, the ZmC_{4}-NADP-ME promoter was assessed for additional cis-elements to which ZmbHLH128 and ZmbHLH129 might bind. A total of eight such cis-elements
were found, consisting of two N-boxes B , two N -boxes, one G-box, two FBSs and one E-box (fig. 2A). Electrophoretic Mobility Shift Assays (EMSA) were used to test whether ZmbHLH128 and ZmbHLH129 were able to interact with each of these ciselements in vitro (fig. $2 B$ and C). Consistent with the Y1H findings, EMSA showed that recombinant Trx::ZmbHLH128 and Trx::ZmbHLH129 proteins caused an uplift of radiolabeled probes containing FBS cis-elements (probes 6, 7, and 6+7) (fig. 2C), positioned between nucleotides -389 and -154 in relation to the predicted translational start site (see fig. 1A). ZmbHLH128 also showed weak binding to probe 3 that contained a N -box cis-element that was not bound by ZmbHLH128 or ZmbHLH129 in Y 1 H (see fig. $1 B$), and signal intensity was similar to that observed from probe 7 (fig. $2 C$). It is possible that relatively weak binding to probe 7 is due to it being three nucleotides-shorter than the other probes (fig. 2B). Trx alone and OsPIF14 (a bHLH known to bind the N-box motif (Cordeiro et al. 2016)) were used as negative controls (fig. 2C). The two FBS motifs, in probe 6+7, are separated by a short 7 bp spacer sequence and are found in opposite orientations (fig. $2 B$). The increase in band intensities detected when both cis-elements were combined (fig. 2C) suggests that they may function synergistically. Overall, these data indicate that ZmbHLH128 and ZmbHLH129 target 21bp of DNA sequence (7bp FBS, 7bp spacer, and 7bp FBS).

ZmbHLH128 and ZmbHLH129 form both homo- and heterodimers and ZmbHLH129 impairs trans-activation by ZmbHLH128

Because ZmbHLH128 and ZmbHLH129 bind the FBS cis-elements in close proximity but also possess domains mediating protein dimerization, we next investigated whether these proteins form homo- and/or heterodimers. In vitro, the recombinant Trx::ZmbHLH128 and Trx::ZmbHLH129 proteins formed homodimers (fig. 3A). To confirm this interaction in vivo, as well as to test for heterodimerization, Bimolecular Fluorescence Complementation Assays (BiFC) in maize protoplasts were performed. Whilst negative controls produced no YFP fluorescence, ZmbHLH128 and ZmbHLH129 formed both homo- and heterodimers (fig. 3B). With the exception of ZmbHLH129 homodimers whose location extended to the cytoplasm and plasma membrane, in each case YFP signal was specifically localised to the nucleus (fig. $3 B$). Nuclear localisation of these ZmbHLH proteins supports their roles as transcriptional regulators.

To test the capacity of ZmbHLH128 and ZmbHLH129 to regulate transcription, transient expression assays were performed in leaves of Nicotiana benthamiana. The GUS reporter gene driven by the fragment of $p Z m C_{4}-N A D P-M E$ to which ZmbHLH128 and ZmbHLH129 bind was used as reporter, whilst the full-length ZmbHLH128 and ZmbHLH129 CDS sequences driven by the constitutive CaMV35S promoter were used as effectors (fig. 4A). Co-infiltration of this reporter with the ZmbHLH128 effector resulted in an increase in GUS activity, indicating that ZmbHLH128 can act as a transcriptional activator (fig. 4B). In contrast, ZmbHLH129 showed no intrinsic transactivation activity (fig. 4C). In order to test whether the ZmbHLH128-ZmbHLH129 heterodimers had a different trans-activation activity from ZmbHLH128 or ZmbHLH129 homodimers, leaves were co-infiltrated with the reporter and both effectors simultaneously. Interestingly, the trans-activation activity observed for the ZmbHLH128 alone (fig. 4B) was lost when this TF was co-expressed with its homeolog ZmbHLH129 (fig. 4D).

The G-box-based cis-element pair recognised by ZmbHLH128 and ZmbHLH129

 in NADP-ME promoters operates synergisticallyTo understand whether the two FBS cis-elements identified in the promoter of ZmC_{4}-NADP-ME (see fig. 2) are associated with the evolution of C_{4} photosynthesis, we investigated whether they are conserved in promoters of other NADP-MEs from C_{3} and C_{4} grass species. Three C_{3} species (Dichanthelium oligosanthes, Oryza sativa and Brachypodium distachyon) and three C_{4} species (Zea mays, Sorghum bicolor and Setaria italica) were assessed (fig. $5 A$). Within the C_{4} species, Zea mays and Sorghum bicolor possess two plastidic NADP-ME isoforms: one that is used in C_{4} photosynthesis (C_{4}-NADP-ME, GRMZM2G085019 and Sobic.003g036200) and a second one not involved in the C_{4} cycle (nonC4-NADP-ME, GRMZM2G122479 and Sobic.009g108700). In contrast, S. italica possesses only one plastidic NADP-ME isoform that is used in the C_{4} cycle ($\mathrm{C}_{4}-\mathrm{NADP}-\mathrm{ME}, \mathrm{Si000645}$) (Alvarez et al. 2013).

Although in $\mathrm{C}_{3} B$. distachyon no homologous cis-elements to the FBSs in the $Z^{2} C_{4}$-NADP-ME promoter were detected, in O. sativa one G-box was found in the same position as FBS 1 from Z. mays. Moreover, in the other promoters, cis-elements that can bind bHLH proteins were present in pairs (fig. $5 A$). In both the C_{3} and C_{4} grasses these cis-element pairs flank a spacer that is highly conserved in sequence and length (7 to 9 bp) (fig. $5 A$). The $\mathrm{C}_{4}-N A D P-M E$ promoters from Z. mays and S.
bicolor share a common mutation in the third nucleotide position of the alignment $(\mathrm{A} \rightarrow \mathrm{G})$ (fig. $5 A$). Two additional mutations are specific to Z. mays (the first and last nucleotides of FBS 1 and FBS 2, respectively), whilst one is S. bicolor-specific ($C \rightarrow T$ at the fourth position) (fig. $5 A$). It is possible that mutations unique to Z. mays or S. bicolor are neutral and the main impact on $\mathrm{C}_{4}-$ NADP-ME gene expression is due to mutation in the third nucleotide in the common ancestor of Z. mays and S. bicolor. Alternatively, it is also possible that both this mutation in the last common ancestor and species-specific modifications impacted on gene expression of $\mathrm{C}_{4}-N A D P-M E$.

To test if ZmbHLH128 and ZmbHLH129 bind the cis-elements identified from these additional species EMSA was performed on each cis-element separately as well as the cis-element pairs found in each NADP-ME promoter (fig. $5 B$ and C, supplementary table S3). ZmbHLH128 and ZmbHLH129 showed low binding affinity for the single G-box identified in the O. sativa promoter (probe 13) and binding affinity was not increased by mutating the G-box to a canonical N -box (probe m13) (fig. $5 B$ and C). This low binding affinity behaviour for single G-box cis-elements was consistent for all the NADP-ME promoters containing G-boxes (probes 5, 7, 9 and 11) (fig. $5 B$ and C). Although both ZmbHLHs did not show binding affinity for the additional N -boxes or N -box-like alone (probes 6, 8, 10 and 12) (fig. $5 B$ and C), when these additional motifs were acquired and formed a pair with the ancestral G-box, binding affinity was increased (probes 5+6, 7+8, $9+10$ and 11+12) and led to an increased uplift compared with the G-boxes alone (probes $5,7,9$ and 11) (fig. $5 B$ and C). Given the similar length of probes $1,2,1+2,5,7,9$ and 11 (24 to 30 bp) (supplementary table S3), it is possible that this difference in migration of ZmbHLH -probe complexes results from the binding of bHLH to G-boxes in a lower oligomeric state (supplementary fig. S2), which based on the literature must be dimers (De Masi et al. 2011). Strong binding of cis-element pairs was also observed when the ancestral Gbox evolved into either FBS or FeRE1 elements found in C_{4} Z. mays and S. bicolor (probes $1+2$ and $3+4$) (fig. $5 B$ and C). In the $C_{4} Z$. mays promoter, both $Z m b H L H s$ showed binding affinity for single FBS cis-elements (probes 1 and 2) in the highest oligomeric state (fig. $5 B$ and C, supplementary fig. S2).

Since ZmbHLH128 and ZmbHLH129 showed weak binding to single ciselements, we tested their binding by mutating these cis-elements in probes with the pairs (supplementary fig. S3). For each pair, three mutant probes were designed: two in which the two cis-elements were mutated individually (keeping one cis-element wild-
type) and one in which both cis-elements were mutated simultaneously (supplementary table S3). Competition experiments were performed using radiolabeled wild-type probes (with cis-element pairs) and 200- to 400-fold excess of unlabeled wild-type and mutant probes (supplementary fig. S3). Binding of both ZmbHLHs to the labeled wild-type probes could be efficiently out-competed by unlabeled wild-type and mutant probes in which the following cis-elements were not mutated: FBS 1 (in Z. mays $\mathrm{C}_{4}-N A D P-M E$, probe $1+\mathrm{m} 2-\mathrm{A}$, supplementary fig. $\mathrm{S} 3 A$); FBS 2 (in Z. mays $\mathrm{C}_{4}-N A D P-M E$, probe m1+2-B, supplementary fig. S3A); N -box (in S. bicolor $\mathrm{C}_{4}-$ NADP-ME, probe m3+4-E, supplementary fig. $\mathrm{S} 3 B$); and G-box (in S . italica $\mathrm{C}_{4}-N A D P-M E$, probe $5+\mathrm{m} 6-\mathrm{G}$, supplementary fig. $\mathrm{S} 3 C$; Z. mays non $\mathrm{C}_{4}-N A D P-$ $M E$, probe $7+\mathrm{m} 8-\mathrm{J}$, supplementary fig. S3D; S. bicolor non $\mathrm{C}_{4}-N A D P-M E$, probe $9+\mathrm{m} 10-\mathrm{M}$, supplementary fig. $\mathrm{S} 3 E$; and D. oligosanthes $\mathrm{C}_{3}-N A D P-M E$, probe $11+m 12-\mathrm{P}$, supplementary fig. S3F). These EMSA competition experiments thus confirmed binding of ZmbHLH128 and ZmbHLH129 to the cis-elements described above. Taken together, the results indicate that a second cis-element recognised by bHLH TFs is acquired in the promoters of genes encoding plastidic NADP-ME and that each cis-element pair operates synergistically to allow interaction with either ZmbHLH128 or ZmbHLH129 in C_{3} and C_{4} grasses (fig. 5, supplementary fig. S 2 and S3).

Given the binding affinity in vitro of ZmbHLH128 and ZmbHLH129 to the G-box in the $\mathrm{ZmnonC}_{4}-N A D P-M E$ promoter (probes 7 and $7+8$, fig. $5 C$), we tested their binding ability in planta. Transient expression assays were performed in leaves of N. benthamiana co-infiltrated with GUS reporter gene driven by a ZmnonC $_{4}$-NADP-ME promoter fragment containing the cis-element pair G- and N-box-like (-368 to -143 bp) and the effector constructs ZmbHLH128 and ZmbHLH129 (supplementary fig. S4A). Compared with the reporter alone, co-infiltration of $\mathrm{Zmnon}_{4}-N A D P-M E$ reporter and the ZmbHLH128 and ZmbHLH129 effectors did not impact on GUS activity in tobacco system (supplementary fig. S4B-D). These results suggest that although ZmbHLH128 on its own binds both the $\mathrm{ZmC}_{4}-N A D P-M E$ and $\mathrm{Zmnon}_{4}-N A D P-M E$ promoters in vitro (probes 1, 2, 1+2, 7 and $7+8$, fig. $5 B$ and C), this might not be the case in planta (supplementary fig. S4).

Acquisition of N -box-derived cis-elements in NADP-ME promoters facilitates ZmbHLH128 and ZmbHLH129 binding in PACMAD grasses

Phylogenetic analysis of the genes encoding C_{3} and C_{4} plastidic NADP-MEs reflects previously reported grass species phylogeny (fig.6A) (Grass Phylogeny Working Group II 2012). It inferred two main clades: one formed by C_{3} BEP species (B. distachyon and O. sativa) and a second formed by C_{3} (D. oligosanthes) and C_{4} PACMAD species (S. italica, S. bicolor and Z. mays) (fig.6A).

Based on the observed nucleotide modifications in cis-elements recognised by bHLH TFs, we propose a model relating to the recruitment of NADP-ME into C_{4} photosynthesis in grasses (fig. 6B). This proposes that an ancestral G-box found in the NADP-ME promoter from C_{3} BEP O. sativa was conserved throughout C_{3} to C_{4} evolution and is shared by different C_{3} and C_{4} grass lineages. However, in the PACMAD group a second cis-element recognised by bHLH was acquired such that the NADP-ME gene from the C_{3} species D. oligosanthes and genes encoding non C_{4} -NADP-ME from C_{4} S. bicolor and Z. mays all contain a G- and N-box/N-box-like pair. In C_{4} S. italica this cis-code has been retained in the $\mathrm{C}_{4}-N A D P-M E$, but in S. bicolor and Z. mays the original G-box has evolved to become either a FeRE1 or a FBS element, respectively (fig. 6B). Overall, these results suggest that the acquisition of N -box-derived cis-elements may have facilitated ZmbHLH128 and ZmbHLH129 binding to promoters of genes encoding plastidic NADP-ME in the PACMAD clade.

Discussion

ZmbHLH128 and ZmbHLH129 homeologs interact with maize $\mathrm{C}_{4}{ }^{-}$and nonC \mathbf{C}_{4} -

 NADP-ME promoters in vitro showing different trans-activation activity in plantaIn this study, we showed that ZmbHLH 128 and ZmbHLH129 form a maize homeolog pair resulting from the recent maize whole genome duplication (WGD) event that occurred 5-12 million years ago. This WGD occurred ~ 25 million years after C_{4} photosynthesis evolved in the Chloridoideae subfamily of the PACMAD clade (Christin et al. 2008; Christin et al. 2011). As the length of exons 1 and 2 and the total number of amino acids in the mature protein of ZmbHLH 128 are more similar to sorghum ortholog SbbHLH66 (supplementary fig. S5), we propose that ZmbHLH129 has diverged more from the ancestral gene. Both of these TFs bind two FBS cis-elements that are in close proximity in the maize $\mathrm{C}_{4}-$ NADP-ME (GRMZM2G085019) promoter. Although ZmbHLH128 has been predicted in silico to regulate C_{4} photosynthesis (L. Wang et al. 2014), as far as we are aware, this is the first report of its functional characterization. ZmbHLH 128 alone activates $\mathrm{ZmC}_{4}-N A D P-M E$ gene expression, whilst ZmbHLH129 alone shows no trans-activation activity on this promoter. As the duplication event that generated ZmbHLH 129 took place after the evolution of C_{4} photosynthesis, it seems possible that this gene is not required for C_{4} photosynthesis. ZmbHLH128 and ZmbHLH129 form heterodimers and despite ZmbHLH128 activating the expression of ZmC_{4}-NADP-ME its regulatory activity is impaired by its homeolog ZmbHLH129. To explain this impairment, we hypothesise different scenarios that may occur in vivo: either ZmbHLH128 and ZmbHLH129 act as heterodimers and ZmbHLH128 loses its DNA binding activity when combined with ZmbHLH129 or they act as homodimers and compete directly for the same FBSs, towards which ZmbHLH129 has a higher binding affinity. The former scenario has been described for bZIP TFs from Arabidopsis, where bZIP63 has negative effects on the formation of bZIP1-DNA complexes probably due to conformational differences between bZIP1 homodimer and bZIP1-bZIP63 heterodimers (Kang et al. 2010). The latter scenario has been reported for the maize Dof1 and Dof2 TFs. Dof1 is a transcriptional activator of light-regulated genes in leaves, however, in stems and roots, this TF is not able to regulate those genes since the repressor Dof2 is expressed there and blocks Dofspecific cis-elements (Yanagisawa and Sheen 1998).

In addition to the capacity of ZmbHLH128 and ZmbHLH129 to interact with FBSs found in the maize C_{4}-NADP-ME promoter, both ZmbHLHs were shown to bind in vitro
to the promoter of maize nonC C $_{4}-$ NADP-ME (GRMZM2G122479) that possesses the cis-element pair G- and N-box-like. In planta, however, ZmbHLH128 and ZmbHLH129 showed no trans-activation activity on this promoter. It is well known that primary DNA sequence and its structural properties are determinants of DNA binding specificity in vivo (Rohs et al. 2009) and so it is possible that both ZmbHLHs display increased in vivo binding specificity for the FBS pair in the ZmC_{4}-NADP-ME promoter than for the G- and N-box-like pair in the Zmnon_{4}-NADP-ME promoter. Therefore, ZmbHLH128 seems to affect the level of expression of NADP-ME as it activates the $\mathrm{ZmC}_{4}-N A D P-$ ME promoter through the pair formed by two FBSs but the same trend was not observed for the $Z_{m n o n}{ }_{4}$-NADP-ME promoter with the G - and N -box pair. Additionally, we hypothesise that these modifications of promoter sequences may also affect light/circadian regulation of the $\mathrm{ZmC}_{4}-N A D P-M E$ gene as FBS cis-elements have been described in promoters of circadian-clock-regulated and light-responsive genes (Lin et al. 2007; Li et al. 2011; Kim et al. 2016). The mutation of two close FBSs in the promoter of the circadian-clock gene EARLY FLOWERING 4 (ELF4) proved to be sufficient to abolish its rhythmic expression (Li et al. 2011). More broadly, our findings also contribute to the understanding of gene regulatory networks controlling C_{4} photosynthesis.

The G-box-based cis-element pair present in NADP-ME promoters synergistically bind either ZmbHLH128 or ZmbHLH129

We identified a cis-element pair recognised by bHLH that occupy homologous positions in NADP-ME promoters from C_{3} and C_{4} grasses. These cis-elements flank a short spacer and operate synergistically to facilitate interaction with ZmbHLH128 and ZmbHLH129. We suggest a mechanism by which these TFs may be recruited to the cis-elements associated with C_{4} photosynthesis. We propose that one cis-element is sufficient to recruit a bHLH homodimer (G-box) or tetramer (N-box or FBS in promoters where the ancestral G-box is no longer present), however, the presence of a second cis-element in the vicinity increases bHLH binding affinity (supplementary fig. S2). It is possible that both cis-elements are brought together through the interaction with a bHLH tetramer formed by two dimers, which may involve DNA bending (supplementary fig. S2). Therefore, this cis-element pair could operate synergistically to confer stabilisation of bHLH binding. This mechanism of TF-DNA assembly has previously been proposed for MADS-domain TFs that can bind two nearby CArG
boxes through DNA looping and formation of tetrameric complexes (Theissen 2001; Theissen and Saedler 2001; Melzer and Verelst 2009; Smaczniak et al. 2012; Smaczniak et al. 2017). In this case, and consistent with our results, MADS-domain TFs were found to bind single CArG boxes either as dimers or tetramers, however, when their target gene promoters contain CArG box pairs they bind as tetramers (Smaczniak et al. 2012). It has been proposed that the probability of DNA loop formation increases with shorter distances between cis-elements due to the low elastic bending energy required to bring the protein dimers together (Agrawal et al. 2008). Interestingly, in all NADP-ME promoters assessed in this study except rice and Brachypodium the two cis-elements were found to be in close proximity, which may encourage DNA looping. In addition to the spacer length, its sequence appears highly conserved. This is consistent with evidence suggesting that nucleotides outside core cis-elements affect TF binding specificity by providing genomic context and influencing three-dimensional structure (Atchley et al. 1999; Martínez-Garcia et al. 2000; Grove et al. 2009; Gordân et al. 2013). For example, Cbf1 and Tye7 are yeast bHLHs that show preference for a subset of G-boxes present throughout the yeast genome (Gordân et al. 2013). These differences in binding preferences were observed not just in vivo but also in vitro and so DNA sequences flanking core G-boxes were found to explain this differential bHLH-G-box binding (Gordân et al. 2013).

The mechanism proposed here for how bHLH TFs interact with their target ciselements suggests that these DNA sequences are not randomly arranged in gene promoters and may affect how cis-element specificity is achieved. Indeed, in some promoters bound by bHLH TFs two or more cis-elements were found to be clustered. For example, two overlapping FBSs were reported in the 400 base pairs upstream of the translational start site of the gene encoding ELF4 (Li et al. 2011). Also, pairs of Gand N-boxes were found to be highly enriched in promoters targeted by the bHLH PIF1 (Kim et al. 2016). It is possible that multiple cis-elements serve to recruit additional TFs for in vivo cooperative binding.

C_{4} photosynthesis co-opted an ancient C_{3} cis-regulatory code built on G-box recognition by bHLH transcription factors

Finally, from this work we propose a model that summarises how molecular evolution of cis-elements recognised by bHLHs may relate to the recruitment of NADP$M E$ into C_{4} photosynthesis. C_{4} photosynthesis is an excellent example of convergent
evolution (Sage et al. 2011; Christin et al. 2013) as it has evolved independently over 60 times in angiosperms (Sage et al. 2011; Sage 2016) and at least 22 times in grasses (Grass Phylogeny Working Group II 2012). How this repeated evolution has come about is not fully understood. Our model contributes to our understanding of C_{4} evolution and is based on the following findings: first, in rice, which belongs to the BEP clade that contains no C_{4} species, only one copy of a G-box was present in the NADPME promoter. In contrast, cis-element pairs recognised by ZmbHLH128 and ZmbHLH129 in NADP-ME promoters seem to be common in the PACMAD clade that contains many independent C_{4} lineages. For example, in the PACMAD grasses a Gand N -box pair was identified in C_{3} D. oligosanthes (Do024386) and appears to be reasonably conserved in C_{4} species in this group. However, in the case of the C_{4} -NADP-MEs from S. bicolor and Z. mays (Sobic.003g036200 and GRMZM2G085019) these elements have diversified. Both of these grass species belong to the C_{4} lineage Andropogoneae in which the plastidic NADP-ME isoform that is used in C_{4} photosynthesis (C_{4}-NADP-ME) evolved by duplication from an ancestral plastidic NADP-ME that still exists and is not involved in the C_{4} cycle (nonC C_{4}-NADP-ME, Sobic.009g108700 and GRMZM2G122479) (Tausta et al. 2002; Maier et al. 2011; Alvarez et al. 2013). In contrast, C_{4} S. italica together with C_{3} D. oligosanthes belong to the grass lineage Paniceae in which only one plastidic NADP-ME isoform is known to exist (Si000645 and Do024386) (Alvarez et al. 2013; Emms et al. 2016). Surprisingly, the cis-element pair identified in the $\mathrm{C}_{4}-N A D P-M E$ promoter from S. italica (G- and N -box) was found to be closer to those occurring in the C_{3} and non C_{4} -NADP-ME promoters from D. oligosanthes, S. bicolor, and Z. mays (G- and N-box/N-box-like) than to those occurring in the $\mathrm{C}_{4}-N A D P-M E$ promoters from S . bicolor and Z. mays (FeRE1 and N-box or FBS and FBS, respectively). A similar trend has previously been observed (Alvarez et al. 2013) and may be explained by the independent evolutionary origin of C_{4} photosynthesis in grass lineages formed by S. italica (Paniceae) or S. bicolorlZ. mays (Andropogoneae).

Taken together, our findings suggest that an ancestral G-box in combination with N-box-derived cis-elements form the basis of the synergistic binding of either ZmbHLH128 or ZmbHLH129 to NADP-ME promoters from PACMAD grasses. Nucleotide diversity in cis-elements recognised by bHLH TFs has been suggested as one of the mechanisms by which these TFs are involved in complex and diverse transcriptional activity (Toledo-Ortiz et al. 2003). We, therefore, can not exclude the
possibility that the gene encoding the plastidic NADP-ME from C_{3} BEP Brachypodium distachyon (BRADI2g05620) can also be bound by ZmbHLH128 or ZmbHLH129 despite none of the typical cis-elements recognised by bHLH being identified in the promoter. Given recent evidence indicating that the bHLH TF family is often recruited into C_{4} photosynthesis regulation (Huang and Brutnell 2016), we suggest that the observed nucleotide modifications in the cis-element pair present in $\mathrm{C}_{4}-N A D P-M E$ promoters from S. bicolor and Z. mays may underlie changes in bHLH binding specificity in vivo and, therefore, contribute to the NADP-ME recruitment into C_{4} photosynthesis in the Andropogoneae lineage from the PACMAD clade. The presence of a bHLH duplicate (ZmbHLH 129) that seems not to be required for C_{4} photosynthesis and has evolved to repress the activity of its homeolog (ZmbHLH128) is unique to maize as this homeolog gene pair resulted from the maize WGD. Therefore, we hypothesise that the single orthologous bHLH in all the other PACMAD species activates $\mathrm{C}_{4}-N A D P-M E$ gene expression. This agrees with the hypothesis that C_{4} photosynthesis has on multiple occasions made use of cis-regulators found in C_{3} species and, therefore, that the recruitment of C_{4} genes was made through minor rewiring of pre-existing regulatory networks (Reyna-Llorens and Hibberd 2017). We conclude that regulation of C_{4} genes can be based on an ancient code founded on a G-box present in the BEP clade as well as the PACMADs. Acquisition of a second ciselement recognised by bHLH in the PACMAD clade appears to have facilitated synergistic binding by either ZmbHLH128 or ZmbHLH129. Although this G-box-based cis-code has remained similar in S. italica, it has diverged in maize and sorghum. Thus, different C_{4} grass lineages may employ slightly different molecular circuits to regulate orthologous C_{4} photosynthesis genes.

Materials and methods

Plant growth conditions and collection of leaf samples

To construct the cDNA expression library, maize plants (Zea mays L. var. B73) were grown at 16 h photoperiod with a light intensity of $340-350 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$, at day/night temperature of $28^{\circ} \mathrm{C} / 26^{\circ} \mathrm{C}$, and 70% relative humidity. Two light regimes were used: (1) nine days in 16h photoperiod; and (2) nine days in 16 h photoperiod followed by a 72 h dark treatment. In both experiments, sample collection was performed under 16h photoperiod. Third leaves grown in the former and latter light regimes were harvested respectively at time points covering the Zeitgeber times (ZT) $-0.5,0.5,2 \mathrm{~h}$, and ZT 1 , $2,4,8,12,15.5 \mathrm{~h}$. For isolation of maize mesophyll protoplasts, maize plants were grown for 10 days at $25^{\circ} \mathrm{C}, 16 \mathrm{~h}$ photoperiod ($60 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$), and 70% relative humidity. For transient expression assays in planta, Nicotiana benthamiana (tobacco) plants were grown for five weeks at $22^{\circ} \mathrm{C}, 16 \mathrm{~h}$ photoperiod ($350 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$), and 65% relative humidity. After agro-infiltration of tobacco leaves, plants were left to grow into the same growth conditions and leaf discs (2.5 cm in diameter) collected 96h postinfection.

Generation of yeast bait strains

Yeast bait strains were generated as previously described (Ouwerkerk and Meijer 2001; Serra et al. 2013). Yeast strain Y187 (Clontech) was used to generate six bait strains carrying overlapping fragments of the $\mathrm{ZmC}_{4}-N A D P-M E$ (GRMZM2G085019) promoter cloned into the yeast integrative vector pINT1-HIS3 (Ouwerkerk and Meijer 2001) as Notl-Spel or Xbal-Spel fragments (supplementary table S1). The ZmC_{4} -NADP-ME promoter region was defined as the 1982 bp upstream of the predicted translational start site (ATG). To assess self-activation/HIS3 leaky expression, yeast bait strains were titrated in complete minimal medium (CM) lacking histidine, with increasing concentrations of 3-amino-1,2,4-triazole (3-AT, up to 75 mM).

Construction of cDNA expression library

Total RNA was extracted from third leaves of maize seedlings using TRIzol reagent (Invitrogen), following the manufacturer's instructions. RNA samples from nine time points (described in 'plant growth conditions and collection of leaf samples') were pooled in equal amounts for mRNA purification using the PolyATract mRNA Isolation

System IV (Promega). A unidirectional cDNA expression library was prepared using the HybriZAP-2.1 XR cDNA Synthesis Kit and the HybriZAP-2.1 XR Library Construction Kit (Stratagene), following the manufacturer's instructions. Four micrograms of mRNA were used for first strand cDNA synthesis. After in vivo excision and amplification of the pAD-GAL4-2.1 phagemid vector, this maize cDNA expression library was used to transform yeast bait strains.

Yeast One-Hybrid (Y 1 H) screening and validation

Yeast bait strains were transformed with $1 \mu \mathrm{~g}$ of maize cDNA expression library according to Ouwerkerk and Meijer (2001) and Serra et al. (2013). At least, 1.3 million yeast colonies of each yeast bait strain transformed with the maize cDNA expression library were screened in CM -HIS -LEU supplemented with 3-AT: 5 mM (-1982 to $1524 \mathrm{bp}), 20 \mathrm{mM}$ (-389 to $-154 \mathrm{bp},-776$ to -334 bp) or $75 \mathrm{mM}(-973$ to $-702 \mathrm{bp},-1225$ to $-891 \mathrm{bp},-1617$ to $-1135 \mathrm{bp})$. Plasmids from yeast clones that actively grew on selective medium were extracted. To know whether the isolated clones encoded transcription factors (TFs), the cDNA insert was sequenced and the results analysed using BLAST programmes. To validate DNA-TF interactions in yeast, isolated plasmids encoding TFs were re-transformed into the yeast bait strain in which they were found to bind. To assess TF binding specificity, plasmids encoding TFs were also transformed into the yeast bait strains to which they do not bind.

Yeast cell spotting

Yeast bait strains transformed with plasmids encoding TFs were grown overnight until log or mid-log phase at $30^{\circ} \mathrm{C}$ in liquid yeast CM medium supplemented with Histidine (CM +HIS -LEU). Cultures were normalized to an OD_{600} of 0.4 , spotted onto solid medium CM + HIS -LEU or CM -HIS -LEU +3 -AT, and grown for 3 days at $30^{\circ} \mathrm{C}$.

Isolation and transformation of maize mesophyll protoplasts

Maize mesophyll protoplasts were isolated from 10-day-old maize greening plants and transformed according to Lourenço et al. (2013) with minor modifications. Mid-section of newly matured second leaves was digested in a cell wall digestive medium containing $1.5 \%(\mathrm{w} / \mathrm{v})$ cellulase R -10 (Duchefa), 0.3% (w / v) macerozyme R-10 (Duchefa), 10 mM MES (pH 5.7), 0.4 M mannitol, $1 \mathrm{mM} \mathrm{CaCl} 2,0.1 \%$ (w/v) BSA and 5
$\mathrm{mM} \beta$-mercaptoethanol. Several leaf blades were stacked and cut perpendicularly to the long axis into 0.5 to 1 mm slices and quickly transferred to digestive medium (25 mL digestive medium for each set of 10 leaf blades). Purity and integrity of isolated protoplasts were examined under light microscopy. Mesophyll protoplasts were quantified and its abundance adjusted to 2×10^{6} protoplasts $/ \mathrm{mL}$. Transformed protoplasts were resuspended in 1.25 mL of incubation solution (0.6 M mannitol, 4 mM MES (pH 5.7) and 4 mM KCl) and incubated in 24 -well plates for 18 h at room temperature under dark.

Bimolecular Fluorescence Complementation (BiFC) assay

To generate BiFC constructs, full-length coding sequences (CDS) of ZmbHLH 128 (GRMZM2G314882) and ZmbHLH129 (GRMZM5G856837) were PCR-amplified using respectively the following pairs of attB-containing primers: 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTNNATGATGAACTGCGCCGGA-3' / 5'-GGGGACCACTTTGTACAAGAAAGCTGGGTNCTAAGCATTAGGCGGCCAG-3',
and
5'-
GGGGACAAGTTTGTACAAAAAAGCAGGCTNNATGATGGACTGCGCTGGA-3' / 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTNCTAAGCATTTGGGGGCCAG-3'
(underlined sequences indicate attB Gateway adaptors). ZmbHLH128 and ZmbHLH129 CDS were recombined into pDONR221 (Invitrogen) to obtain Entry clones through BP-Gateway reaction (Invitrogen), following the manufacturer's instructions. CDS were then recombined into vectors YFP ${ }^{N} 43$ and YFP $^{C} 43$ through LR-Gateway reaction (Invitrogen) to raise a translational fusion with N - and C-terminal domains of yellow fluorescent protein (YFP), respectively. Final BiFC constructs were denominated as YFP ${ }^{N}:: Z m b H L H 128$, YFP $^{N}:: Z m b H L H 129$, YFP $^{\mathrm{C}}:: Z \mathrm{ZmbHLH} 128$, and YFP ${ }^{\text {C.: }} \mathrm{ZmbHLH} 129$. Maize mesophyll protoplasts were transformed with $6 \mu \mathrm{~g}$ of each of the BiFC constructs. Protoplasts transformed with YFP ${ }^{\text {N.:Akin10 (Arabidopsis SNF1 }}$ Kinase Homolog 10), YFP ${ }^{\text {C: }}$ Akin3 (Arabidopsis SNF1 Kinase Homolog 3) and YFPN 43 and YFP $^{\text {C }} 43$ empty vectors were used as negative controls. Transformations were performed in triplicate. YFP fluorescence and chlorophyll autofluorescence signals were observed under a confocal microscope (Leica SP5).

Transient expression assays in planta

For the transient expression assays in tobacco leaves, reporter and effector constructs were generated in the Gateway binary vectors pGWB3i (pGWB3 containing an introntagged β-glucuronidase (GUS) open reading frame (Berger et al. 2007)) and pGWB2 (Tanaka et al. 2012), respectively.

To construct the reporter plasmids, promoter fragments of ZmC_{4}-NADP-ME (GRMZM2G085019, from -389 to -154 bp) and $Z_{m n o n C_{4}-N A D P-M E ~}^{\text {-M }}$ (GRMZM2G122479, from -368 to -143 bp) were fused to a 136 bp minimal CaMV35S promoter (m35S) in a 3-step PCR reaction: (1) promoter sequences were amplified with long chimeric primers to introduce overlapping ends (reverse primer of $p \mathrm{ZmC}_{4}$ -NADP-ME / pZmnonC4-NADP-ME was designed to be complementary to the forward primer of the $m 35 S$) (supplementary table S4); (2) promoter sequences amplified by PCR in (1) were mixed according to the fusion products of interest in a ratio of 1:1 (ZmC_{4}-NADP-ME (-389 to -154 bp)::m35S and $\mathrm{Zmnon}_{4}-$ NADP-ME (-368 to -143 $b p):: m 35 S$) and 10 PCR cycles were run without primers (denaturation at $98^{\circ} \mathrm{C}$ for 10 $\mathrm{s}, 55^{\circ} \mathrm{C}$ for 30 s , and $72^{\circ} \mathrm{C}$ for 1 min); and (3) fusion products of interest were amplified with attB-containing primers (supplementary table S4). To obtain Entry clones, promoter fragments fused to m35S were cloned into pDONR221 (Invitrogen) through BP-Gateway reaction (Invitrogen), following the manufacturer's instructions. Promoter sequences were then recombined into the binary vector pGWB3i through LR-Gateway reaction (Invitrogen) to obtain the final reporter constructs for promoter::GUS analysis ($p Z m C_{4}-N A D P-M E$ and $p Z m n o n C_{4}-N A D P-M E$). For the effector constructs (TF driven by the CaMV35S promoter), ZmbHLH128 and ZmbHLH129 Entry clones previously generated (see BiFC assay) were directly recombined into the binary vector pGWB2 through LR-Gateway reaction (Invitrogen).
Reporter and effector constructs together with a construct harbouring the silencing suppressor P1b (Valli et al. 2006) were transformed into the Agrobacterium tumefaciens strain GV301. Overnight cultures of Agrobacterium harbouring reporter, effector and P 1 b constructs were sedimented (5000 g for 15 min , at $4^{\circ} \mathrm{C}$) and resuspended in infiltration medium ($10 \mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM}$ MES (pH 5.6), $200 \mu \mathrm{M}$ acetosyringone) to an OD_{600} of $0.3,1$, and 0.5 , respectively, and mixed in a ratio of 1:1:1. Mixed Agrobacterium cultures were incubated for 2 h at $28^{\circ} \mathrm{C}$ and used to spotinfiltrate the abaxial side of 5 -week-old tobacco leaves. As controls, tobacco leaves were agro-infiltrated with mixed cultures carrying the reporter construct alone or the
empty vector pGWB3i and effector constructs. Infected leaves were analysed at 96h post-infiltration. Leaf discs of 2.5 cm in diameter were collected from the infiltrated spots and used for the quantification of GUS activity. GUS activity was quantified by measuring the rate of 4-methylumbelliferyl- β-D-glucuronide (MUG) conversion to 4methylumbelliferone (MU) as described in Jefferson et al. (1987) and Williams et al. (2016). Briefly, soluble protein was extracted from agro-infiltrated tobacco leaf discs by freezing in liquid nitrogen and maceration, followed by addition of protein extraction buffer. Diluted protein extracts (1:2) were incubated with 1 mM MUG for 30, 60, 90 and 120 min at $37^{\circ} \mathrm{C}$ in a 96 -well plate. GUS activity was terminated at the end of each time point by the addition of $200 \mathrm{mM} \mathrm{Na} \mathrm{CO}_{3}$ and MU fluorescence measured by exciting at 365 nm and measuring emission at 455 nm . The concentration of MU/unit fluorescence in each sample was interpolated using a concentration gradient of MU from 1.5 to $800 \mu \mathrm{M} \mathrm{MU}$.

Production of recombinant ZmbHLH128 and ZmbHLH129

ZmbHLH128 and ZmbHLH129 full-length CDS were PCR-amplified using, respectively, the following pairs of gene specific primers 5'-GAATTCATGATGAACTGCGCCGGA-3' / 5’-CTCGAGCTAAGCATTAGGCGGCCAG-3' and 5'-GAATTCATGATGGACTGCGCTGGA-3' / 5’-CTCGAGCTAAGCATTTGGGGGCCAG-3' (underlined sequences indicate adaptors with restriction enzyme sites). ZmbHLH128 and ZmbHLH129 were cloned as EcoRIXhol fragments into the expression vector pET32a (Novagen), generating N-terminal Trx-tagged fusions. pET32a-Trx::ZmbHLH128 and pET32a-Trx::ZmbHLH129 constructs were confirmed by sequencing and transformed into Rosetta (DE3)pLysS competent cells (Invitrogen) for protein expression. Cells transformed with pET32aTrx::ZmbHLH128 and pET32a-Trx::ZmbHLH129 constructs were respectively grown in Terrific Broth (TB) and Luria-Bertani (LB) medium to an OD_{600} of 0.5 . Protein expression was induced with 4 mM isopropyl-d-1-thiogalactopyranoside (IPTG) and allowed to occur for $3 \mathrm{~h}(\mathrm{ZmbHLH} 128)$ or $5 \mathrm{~h}(\mathrm{ZmbHLH} 129)$ at $30^{\circ} \mathrm{C}$. Protein purification was performed as described in Cordeiro et al. (2016).

Blue Native-Polyacrylamide gel electrophoresis (BN-PAGE) and western blotting

Molecular mass of oligomers co-existing in purified ZmbHLH128 and ZmbHLH129 recombinant proteins was determined by blue native polyacrylamide gel electrophoresis (BN-PAGE). Two micrograms of the recombinant proteins (Trx::His::ZmbHLH128 or Trx::His::ZmbHLH129) were resolved on a 3-12\% Novex Bis-Tris NativePAGE mini gel (Life Technologies), following the manufacturer's instructions. HMW Native Marker Kit (66-669 kDa, GE Healthcare) was used to estimate molecular mass. Resolved proteins were transferred to a polyvinylidene difluoride (PVDF) membrane (GE Healthcare). The membrane was destained with a $50 \%(\mathrm{v} / \mathrm{v})$ methanol and $10 \%(\mathrm{v} / \mathrm{v})$ acid acetic solution followed by pure methanol. For immunodetection of Trx::His::ZmbHLH128 and Trx::His::ZmbHLH129, the membrane was incubated with α-His antibody (GE Healthcare) followed by α-mouse horseradish peroxidase-conjugated antibody (abcam) for 1 h each at room temperature.

Electrophoretic Mobility Shift Assay (EMSA)

DNA probes were generated by annealing oligonucleotide pairs in a thermocycler followed by radiolabeling as described in Serra et al. (2013). DNA probe sequences and respective annealing temperatures are listed in supplementary table S3. EMSAs were performed using 400 ng of the recombinant proteins Trx::ZmbHLH128 or Trx::ZmbHLH129, and 50 fmol of radiolabeled probes. Competition assays were performed adding 200- to 400-fold molar excess of the unlabeled probe. Trx::OsPIF14 (LOC_Os07g05010) and Trx protein, both purified by Cordeiro et al. (2016), were used as negative controls. Each protein was mixed with probes in a 10μ l reaction containing 10 mM HEPES (pH 7.9), $40 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM}$ EDTA (pH 8), 1 mM DTT, 50 ng herring sperm DNA, $15 \mu \mathrm{~g}$ BSA and $10 \% ~(\mathrm{v} / \mathrm{v})$ glycerol. Binding reactions were incubated for 1h on ice and the bound complexes resolved on a native 5% polyacrylamide gel (37.5:1). Gel electrophoresis and detection of radioactive signal were performed as described in Serra et al. (2013).

Synteny analysis

SynFind (Tang et al. 2015) was used to identify maize syntenic chromosomal regions for ZmbHLH128 (GRMZM2G314882) and ZmbHLH129 (GRMZM5G856837) genes
against Z. mays B73 RefGen_v3 genome. A table containing maize syntelog gene pairs was retrieved using SynFind tool (supplementary table S2).

Phylogenetic analyses

ZmbHLH128 and ZmbHLH129 were used as references to identify closely related bHLH genes of Zea mays, Sorghum bicolor, Setaria viridis, Setaria italica, Oryza sativa, and Brachypodium distachyon, through Phytozome database (Goodstein et al. 2012). Predicted CDS were aligned using MUSCLE. The resulting alignment was used to infer a maximum likelihood phylogenetic tree, using GTR+G+I nucleotide substitution model (1000 bootstrap pseudoreplicates) in MEGA 7 software (Kumar et al. 2016). Phylogenetic analysis of genes encoding C_{3} and C_{4} plastidic NADP-ME isoforms from B. distachyon (BRADI2g05620), O. sativa (LOC_Os01g09320), D. oligosanthes (Do024386), S. italica (Si000645), S. bicolor (Sobic.003g036200, Sobic.009G108700) and Z. mays (GRMZM2G085019, GRMZM2G122479) was performed using Geneious Pro 5.3.6 software (Kearse et al. 2012). Full-length genomic sequences were aligned using MUSCLE. Phylogenetic tree was inferred using the Neighbor Joining (1000 bootstrap pseudoreplicates) and rooted using the gene encoding C_{3} plastidic NADP-ME (At1g79750) from Arabidopsis thaliana, a dicot angiosperm.

683

B

C

B

Probes

1: 5' - CTTTCGTTAAAGCACTAGAACATCGGGCGC - 3'
2: 5^{\prime} - CTTATCCGTCGTCACGCGGATGGAGGCAGT - 3^{\prime}
3: 5^{\prime} - GGCTAAGGTGCCACACGCGGCTGCCGCATG - 3^{\prime}
4: 5^{\prime} - GTGGCCCCGTCACACGTGAAAAGCCCAAGG - 3'
5: 5' - GTTTTACATCATCACCAGCAACATATAAAG - 3'
6: 5^{\prime} - GTGCGGCGCACGCGCACGTCGGGACGGACG - 3'
7: 5' - CGTGCGCCGCACACGCGCAAGCGCAAC - ${ }^{\prime}$
6+7: 5' - ACGTGCGCGTGCGCCGCACACGCGCAAGCG - 3'
8: 5' - GCAAGCGCAACTGCTCAAAACCGCACCGCG - 3'
FIG. 2.

C

FIG. 3.

A

monomer: 47 kDa (MW 15\% error, $40-54 \mathrm{KDa})$ dimer: 94 kDa (MW 15\% error, $80-108 \mathrm{KDa})$ trimer: 141 kDa (MW 15\% error, 120-162 KDa)
sıoıuos әм!̣ебәа
B

scale bar $10 \mu \mathrm{~m}$

FIG. 4.

A
 Reporter construct

Effector constructs

| CaMV35S ZmbHLH129 |
| :--- | :--- |

B

C

D

FIG. 5.
A

NADP-ME	Species	Promoter		
		cis-element spacer cis-element	locus ID	Coordinates (bp)
1.	Z. mays	FBS 1 5'-GCGCGTGcgccgc---aCACGCGC-3' FBS 2	GRMZM2G085019	-242 to -221
II. C_{4}	S. bicolor	FeRE1 5'-ACGTGTGtgccgc---aCACGCGG-3' N-box	Sobic.003g036200	-237 to -218
III.	S. italica	G-box 5'-CCACGTGcgccgc-acaCACGCGG-3' N-box	Si000645	-212 to -181
IV. ${ }^{\text {non }} \mid$	Z. mays	G-box 5'-CCACGTGcgccge---aCACGCAC-3' N -box-like	GRMZM2G122479	-196 to -178
V. C_{4}	S. bicolor	G-box 5'-CCACGTGcgcggc---aCACGCGG-3' N-box	Sobic.009g108700	-231 to -212
VI.	D. oligosanthes	G-box 5'-CCACGTGcgccgc---aCACGCGG-3' N-box	Do024386	-355 to -336
VII. C_{3}	O. sativa	G-box 5'-CCACGTGtgccgegccaCCCTCCG-3'	LOC_Os01g09320	-169 to -163
VIII.	B. distachyon	5'-CA GCGTGcggcaaatcaCCGCGCG-3'	BRADI2g05620	-292 to -278

B

C

FIG. 6.
A

B

Intermediate evolutionary steps
Gene duplication

Figure legends

FIG. 1. ZmbHLH128 and ZmbHLH 129 homeologs bind the $\mathrm{ZmC}_{4}-N A D P-M E$ promoter. (A) Schematic representation of the $\mathrm{ZmC}_{4}-N A D P-M E$ promoter, divided into fragments used as baits in Y1H screenings, and the ZmbHLH TFs identified. ATG and TAG are the translational start codon and the stop codon of the $\mathrm{ZmC}_{4}-N A D P-M E$ ORF, respectively. ZmbHLH position on the scheme indicates that they bind between the base pairs -389 and -154 in relation to the ATG. (B) Analysis of $\mathrm{ZmbHLH}-\mathrm{pZmC} 4_{4}$ -NADP-ME binding specificity. Each of the six yeast bait strains was transformed with both ZmbHLHs (pAD-GAL4-2.1::TF vectors) and positive interactions selected on CM -HIS -LEU + 3-AT (yeast Complete Minimal medium lacking histidine and leucine amino acids, and supplemented with 3-amino-1,2,4-triazole (3-AT), a competitive inhibitor of the HIS3 gene product). (C) Schematic representation of basic Helix-LoopHelix (bHLH) and leucine zipper (ZIP) protein domains, and respective position in protein sequences. (D) Schematic representation of ZmbHLH128 and ZmbHLH129 (black) and four additional maize homeolog gene pairs located in syntenic regions of chromosomes 4 and 5 . Homeolog genes are indicated by colour. Arrows indicate direction of transcription of each gene. Genomic coordinates provided from the B73 RefGen_v3 assembly version.

FIG. 2. ZmbHLH128 and ZmbHLH129 bind two FBS cis-elements present in ZmC_{4} -NADP-ME promoter. (A) Schematic representation of position and nucleotide sequence of eight cis-elements recognised by bHLH that were identified in the ZmC_{4} -NADP-ME promoter. FBS stands for FHY3/FAR1 Binding Site and it is a N-boxcontaining motif. (B) EMSA probe sequences used to test in vitro binding affinity of ZmbHLH128 and ZmbHLH129 to cis-elements (highlighted in bold). Arrows indicate that the FBS cis-elements are present in opposite orientations. (C) EMSAs showing in vitro binding affinity of Trx::ZmbHLH128 (gel on the left) and Trx::ZmbHLH129 (gel on the right) to the radiolabeled probes described in (B). Arrowheads indicate uplifted ZmbHLH-DNA probe complexes. Free probe indicates unbound DNA probes.

FIG. 3. ZmbHLH128 and ZmbHLH129 form both homo- and heterodimers. (A) Western blot of BN-PAGE for the recombinant proteins Trx::His::ZmbHLH128 and Trx::His::ZmbHLH129. Gel was loaded with equivalent amount of protein. Recombinant proteins were immunodetected using α-His antibody. MW indicates
molecular-weight size marker. (B) Protein interactions between ZmbHLH128 and ZmbHLH129 were tested by BiFC in maize mesophyll protoplasts co-transformed with constructs expressing ZmbHLH128 and ZmbHLH129 fused to N - and C-terminal YFP domains. YFP^{N} and $\mathrm{YFP}^{\mathrm{C}}$ indicate split N - and C-terminal YFP domains, respectively.

FIG. 4. ZmbHLH 129 impairs trans-activation of the $\mathrm{ZmC}_{4}-N A D P-M E$ promoter by ZmbHLH128. (A) Schematic representation of reporter and effector constructs used in transient expression assays in leaves of Nicotiana benthamiana. Reporter construct contains GUS gene driven by the minimal CaMV35S promoter (m35S) fused to pZmC ${ }_{4}$-NADP-ME (-389 to -154 bp). Effector constructs contain the ZmbHLH 128 or ZmbHLH129 CDS driven by the full CaMV35S promoter. (B-D) Box plots (2.5 to 97.5 percentiles) showing GUS activity, expressed in picomoles of the reaction product 4methylumbelliferone (MU) generated per minute per microgram of protein, in leaves agro-infiltrated with reporter and the following effector constructs: $(B) \mathrm{ZmbHLH} 128$, (C) ZmbHLH129, and (D) ZmbHLH128 and ZmbHLH129. Different letters denote differences in experimental data that are statistically significant (One-way ANOVA, Tukey test, $p \leq 0.05, \mathrm{n}=10-13$). EV indicates $\mathrm{pGWB} 3 i$ empty vector (no promoter fragment cloned). Cross inside box plots indicates mean. f.c. indicates fold-change.

FIG. 5. The G-box-based cis-element pair recognised by ZmbHLH128 and ZmbHLH129 in NADP-ME promoters operates synergistically. (A) Sequence alignment of the two FBS cis-elements present in $\mathrm{ZmC}_{4}-N A D P-M E$ promoter against homologous cis-elements present in other promoters of genes encoding plastidic NADP-ME. C_{4} grasses: Zea mays, Sorghum bicolor and Setaria italica; C_{3} grasses: Dichanthelium oligosanthes, Oryza sativa and Brachypodium distachyon. Plastidic NADP-MEs are colour-coded: green for C_{4}, blue for non C_{4} and magenta for C_{3}. Ciselements are highlighted in bold and coloured according to the NADP-ME they belong to. FBS stands for FHY3/FAR1 Binding Site and FeRE1 for Iron Responsive Element 1. (B) EMSA probes used to test in vitro binding affinity of ZmbHLH128 and ZmbHLH129 to each cis-element described in (A). Probe sequences are listed in supplementary table S3. (C) EMSA assays showing in vitro binding affinity of Trx::ZmbHLH128 (gel on the left) and Trx::ZmbHLH129 (gel on the right) proteins to the probes described in (B). Arrowheads indicate uplifted ZmbHLH-DNA probe complexes. Free probe indicates unbound DNA probes.

FIG. 6. Acquisition of N -box-derived cis-elements in NADP-ME promoters facilitates ZmbHLH128 and ZmbHLH129 binding in PACMAD grasses. (A) Phylogenetic tree of genes encoding plastidic NADP-ME from C_{3} and C_{4} grass species. C_{3} : Brachypodium distachyon (Bd), Oryza sativa (Os) and Dichanthelium oligosanthes (Do); C_{4} : Setaria italica (Si), Sorghum bicolor (Sb) and Zea mays (Zm). NADP-MEs are colour-coded: magenta for C_{3}, blue for non C_{4} and green for C_{4}. NADP-ME genomic sequences were aligned using MUSCLE, and the phylogenetic tree inferred by NJ method (1000 bootstrap pseudoreplicates, node numbers indicate bootstrap values). Gene encoding C_{3} plastidic NADP-ME from Arabidopsis thaliana (AtC_{3}-NADP-ME) was used as outgroup. (B) Diagram representing C_{3} to C_{4} molecular evolution of homologous bHLH binding cis-elements identified in promoters of genes encoding plastidic NADP-ME. Black and white circles represent ZmbHLH128 and ZmbHLH129 binding ability to NADP-ME gene promoters, respectively.

Acknowledgments

We thank Lisete Fernandes (Escola Superior de Tecnologia da Saúde de Lisboa, Portugal) for discussions and advice concerning EMSA experiments, Cecília Arraiano Lab (ITQB-NOVA, Oeiras, Portugal) for material used in EMSA experiments, Myriam Goudet and Samuel Brockington (Department of Plant Sciences, University of Cambridge, UK) for assistance with phylogenetic analyses. Fundação para a Ciência e Tecnologia (FCT) is acknowledged through research unit GREEN-it 'Bioresources for Sustainability' (UID/Multi/04551/2013). ARB (SFRH/BD/105739/2014), AG (SFRH/BD/89743/2012), AMC (SFRH/BD/74946/2010), PMB (SFRH/BPD/86742/2012), IAA (IF/00960/2013 - POPH-QREN), and NJMS (IF/01126/2012 - POPH-QREN) were funded by FCT, TSS and PG by European Union project 3to4 (Grant agreement no: 289582), and IR-L by BBSRC grant (BB/L014130).

References

Agrawal NJ, Radhakrishnan R, Purohit PK. 2008. Geometry of mediating protein affects the probability of loop formation in DNA. Biophys. J. 94:3150-3158.
Alvarez CE, Saigo M, Margarit E, Andreo CS, Drincovich MF. 2013. Kinetics and functional diversity among the five members of the NADP-malic enzyme family from Zea mays, a C 4 species. Photosynth. Res. 115:65-80.

Atchley WR, Terhalle W, Dress A. 1999. Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J. Mol. Evol. 48:501-5016.

Berger B, Stracke R, Yatusevich R, Weisshaar B, Flügge UI, Gigolashvili T. 2007. A simplified method for the analysis of transcription factor-promoter interactions that allows high-throughput data generation. Plant J. 50:911-916.

Bowes G, Ogren WL, Hageman RH. 1971. Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Commun. 45:716722.

Brown NJ, Newell CA, Stanley S, Chen JE, Perrin AJ, Kajala K, Hibberd JM. 2011. Independent and parallel recruitment of preexisting mechanisms underlying C_{4} photosynthesis. Science 331:1436-1439.

Calvin BM, Massini P. 1952. The path of carbon in photosynthesis. Experientia VIII:445-457.

Christin P-A, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainen V. 2008. Report oligocene CO_{2} decline promoted C_{4} photosynthesis in grasses. Curr. Biol. 18:37-43.

Christin P-A, Boxall SF, Gregory R, Edwards EJ, Hartwell J, Osborne CP. 2013. Parallel recruitment of multiple genes into C_{4} photosynthesis. Genome Biol. Evol. 5:2174-2187.

Christin P-A, Osborne CP. 2014. The evolutionary ecology of C_{4} plants. New Phytol. 204:765-781.

Christin P-A, Osborne CP, Sage RF, Edwards EJ. 2011. C4 eudicots are not younger than C_{4} monocots. J. Exp. Bot. 62:3171-3181.
Cordeiro AM, Figueiredo DD, Tepperman J, Borba AR, Lourenço T, Abreu IA, Ouwerkerk PBF, Quail PH, Margarida Oliveira M, Saibo NJM. 2016. Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N -box and interacts preferentially with the active form of phytochrome B. Biochim. Biophys. Acta 1859:393-404.

De Masi F, Grove CA, Vedenko A, Alibés A, Gisselbrecht SS, Serrano L, Bulyk ML, Walhout AJM. 2011. Using a structural and logics systems approach to infer bHLH-DNA binding specificity determinants. Nucleic Acids Res. 39:4553-4563.
Ehleringer JR, Monson RK. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Evol. Syst. 24:411-439.
Emms DM, Covshoff S, Hibberd JM, Kelly S. 2016. Independent and parallel evolution of new genes by gene duplication in two origins of C_{4} photosynthesis provides new insight into the mechanism of phloem loading in C_{4} species. Mol. Biol. Evol. 33:1796-1806.
Fisher A, Caudy M. 1998. The function of hairy-related bHLH repressor proteins in cell fate decisions. BioEssays 20:298-306.
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS . 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40:D1178-D1186.
Gordân R, Shen N, Dror I, Zhou T, Horton J, Rohs R, Bulyk ML. 2013. Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape. Cell Rep. 3:1093-1104.
Gowik U, Burscheidt J, Akyildiz M, Schlue U, Koczor M, Streubel M, Westhoff P. 2004. Cis-regulatory elements for mesophyll-specific gene expression in the C_{4} plant Flaveria trinervia, the promoter of the C_{4} phosphoeno/pyruvate carboxylase gene. Plant Cell 16:1077-1090.
Gowik U, Schulze S, Saladié M, Rolland V, Tanz SK, Westhoff P, Ludwig M. 2016. A MEM1-like motif directs mesophyll cell-specific expression of the gene encoding the C_{4} carbonic anhydrase in Flaveria. J. Exp. Bot. 68:311-320.
Grass Phylogeny Working Group II. 2012. New grass phylogeny resolves deep evolutionary relationships and discovers C $_{4}$ origins. New Phytol. 193:304-312.
Grove CA, Masi F, Barrasa MI, Newburger DE, Alkema MJ, Bulyj ML, Walhout AJM. 2009. A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell 138:314-327.
Haberlandt GFJ. 1904. Physiologische Pflanzenanatomie. Leipzig W. Engelmann.
Hatch MD. 1987. C_{4} photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta 895:81-106.
Hatch MD, Slack CR. 1966. Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem. J. 101:103- 111.

Hibberd JM, Covshoff S. 2010. The regulation of gene expression required for C_{4} photosynthesis. Annu. Rev. Plant Biol. 61:181-207.
Huang P, Brutnell TP. 2016. A synthesis of transcriptomic surveys to dissect the genetic basis of C_{4} photosynthesis. Curr. Opin. Plant Biol. 31:91-99.
Jefferson RA, Kavanagh TA, Bevan MW. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:39013907.

Kagawa T, Hatch MD. 1974. C_{4}-acids as the source of carbon dioxide for Calvin cycle photosynthesis by bundle sheath cells of the C_{4}-pathway species Atriplex spongiosa. Biochem. Biophys. Res. Commun. 59:1326-1332.
Kajala K, Brown NJ, Williams BP, Borrill P, Taylor LE, Hibberd JM. 2012. Multiple Arabidopsis genes primed for recruitment into C_{4} photosynthesis. Plant J. 69:4756.

Kang SG, Price J, Lin PC, Hong JC, Jang JC. 2010. The Arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding. Mol. Plant 3:361-373.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647-1649.
Kim JJ, Kang H, Park J, Kim W, Yoo J, Lee N, Kim JJ, Yoon T, Choi G. 2016. PIF1interacting transcription factors and their binding sequence elements determine the in vivo targeting sites of PIF1. Plant Cell 28:1388-1405.
Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. 1999. High-level expression of maize phosphoenol pyruvate carboxylase in transgenic rice plants. Nat. Biotechnol. 17:76-80.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874.
Langdale JA. 2011. C_{4} cycles: past, present, and future research on C_{4} photosynthesis. Plant Cell 23:3879-3892.
Li G, Siddiqui H, Teng Y, Lin R, Wan X, Li J, Lau O-S, Ouyang X, Dai M, Wan J, et al. 2011. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat. Cell Biol. 13:616-622.
Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J. 2006. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol. 141:1167-1184.
Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H. 2007. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318:13021305.

Lloyd J, Farquhar GD. 1994. ${ }^{13} \mathrm{C}$ discrimination during CO_{2} assimilation by the terrestrial biosphere. Oecologia 99:201-215.
Lourenço T, Sapeta H, Figueiredo DD, Rodrigues M, Cordeiro A, Abreu IA, Saibo NJM, Oliveira MM. 2013. Isolation and characterization of rice (Oryza sativa L.) E3-ubiquitin ligase OsHOS1 gene in the modulation of cold stress response. Plant Mol. Biol. 83:351-363.

Lundgren MR, Christin P-A. 2016. Despite phylogenetic effects, $C_{3}-C_{4}$ lineages bridge the ecological gap to C_{4} photosynthesis. J. Exp. Bot. 68:241-254.
Maier A, Zell MB, Maurino VG. 2011. Malate decarboxylases: evolution and roles of NAD(P)-ME isoforms in species performing C_{4} and C_{3} photosynthesis. J. Exp. Bot. 62:3061-3069.

Martínez-Garcia JF, Huq E, Quail PH. 2000. Direct targeting of light signals to a promoter element-bound transcription factor. Science 288:859-863.

Massari ME, Murre C. 2000. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20:429-440.
Matsuoka M, Kyozuka J, Shimamoto K, Kano-Murakami Y. 1994. The promoters of two carboxylases in a C_{4} plant (maize) direct cell-specific, light-regulated expression in a C_{3} plant (rice). Plant J. 6:311-319.
Maurino VG, Drincovich MF, Casati P, Andreo CS, Edwards GE, Ku MSB, Gupta SK, Franceschi V. 1997. NADP-malic enzyme: immunolocalization in different tissues of the C_{4} plant maize and the C_{3} plant wheat. J. Exp. Bot. 48:799-811.
Melzer R, Verelst W. 2009. The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in "floral quartet"-like complexes in vitro. Nucleic Acids Res. 37:144-157.

Murre C, McCaw PS, Baltimore D. 1989. A new DNA binding and dimerization motif in immunoglubin enhancer binding, dauhterless, MyoD, and myc proteins. Cell 56:777-783.

Nomura M, Sentoku N, Nishimura A, Lin J, Honda C, Taniguchi M, Ishida Y, Ohta S, Komari T, Miyao-Tokutomi M, et al. 2000. The evolution of C_{4} plants: acquisition of cis-regulatory sequences in the promoter of C_{4}-type pyruvate, orthophosphate dikinase gene. Plant J. 22:211-221.
Ohsako S, Hyer J, Panganiban G, Oliver I, Caudy M. 1994. Hairy function as a DNAbinding helix-loop-helix repressor of Drosophila sensory organ formation. Genes Dev. 8:2743-2755.

Osborne CP, Beerling DJ. 2006. Nature's green revolution: the remarkable evolutionary rise of C_{4} plants. Phil. Trans. R. Soc. B. 361:173-194.
Ouwerkerk PB, Meijer AH. 2001. Yeast one-hybrid screening for DNA-protein interactions. In: DNA-Protein Interactions. Current Protocols in Molecular Biology. p. 12.12.1-12.12.22.

Patel M, Siegel AJ, Berry JO. 2006. Untranslated regions of FbRbcS1 mRNA mediate bundle sheath cell-specific gene expression in leaves of a C_{4} plant. J. Biol. Chem. 281:25485-25491.
Penfield S, Rylott EL, Gilday AD, Graham S, Larson TR, Graham IA. 2004. Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. Plant Cell 16:2705-2718.

Rao X, Dixon RA. 2016. The differences between NAD-ME and NADP-ME subtypes of C_{4} photosynthesis: more than decarboxylating enzymes. Front. Plant Sci. 7:1525.
Reyna-Llorens I, Hibberd JM. 2017. Recruitment of pre-existing networks during the evolution of C_{4} photosynthesis. Phil. Trans. R. Soc. B. 372:20160386.
Rohs R, West SM, Sosinsky A, Liu P, Mann RS, Honig B. 2009. The role of DNA shape in protein-DNA recognition. Nature 29:1248-1253.
Sage RF. 2004. The evolution of C_{4} photosynthesis. New Phytol. 161:341-370.
Sage RF. 2016. A portrait of the C_{4} photosynthetic family on the $50^{\text {th }}$ anniversary of its discovery: species number, evolutionary lineages, and hall of fame. J. Exp. Bot. 67:4039-4056.
Sage RF, Christin P-A, Edwards EJ. 2011. The C 4_{4} plant lineages of planet Earth. J. Exp. Bot. 62:3155-3169.
Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S. 1992. Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of
split. Genes Dev. 6:2620-2634.
Serra TS, Figueiredo DD, Cordeiro AM, Almeida DM, Lourenço T, Abreu IA, Sebastián A, Fernandes L, Contreras-Moreira B, Oliveira MM, et al. 2013. OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol. Biol. 82:439-455.

Sharkey TD. 1988. Estimating the rate of photorespiration in leaves. Physiol. Plant. 73:147-152.

Smaczniak C, Immink RG, Muiño JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QD, Liu S, Westphal AH, Boeren S, et al. 2012. Characterization of MADSdomain transcription factor complexes in Arabidopsis flower development. Proc. Natl. Acad. Sci. U. S. A. 109:1560-1565.

Smaczniak C, Muiño JM, Chen D, Angenent GC. 2017. Differences in DNA-binding specificity of floral homeotic protein complexes predict organ-specific target genes. Plant Cell doi:10.1105/tpc.17.00145.

Tanaka Y, Kimura T, Hikino K, Goto S, Nishimura M, Mano S, Nakagawa T. 2012. Gateway vectors for plant genetic engineering: overview of plant vectors, application for bimolecular fluorescence complementation (BiFC) and multigene construction. In: Barrera-Saldaña HA, editor. Genetic Engineering - Basics, New Applications and Responsabilities. p. 35-58.

Tang H, Bomhoff MD, Briones E, Zhang L, Schnable JC, Lyons E. 2015. SynFind: compiling syntenic regions across any set of genomes on demand. Genome Biol. Evol. 7:3286-3298.

Tausta SL, Coyle HM, Rothermel B, Stiefel V, Nelson T. 2002. Maize C_{4} and non- C_{4} NADP-dependent malic enzymes are encoded by distinct genes derived from a plastid-localized ancestor. Plant Mol. Biol. 50:635-652.
Taylor L, Nunes-Nesi A, Parsley K, Leiss A, Leach G, Coates S, Wingler A, Fernie AR, Hibberd JM. 2010. Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. Plant J. 62:641-652.
Theissen G. 2001. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4:75-85.
Theissen G, Saedler H. 2001. Plant biology. Floral quartets. Nature 409:469-471.
Toledo-Ortiz G, Huq E, Quail PH. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749-1770.

Valli A, Martin-Hernandez AM, Lopez-Moya JJ, Garcia JA. 2006. RNA silencing suppression by a second copy of the P1 serine protease of Cucumber vein yellowing ipomovirus, a member of the family Potyviridae that lacks the cysteine protease HCPro. J. Virol. 80:10055-10063.
Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellog EA. 2008. The age of the grasses and clusters of origins of C_{4} photosynthesis. Glob. Chang. Biol. 14:29632977.

Wang L, Czedik-Eysenberg A, Mertz RA, Si Y, Tohge T, Nunes-Nesi A, Arrivault S, Dedow LK, Bryant DW, Zhou W, et al. 2014. Comparative analyses of C_{4} and C_{3} photosynthesis in developing leaves of maize and rice. Nat. Biotechnol. 32:11581165.

Wang Y, Bräutigam A, Weber APM, Zhu X-G. 2014. Three distinct biochemical subtypes of C_{4} photosynthesis? A modelling analysis. J. Exp. Bot. 65:3567-3578. Williams BP, Aubry S, Hibberd JM. 2012. Molecular evolution of genes recruited into C_{4} photosynthesis. Trends Plant Sci. 17:213-220.
Williams BP, Burgess SJ, Reyna-Llorens I, Knerova J, Aubry S, Stanley S, Hibberd JM. 2016. An untranslated cis-element regulates the accumulation of multiple C_{4} enzymes in Gynandropsis gynandra mesophyll cells. Plant Cell 28:454-465.
Yanagisawa S, Sheen J. 1998. Involvement of maize Dof zinc finger proteins in tissuespecific and light-regulated gene expression. Plant Cell 10:75-89.

