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Abstract 17	

Circadian rhythms enable organisms to synchronise the processes underpinning survival and 18	

reproduction to anticipate daily changes in the external environment. Recent work shows that daily 19	

(circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions 20	

with their hosts. Because parasite rhythms matter for their fitness, understanding how they are 21	

regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we 22	

examine how host circadian rhythms influence rhythms in the asexual replication of malaria 23	

parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the 24	

disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of 25	

hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host’s peripheral 26	

oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We 27	

demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative 28	

to the rhythms of parasites in night-fed hosts. Our results reveal that the host’s peripheral rhythms 29	

(associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-30	

entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further 31	

investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, 32	

we show that parasite rhythms resynchronise to the altered host feeding rhythms when food 33	

availability is shifted, which is not mediated through rhythms in the host immune system. Our 34	

observations suggest that parasites actively control their developmental rhythms. Finally, counter to 35	

expectation, the severity of disease symptoms expressed by hosts was not affected by 36	

desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease 37	

ecology and chronobiology opens up a new arena for studying host-parasite-vector coevolution and 38	

has broad implications for applied bioscience. 39	

 40	

 41	

 42	
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Author summary 43	

How cycles of asexual replication by malaria parasites are coordinated to occur in synchrony 44	

with the circadian rhythms of the host is a long-standing mystery. We reveal that rhythms associated 45	

with the time-of-day that hosts feed are responsible for the timing of rhythms in parasite 46	

development. Specifically, we altered host feeding time to phase-shift peripheral rhythms, whilst 47	

leaving rhythms driven by the central circadian oscillator in the brain unchanged. We found that 48	

parasite developmental rhythms remained synchronous but changed their phase, by 12 hours, to 49	

follow the timing of host feeding. Furthermore, our results suggest that parasites themselves 50	

schedule rhythms in their replication to coordinate with rhythms in glucose in the host’s blood, rather 51	

than have rhythms imposed upon them by, for example, host immune responses. Our findings reveal 52	

a novel relationship between hosts and parasites that if disrupted, could reduce both the severity 53	

and transmission of malaria infection. 54	

 55	

Introduction 56	

The discovery of daily rhythms in parasites dates back to the Hippocratic era and a 57	

taxonomically diverse range of parasites (including fungi, helminths, Coccidia, nematodes, 58	

trypanosomes, and malaria parasites [1-6]) display rhythms in development and several behaviours. 59	

Yet, how rhythms in many parasite traits are established and maintained remains mysterious, despite 60	

their significance, as these traits underpin the replication and transmission of parasites [7]. For 61	

example, metabolic rhythms of Trypanosoma brucei have recently been demonstrated to be under 62	

the control of an oscillator belonging to the parasite, but the constituents of this oscillator are 63	

unknown [8]. In most organisms, endogenous circadian oscillators (“clocks”) involve transcription-64	

translation feedback loops whose timing is synchronised to external cues, such as light-dark and 65	

feeding-fasting cycles [9,10] but there is generally little homology across taxa in the genes 66	

underpinning oscillators. Multiple, convergent, evolutionary origins for circadian oscillators is thought 67	

to be explained by the fitness advantages of being able to anticipate and exploit predictable daily 68	
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changes in the external environment, as well as keeping internal processes optimally timed [11,12]. 69	

Indeed, the 2017 Nobel Prize in Physiology/Medicine recognises the importance of circadian 70	

oscillators [13,14]. 71	

The environment that an endoparasite experiences inside its host is generated by many 72	

rhythmic processes, including daily fluctuations in the availability of resources, and the nature and 73	

strength of immune responses [15,16]. Coordinating development and behaviour with rhythms in the 74	

host (or vector) matters for parasite fitness [17]. For example, disrupting synchrony between rhythms 75	

in the host and rhythms in the development of malaria parasites during asexual replication reduces 76	

parasite proliferation and transmission potential [18,19]. Malaria parasites develop synchronously 77	

during cycles of asexual replication in the host’s blood and each developmental stage occurs at a 78	

particular time-of-day. The synchronous bursting of parasites at the end of their asexual cycle, when 79	

they release their progeny to infect new red blood cells, causes fever with sufficient regularity (24, 80	

48, or 72 hourly, depending on the species) to have been used as a diagnostic tool. Malaria parasites 81	

are assumed to be intrinsically arrhythmic and mathematical modelling suggests that rhythms in host 82	

immune effectors, particularly inflammatory responses, could generate rhythms in the development 83	

of malaria parasites via time-of-day-specific killing of different parasite developmental stages [20,21]. 84	

However, the relevant processes operating within real infections remain unknown [22]. 85	

Our main aim is to use the rodent malaria parasite Plasmodium chabaudi to ask which 86	

circadian rhythms of the host are involved in scheduling rhythms in parasite development. In the 87	

blood, P. chabaudi develops synchronously and asexual cycles last 24 hours, bursting to release 88	

progeny (schizogony) in the middle of the night when mice are awake and active. We perturbed host 89	

feeding time (timing of food intake), which is known to desynchronise the phase of rhythms from the 90	

host’s central and peripheral oscillators, and we then examined the consequences for parasite 91	

rhythms. In mammals, the central oscillator in the brain (suprachiasmatic nuclei of the hypothalamus, 92	

SCN), is entrained by light [10,23]. The SCN is thought to shape rhythms in physiology and behaviour 93	

(peripheral rhythms) by entraining peripheral oscillators via hormones such as glucocorticoids [24]. 94	

However, oscillators in peripheral tissues are self-sustained and can also be entrained by several 95	
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non-photic cues, such as the time-of-day at which feeding occurs [25,26]. Thus, eating at the wrong 96	

time-of-day (e.g. diurnal feeding in nocturnal mice) leads to altered timing of oscillators, and their 97	

associated rhythms in peripheral tissues. This phase-shift is particularly apparent in the liver where 98	

an inversion in the peak phase of expression of the circadian oscillator genes Per1 and Per2 occurs 99	

[26]. Importantly, eating at the wrong time-of-day does not alter rhythmic outputs from the central 100	

oscillator [25].  101	

In murine hosts with an altered (diurnal) feeding schedule, the development rhythms of 102	

parasites remained synchronous but became inverted relative to the rhythms of parasites in hosts 103	

fed at night. Thus, feeding-related outputs from the hosts peripheral timing system, not the SCN, are 104	

responsible for the timing (phase) of parasite rhythms. We also reveal that the inversion of parasite 105	

rhythms corresponds to a phase-shift in blood glucose rhythms. That parasites remain synchronous 106	

during the rescheduling of their rhythm coupled with evidence that immune responses do not set the 107	

timing of parasite rhythms, suggests parasites are responsible for scheduling their developmental 108	

rhythm, and may express their own circadian rhythms and/or oscillators. Furthermore, our perturbed 109	

feeding regimes are comparable to shift work in humans. This lifestyle is well-known for increasing 110	

the risk of non-communicable diseases (cancer, type 2 diabetes etc. [27]) but our data suggest the 111	

severity of malaria infection (weight loss, anaemia) is not exacerbated by short-term 112	

desynchronisation of the central and peripheral oscillators. 113	

 114	

Results & Discussion 115	

First, we examined the effects of changing the time of food intake on the phasing of circadian 116	

rhythms in host body temperature and locomotor activity (Fig 1). Body temperature is a commonly 117	

used phase marker of circadian timing because core body temperature increases during activity and 118	

decreases during sleep [28,29]. Mice were given access to food for 12 hours in each circadian cycle, 119	

either in the day (LF, light fed) or night (DF, dark fed). All food was available ad libitum and available 120	

from ZT 0-12 (ZT refers to ‘Zeitgeber Time’; ZT 0 is the time in hours since lights on) for LF mice, 121	
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and from ZT 12-24 for DF mice. All experimental mice were entrained to the same reversed 122	

photoperiod, lights on: 7pm (ZT 0/24), lights off: 7am (ZT 12), for 2 weeks prior to starting the 123	

experiment (Fig 1).  124	

 125	

Fig 1. Experimental design, feeding time. Infections were initiated with parasites raised in donor 126	
mice entrained to a standard light regime [lights on: 7am (ZT 0/24) and lights off: 7pm (ZT 12)] and 127	
used to create experimental infections in hosts entrained to a reverse light regime of 12-hours light: 128	
12-hours dark [lights on: 7pm (ZT 0/24), lights off: 7am (ZT 12); ZT is Zeitgeber Time: hours after 129	
lights on], leading to a 12-hour phase difference in SCN rhythms of donor and host, and 130	
subsequently, parasite infections (see Materials and Methods for the rationale). Hosts were then 131	
assigned to one of the two treatment groups. One group (N=10) were allowed access to food 132	
between ZT0 and ZT12 (“light fed mice”, LF, food access during the day) and the other group (N=10) 133	
allowed access to food between ZT12 and ZT0 (“dark fed mice”, DF, food access during the night). 134	
Body temperature and locomotor activity were recorded from a subset of RFID “tagged” mice in each 135	
group (N=5 per group). Changing feeding time (day time feeding of nocturnal mice) desynchronises 136	
rhythmic outputs from the central (SCN) oscillator and the peripheral (peripheral rhythms, PRs) 137	
oscillators (“SCN ≠ PRs”), whereas the SCN and peripheral rhythms remain synchronised in mice 138	
fed at night (“SCN = PRs”). 139	

We found a significant interaction between feeding treatment (LF or DF) and the time-of-day 140	

(day (ZT 0-12) or night (ZT 12-24)) that mice experience elevated body temperatures (χ2
(5,6) = 75.89, 141	

p < 0.0001) and increase their locomotor activity (χ2
(5,6) = 39.57, p < 0.0001; S1 Table). Specifically, 142	

DF mice have elevated body temperature and are mostly active during the night (as expected) 143	

whereas LF mice show no such day-night difference in body temperature and locomotor activity, due 144	

to a lack of night time elevation in both measures where food and light associated activity are 145	

desynchronised (Fig 2). We also find the centres of gravity (CoG; a general phase marker of 146	

Light fed ZLFb
SCN ≠ PRsSCN ≠ PRs

Dark fed ZDFb
SCN = PRs

Donor mice

Standard light regime

0/24 0/240/24 0/24 0/24

Reverse light regime

Experimental mice

Untagged Zn = 5b

Tagged Zn = 5b

Untagged Zn = 5b

Tagged Zn = 5b

Zeitgeber Time ZZT, hb Zeitgeber Time ZZT, hb
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circadian rhythms, estimated with CircWave), are slightly but significantly earlier in LF mice for both 147	

body temperature (approximately 2 hours advanced: χ2
(3,4) = 28.17, p < 0.0001) and locomotor 148	

activity (approximately 4 hours advanced: χ2
(3,4) = 27.32, p < 0.0001) (S1 Table). Therefore, the LF 149	

mice experienced a significant change in the daily profile of activity, which is reflected in some phase 150	

advance (but not inversion) relative to DF mice, and significant disruption to their body temperature 151	

and locomotor activity rhythms, particularly during the night. Because an altered feeding schedule 152	

does not affect the phase of the SCN [25], our data suggest that rhythms in body temperature and 153	

locomotor activity in LF mice are shaped by both rhythms in feeding and the light-dark cycle [30]. 154	

Finally, the body weight of LF and DF mice did not differ significantly after 4 weeks (χ2
(3,4) = 0.02, p 155	

= 0.9) and both groups equally gained weight during the experiment (S1 Fig), corroborating that LF 156	

mice were not calorie restricted. 157	

 158	

Fig 2. Feeding nocturnal mice in the day time disrupts rhythms in body temperature and 159	
locomotor activity. (A) Hourly mean ± SEM body temperature and locomotor activity (number of 160	
transitions per hour is the average number of movements a mouse makes in an hour, between 161	
antennae on the Home Cage Analysis system, see Materials and Methods) and (B) interaction 162	
between time-of-day and treatment group on body temperature and locomotor activity (calculating 163	
the mean temperature/activity across the day, ZT 0-12, and night, ZT 12-24, ± SEM) averaged from 164	
48 hours of monitoring mice before infection. N=5 for each of the light fed (LF, red) and dark fed (DF, 165	
blue) groups. Light and dark bars indicate lights on and lights off (lights on: ZT 0/24, lights off: ZT 166	
12). 167	
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Having generated hosts in which the phase relationship between the light-entrained SCN and 168	

food-entrained rhythms are altered (LF mice) or not (DF mice), we then infected all mice with the 169	

rodent malaria parasite Plasmodium chabaudi adami genotype DK (Fig 1) from donor mice 170	

experiencing a light-dark cycle 12 hours out of phase with the experimental host mice. After allowing 171	

the parasite’s developmental rhythms to become established (see Materials and Methods) we 172	

compared the rhythms of parasites in LF and DF mice. We hypothesised that if parasite rhythms are 173	

solely determined by rhythms driven by the host’s SCN (which are inverted in the host mice 174	

compared to the donor mice), parasite rhythms would equally shift and match in LF and DF mice 175	

because both groups of hosts were entrained to the same light-dark conditions. Yet, if rhythms in 176	

body temperature or locomotor activity directly or indirectly (via entraining other oscillators) 177	

contribute to parasite rhythms, we expected that parasite rhythms would differ between LF and DF 178	

hosts. Further, if feeding directly or indirectly (via food-entrained oscillators) drives parasite rhythms, 179	

we predicted that parasite rhythms would become inverted (Fig 1). 180	

In the blood, P. chabaudi parasites transition through five developmental stages during each 181	

(~24hr) cycle of asexual replication (Fig 3A) [6,31]. We find that four of the five developmental stages 182	

(rings, and early-, mid-, and late-trophozoites) display 24hr rhythms in both LF and DF mice (Fig 3B, 183	

S2 Table, S2 Fig). The fifth stage - schizonts - appear arrhythmic but this stage sequesters in the 184	

host’s tissues [32,33] and so, are rarely collected in venous blood samples. Given that all other 185	

stages are rhythmic, and that rhythms in ring stages likely require their parental schizonts to have 186	

been rhythmic, we expect schizonts are rhythmic but that sequestration prevents a reliable 187	

assessment of their rhythms. 188	

 189	

 190	

 191	

 192	

 193	

 194	

 195	
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 196	

Fig 3. Parasite rhythms are inverted in hosts fed during the day compared to the night. (A) 197	
The asexual cycle of malaria parasites is characterised by five morphologically distinct 198	
developmental stages (ring, early trophozoite, mid trophozoite, late trophozoite) differentiated by 199	
parasite size within the red blood cell, the size and number of nuclei, and the appearance of 200	
haemozoin [31]. (B) Mean ± SEM (N=10 per group) proportion of observed parasites in the blood at 201	
ring stage in light fed mice (red; allowed access to food during the day, between ZT 0 and ZT 12) 202	
and dark fed mice (blue; allowed access to food during the night, between ZT 12 and ZT 24). The 203	
proportion of parasites at ring stage in the peripheral blood is highest at night (ZT 22) in dark fed 204	
mice but in the day (ZT 10) for light fed mice, illustrating the patterns observed for all other (rhythmic) 205	
stages (see Fig S2). (C) CoG (estimate of phase) in ZT (h) for each rhythmic parasite stage in the 206	
blood. Each violin illustrates the median ± IQR overlaid with probability density (N=10 per group). 207	
The height of the violin illustrates the variation in the timing of the CoG between mice and the width 208	
illustrates the frequency of the CoGs at particular times within the distribution. Sampling occurred 209	
every 6 hours days 6-8 post infection. Light and dark bars indicate lights on and lights off (lights on: 210	
ZT 0, lights off: ZT 12).  211	

The CoG estimates for ring, and early-, mid-, and late-trophozoite stages are approximately 212	

10-12 hours out-of-phase between the LF and DF mice (Fig 3B,C, S2 Table). For example, rings 213	

peak at approximately ZT 10 in LF mice and peak close to ZT 23 in DF mice. The other stages peak 214	

in sequence. Schizogony (when parasites burst to release their progeny) occurs immediately prior 215	

to reinvasion, therefore we expect it occurs during the day for the LF mice and night for DF mice [7]. 216	

The almost complete inversion in parasite rhythms between LF and DF mice demonstrates that 217	
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feeding-related rhythms are responsible for the phase of parasite rhythms, with little to no apparent 218	

contribution from the SCN and/or the light: dark cycle. 219	

Changing the feeding time of nocturnal mice to the day time has similarities with shift work in 220	

diurnal humans [34]. This lifestyle is associated with an increased risk of acquiring non-221	

communicable diseases (e.g. cancer, diabetes) [35] and has been recapitulated in mouse models 222	

[e.g. 36,37,38]. In contrast, in response to perturbation of their feeding rhythm, infections are not 223	

more severe in hosts whose circadian rhythms are desynchronised (i.e. LF hosts). Specifically, all 224	

mice survived infection and virulence (measured as host anaemia; reduction in red blood cells) of 225	

LF and DF infections is not significantly different (comparing minimum red blood cell density, χ2
(3,4) 226	

= 0.11, p = 0.74; S3A Fig). As described above, changes in body mass were not significantly different 227	

between treatments (S1 Fig). Using a longer-term model for shift work may reveal differences in 228	

infection severity, especially when combined with the development of non-communicable disease. 229	

There are no significant differences between parasite densities in LF and DF hosts during 230	

infections (LF versus DF on day 6 post infection, χ2
(3,5) = 0.66, p = 0.42, S3B Fig). This can be 231	

explained by both groups being mismatched to the SCN of the host, which we have previously 232	

demonstrated to have negative consequences for P. chabaudi [18]. Our previous work was carried 233	

out using P. chabaudi genotype AJ so is not directly comparable to our results presented here, 234	

because DK is a less virulent genotype [39]. Instead, a comparison of our results to data collected 235	

previously for genotype DK, in an experiment where SCN rhythms of donor and host mice were 236	

matched (see Materials and Methods; infections were initiated with the same strain, sex, and age of 237	

mice, the same dose at ring stage) reveals a cost of mismatch of donor and host entrainment. 238	

Specifically, parasite density on day 6 (when infections have established but before parasites start 239	

being cleared by host immunity) is significantly lower in infections mismatched to the SCN (LF and 240	

DF) compared to infections matched to the SCN (χ2
(3,5) = 16.71, p = 0.0002, difference = 2.21e+10 241	

parasites per ml blood) (see S4A Fig). In keeping with a difference in parasite replication, hosts with 242	

matched infections reach lower red blood cell densities (χ2
(3,5) = 18.87, p < 0.0001, mean difference 243	

= 5.29e+08 red blood cells per ml blood).  244	
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The mismatched and matched infections compared above also differ in whether hosts had 245	

food available throughout the 24-hour cycle or for 12 hours only (LF and DF). Restricting food to 12 246	

hours per day does not affect host weight (S1 Fig) and mice still undergo their main activity bout at 247	

lights off even when food is available all the time. Therefore, we propose that rather than feeding 248	

duration, mismatch to the host SCN for as few as 5 cycles is costly to parasite replication and reduces 249	

infection severity. Because peripheral and SCN driven rhythms are usually in synchrony, we suggest 250	

parasites use information from food-entrained oscillators, or metabolic processes, to ensure their 251	

development is timed to match the host’s SCN rhythms. 252	

Instead of organising their own rhythms (i.e. using an “oscillator” whose time is set by a 253	

“Zeitgeber” or by responding directly to time-of-day cues), parasites may allow outputs of food-254	

entrained host oscillators to enforce developmental rhythms. Previous studies have focused on 255	

rhythmic immune responses as the key mechanism that schedules parasite rhythms (via 256	

developmental-stage and time-of-day specific killing [20,21]). Evidence that immune responses are 257	

rhythmic in naïve as well as infected hosts is increasing [15,16], but the extent to which 258	

peripheral/food-entrained oscillators and the SCN drive immune rhythms is unclear. Nonetheless, 259	

we argue that rhythms in host immune responses do not play a significant role in scheduling 260	

parasites for the following reasons: First, mismatch to the host’s peripheral rhythms (which occurs 261	

in DF mice but not LF mice as a feature of our experimental design) does not cause a significant 262	

reduction in parasite number (S3B Fig), demonstrating that stage-specific killing cannot cause the 263	

differently phased parasite rhythms in LF and DF mice. Second, while changing feeding time appears 264	

to disrupt some rodent immune responses [40,41], effectors important in malaria infection, including 265	

leukocytes in the blood, do not entrain to feeding rhythms [42,43]. Third, inflammatory responses 266	

important for killing malaria parasites are upregulated within hours of blood stage infection [44] so 267	

their footprint on parasite rhythms should be apparent from the first cycles of replication [19]. In 268	

contrast, rhythms of parasites in LF and DF mice do not significantly diverge until 5-6 days post 269	

infection, after 5 replication cycles (S3 Table, Fig 4). Fourth, an additional experiment (see Materials 270	

and Methods) reveals that rhythms in the major inflammatory cytokines that mediate malaria infection 271	
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(e.g. IFN-gamma and TNF-alpha: [45,46,47,48]) follow the phase of parasite rhythms (Fig 5), with 272	

other cytokines/chemokines also experiencing this phenomenon (S5 Fig). Specifically, mice infected 273	

with P. chabaudi genotype AS undergoing schizogony at around midnight (ZT17), produce peaks in 274	

the cytokines IFN-gamma and TNF-alpha at ZT21 and ZT19 respectively. Whereas mice infected 275	

with mismatched parasites undergoing schizogony around ZT23 (6 hours later), experience 3-6 hour 276	

delays in the peaks of IFN-gamma and TNF-alpha (IFN-gamma: ZT0, TNF-alpha: ZT1). Thus, even 277	

if parasites at different development stages differ in their sensitivity to these cytokines, these immune 278	

rhythms could only serve to increase synchrony in the parasite rhythm but not change its timing. 279	

 280	

Fig 4. Parasite rhythms in light and dark fed mice significantly diverge by day 5-6 post 281	
infection. The proportion of ring stage parasites across infections (light fed mice, red, and dark fed 282	
mice, blue) as a phase marker reveals that rhythms of parasites in light fed mice (red) and dark fed 283	
mice (blue) diverge. Mice were sampled at ZT 12 on days 2, 4 and 6 and at ZT 0 on days 3, 5 and 7 284	
post infection (see Fig 3 and S2 Fig). Consistent significant differences (**, p < 0.05; ***, p < 0.001) 285	
between feeding treatments begins on day 5. By days 6-7 post infection, rings in light fed mice are 286	
present at ZT12 while rings in dark fed mice are present at ZT 0, indicating that parasites in dark fed 287	
mice have rescheduled. Ring stages are presented as the phase marker because this is the most 288	
accurately quantified stage but other stages follow a similar pattern (S3 Table). Mean ± SEM is 289	
plotted and N=10 for each treatment group. 290	
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 292	

Fig 5. Rhythms in inflammatory cytokines follow rhythms in parasite development. Mean ± 293	
SEM (N=4 per time point) for cytokines (A) IFN-gamma and (B) TNF-alpha for parasites matched 294	
and mismatched to the SCN rhythms of the host (matched: green, mismatched: orange). Sampling 295	
occurred every 3 hours on days 4-5 post infection. Matched parasites undergo schizogony around 296	
ZT 17, (indicated by green dashed line) and mismatched parasites undergo schizogony 6 hours 297	
later, around ZT 23 (indicated by orange dashed line). IFN-gamma peaks at ZT 21.29 in matched 298	
infections (green) and at ZT 0 in mismatched infections (orange). TNF-alpha peaks at ZT 19.26 in 299	
matched infections (green) and at ZT 1.29 in mismatched infections (orange). Light and dark bars 300	
indicate lights on and lights off (lights on: ZT 0, lights off: ZT 12). 301	

More in-depth analysis of LF and DF infections provides further support that parasites actively 302	

organise their developmental rhythms. We examined whether parasites in DF mice maintain 303	

synchrony and duration of different developmental stages during rescheduling to the host’s SCN 304	

rhythms. Desynchronisation of oscillators manifests as a reduction in amplitude in rhythms that are 305	

driven by more than one oscillator (e.g. parasite and host oscillator). No loss in amplitude suggests 306	

that parasites shift their timing as a cohort without losing synchrony. Parasite rhythms in LF and DF 307	

mice did not differ significantly in amplitude (χ2
(6,7) = 1.53, p = 0.22, S4A Table) and CoGs for 308	

sequential stages are equally spaced (χ2
(10,18) = 11.75, p = 0.16, S2 Table) demonstrating that 309	

parasite stages develop at similar rates in both groups. The rhythms of parasites in LF and DF mice 310	

were not intensively sampled until days 6-8 PI, raising the possibility that parasites lost and regained 311	

synchrony before this. Previously collected data for P. chabaudi genotype AS infections mismatched 312	
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to the host SCN by 12 hours that have achieved a 6-hour shift by day 4 PI also exhibit synchronous 313	

development (S4B Table and S6 Fig), suggesting that parasites reschedule in synch.  314	

That parasite rhythms do not differ significantly between LF and DF mice until day 5-6 post 315	

infection (Fig 4) could be explained by the parasites experiencing a phenomenon akin to jet lag. Jet 316	

lag results from the fundamental, tissue-specific robustness of circadian oscillators to perturbation, 317	

which slows down the phase shift of individual oscillators to match a change in ‘time-zone’ [10]. We 318	

propose that the most likely explanation for the data gathered from our main experiment for genotype 319	

DK, and that collected previously for AJ and AS, is that parasites possess intrinsic oscillators that 320	

shift collectively, in a synchronous manner, by a few hours each day, until they re-entrain to the new 321	

‘time-zone’. Because there is no loss of amplitude of parasite rhythms, it is less likely that individual 322	

parasites possess intrinsic oscillators that re-entrain at different rates to the new ‘time-zone’. The 323	

recently demonstrated ability of parasites to communicate decisions about asexual to sexual 324	

developmental switches [49] could also be involved in organising asexual development.  325	

If parasites have evolved a mechanism to keep time and schedule their rhythms, what 326	

external information might they synchronise to? Despite melatonin peaks in lab mice being brief and 327	

of low concentration [50,51], the host’s pineal melatonin rhythms have been suggested as a parasite 328	

time cue [52]. However, we can likely rule pineal melatonin, and other glucocorticoids, out because 329	

they are largely driven by rhythms of the SCN, which follow the light-dark cycle and have not been 330	

shown to phase shift by 12 hours as a result of perturbing feeding timing [25]; some glucocorticoid 331	

rhythms appear resistant to changing feeding time [53]. Whether extra-pineal melatonin, produced 332	

by the gut for example [54], could influence the rhythms of parasites residing in the blood merits 333	

further investigation. Body temperature rhythms have recently been demonstrated as a Zeitgeber for 334	

an endogenous oscillator in trypanosomes [8]. Malaria parasites are able to detect and respond to 335	

changes in environmental temperature to make developmental transitions in the mosquito phase of 336	

their lifecycle [55,56], and may deploy the same mechanisms to organise developmental transitions 337	

in the host. Body temperature rhythms did not fully invert in LF mice but they did exhibit unusually 338	

low (i.e. day time) temperatures at night. Thus, for body temperature to be a time-of-day cue or 339	
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Zeitgeber it requires that parasites at early developmental stages (e.g. rings or early trophozoites) 340	

are responsible for time-keeping because they normally experience low temperatures during the day 341	

when the host is resting. The same logic applies to rhythms in locomotor activity because it is very 342	

tightly correlated to body temperature (Pearson’s correlation R=0.85, 95% CI: 0.82-0.88). Locomotor 343	

activity affects other rhythms, such as physiological oxygen levels (daily rhythms in blood and tissue 344	

oxygen levels), which can reset circadian oscillators [57] and have been suggested as a time cue for 345	

filarial nematodes [4].  346	

Feeding rhythms were inverted in LF and DF mice and so, the most parsimonious explanation 347	

is that parasites are sensitive to rhythms related to host metabolism and/or food-entrained oscillators. 348	

Malaria parasites have the capacity to actively alter their replication rate in response to changes in 349	

host nutritional status [58]. Thus, we propose that parasites also possess a mechanism to coordinate 350	

their development with rhythms in the availability of nutritional resources in the blood. Rhythms in 351	

blood glucose are a well-documented consequence of rhythms in feeding timing [59] and glucose is 352	

an important resource for parasites [60]. We performed an additional experiment to quantify blood 353	

glucose rhythms in (uninfected) LF and DF mice (Fig 6A,B). Despite the homeostatic regulation of 354	

blood glucose, we find its concentration varies across the circadian cycle, and is borderline 355	

significantly rhythmic in DF mice (p = 0.07, peak time = ZT17.84, estimated with CircWave) and 356	

follows a significantly 24-hour pattern in LF mice (p < 0.0001, peak time = ZT8.78). Glucose 357	

rhythms/patterns are shaped by feeding regime (time-of-day: feeding treatment χ2
(18,32) = 45.49, p < 358	

0.0001). Specifically, during the night, DF mice have significantly higher blood glucose than LF mice 359	

(t = 3.41, p = 0.01, difference 20.6mg/dl±7.32) and there is a trend for LF mice to have higher blood 360	

glucose than DF mice during the day (t = -0.94, p = 0.78, difference 7.9mg/dl±9.86). 361	
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Fig 6. Feeding mice in the day time affects blood glucose regulation. A) Mean ± SEM (N=5 per 362	
group) for light fed mice (LF, white bars; allowed access to food from ZT 0-ZT 12) and dark fed mice 363	
(DF, grey bars; allowed access to food from ZT 12-ZT 0). Blood glucose concentration was 364	
measured every ~2 hours for 30 hours from ZT 0. Steep increases in blood glucose concentration 365	
occur as a result of the main bout of feeding in each group (i.e. just after lights on in LF mice and 366	
lights off in DF mice, illustrated by the regions with solid lines connecting before and after the main 367	
bout, see S5 Table), and suggests glucose concentration is inverted during the night. Light and dark 368	
bars indicate lights on and lights off (lights on: ZT 0, lights off: ZT 12). B) as for A, but plotted as a 369	
polar graph with corresponding developmental stages for each treatment group (red, LF; blue DF) 370	
on the perimeter. 371	

Titrating whether glucose availability is high or low would only provide parasites with 372	

information on whether it is likely to be day or night, and a 12-hour window in which to make 373	

developmental transitions should erode synchrony, especially as glucose rhythms are weak in DF 374	

mice. Instead, parasites may use the sharp rise in blood glucose that occurs in both LF and DF mice 375	

after their main bout of feeding as a cue for dusk (S5 Table; regions with solid lines connecting before 376	

Parasite stages
RG - Ring
ET - Early trophozoite
MT - Mid trophozoite
LT - Late trophozoite
SZ - Schizont

Light fed

Dark fed

RG

ET

SZ
LT

MT

RG

ET

MT

LT

SZ

ZT18

ZT0

ZT6

ZT12

100

120

140

160

180

M
ea

n 
gl

uc
os

e 
co

nc
en

tra
tio

n 
(m

g/
dl

)

A

B

24/0 12 24/0
Zeitgeber Time (ZT, hours)

M
e
a
n
 g

lu
co

se
 c

o
n
ce

n
tr

a
ti

o
n
 (

m
g
/d

l)

180

160

140

120

100

Light fed
Dark fed

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2017. ; https://doi.org/10.1101/229674doi: bioRxiv preprint 

https://doi.org/10.1101/229674
http://creativecommons.org/licenses/by-nd/4.0/


	 17	

and after feeding in Fig 6). In line with the effects of feeding timing we observe in mice, a recent 377	

study of humans reveals that changing feeding time can induce a phase-shift in glucose rhythms, 378	

but not insulin rhythms [43]. Alternatively, parasites may be sensitive to fluctuations in other factors 379	

due to rhythms in food intake, such as amino acids [61] or other rhythmic metabolites that appear 380	

briefly in the blood after feeding, changes in oxygen consumption, blood pressure or blood pH 381	

[62,63].  382	

In summary, we show that peripheral, food-entrained host rhythms, but not central, light-383	

entrained host rhythms are responsible for the timing of developmental transitions during the asexual 384	

replication cycles of malaria parasites. Taken together, our observations suggest that parasites have 385	

evolved a time-keeping mechanism that uses daily fluctuations in resource availability (e.g. glucose) 386	

as a time-of-day cue or Zeitgeber to match the phase of asexual development to the host’s SCN 387	

rhythms. Why coordination with the SCN is important remains mysterious. Uncovering how parasites 388	

tell the time could enable an intervention (ecological trap) to “trick” parasites into adopting suboptimal 389	

rhythms for their fitness. 390	

Materials and Methods 391	

We conducted an experiment to investigate whether host peripheral rhythms or those driven by the 392	

SCN affect rhythms in the asexual development of malaria parasites. Our findings stimulated the 393	

analysis of four further data sets stemming from three independent experiments. Here, we detail the 394	

approach used for our main experiment “Effect of feeding time on parasite rhythms” before briefly 395	

outlining the approaches used in the analyses of additional data “Costs of mismatch to host SCN 396	

rhythms”, “Rhythms in cytokines during malaria infection”, “Synchrony during rescheduling” and 397	

“Effect of feeding time on blood glucose rhythms”. 398	

Effect of feeding time on parasite rhythms 399	

Experimental design 400	
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Both LF (“light-fed mice”, access to food during the day, ZT 0-12) and DF (“dark-fed mice”, access 401	

to food during the night, ZT 12-0) mice were kept in the same light-dark cycle to ensure the phase 402	

of their central oscillators did not differ (because the SCN is primarily entrained by light [23]) (Fig 1). 403	

Changing host feeding time in LF mice created an in-host environment where peripheral rhythms 404	

associated with feeding are out of phase with the SCN, but in phase in DF mice. Every 12 hours, 405	

food was added/removed from cages and the cages thoroughly checked for evidence of hoarding, 406	

which was never observed. All experimental infections were initiated with parasites from donor mice 407	

in light-dark cycles that were out of phase with the experimental host’s light-dark cycles by 12 hours, 408	

leading to a 12-hour phase difference in SCN entrainment of donor and host. Specifically, infections 409	

were initiated with ring stage parasites (which appear in the early morning) collected from donor mice 410	

and injected immediately into host mice which experiencing their evening. Parasites that are 411	

mismatched by 12 hours to mice with synchronised SCN and peripheral rhythms (i.e. DF mice) take 412	

around one week to reschedule [64,65,18]. Therefore, if peripheral rhythms but not SCN rhythms, 413	

affect parasite rhythms, by starting infections with mismatched parasites we expected that parasites 414	

in DF mice would reschedule within 7 days whereas rhythms in the LF mice would not change (or 415	

change less). Because rhythms generally return to their original state after perturbation faster than 416	

they can be shifted from homeostasis [66], studying the change in rhythms of mismatched parasites 417	

ensured we could observe any divergence between parasite rhythms in LF and DF mice before host 418	

immune responses and anaemia clear infections.  419	

Parasites and hosts 420	

We used 20 eight-week-old male mice, strain MF1 (in house supplier, University of Edinburgh), 421	

entrained to a reverse lighting schedule for 2 weeks before starting the experiment. After 422	

entrainment, mice were randomly allocated to one of two feeding treatments for the entire experiment 423	

(Fig 1). After 2 weeks on the assigned feeding treatment we recorded body temperature and 424	

locomotor activity for 48 hours. We used BioThermo13 RFID (radio frequency identification) tags 425	

(Biomark, Idaho, USA) in conjunction with a Home Cage Analysis system (Actual HCA, Actual 426	

Analytics Ltd, Edinburgh, Scotland), which enables body temperature and locomotor activity 427	
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readings to be taken every 0.05 seconds without disturbing the animals (using a network of antennae 428	

spaced approximately 10.9 cm apart). Next, all mice were intravenously infected with 1 x 107 429	

Plasmodium chabaudi adami (avirulent genotype, DK) parasitised red blood cells (at ring stage). We 430	

used DK to minimise disruption to host feeding compared to infection with more virulent genotypes 431	

that cause more severe sickness [39]. All mice were blood sampled from the tail vein twice daily 432	

(ZT0 and ZT12) on days 0-5 and every 6 hours from days 6-8 post infection (PI). The densities and 433	

developmental stages of parasites in experimental infections were determined from thin blood 434	

smears (day 2 PI onwards, when parasites become visible in the blood) and red blood cell (RBC) 435	

densities by flow cytometry (Beckman Coulter).  436	

Costs of mismatch to host SCN rhythms 437	

We compared the performance of parasites in our main experiment (in which infections were initiated 438	

with parasites from donor mice that were mismatched to the host’s SCN rhythms by 12 hours), to 439	

the severity of infections when infections are initiated with parasites from donor mice that are 440	

matched to the host’s SCN rhythms. Twelve infections were established in the manner used in our 441	

main experiment (eight-week-old male mice, strain MF1, intravenously infected with 1 x 107 P. 442	

chabaudi DK parasitised RBC), except that donor SCN rhythms were matched to the experimental 443	

host’s SCN rhythm and hosts had access to food day and night. Densities of parasites were 444	

quantified from blood smears and RBC density by flow cytometry on day 6 and 9 PI, respectively. 445	

We chose to compare parasite density in matched infections to LF and DF infections on day 6 PI 446	

because parasites are approaching peak numbers in the blood (before host immunity starts to clear 447	

infections) and their high density facilitates accurate quantification when using microscopy.  448	

Rhythms in cytokines during malaria infection 449	

This experiment probes whether host immune responses mounted during the early phase of malaria 450	

infection could impose development rhythms upon parasites. We entrained N=86 eight-week-old 451	

female mice, strain MF1, to either a reverse lighting schedule (lights on 7pm, lights off 7am, N=43) 452	

or a standard lighting schedule (lights on 7am, lights off 7pm, N=43). Donor mice, infected with P. 453	
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chabaudi genotype AS, were entrained to a standard lighting schedule to generate infections 454	

matched and 12 hours mismatched relative to the SCN in the experimental mice. Mice were 455	

intravenously injected with 1 x 107 parasitised RBC at ring stage. Genotype AS has intermediate 456	

virulence [39] and was used to ensure immune responses were elicited by day 4 PI. We terminally 457	

sampled 4 mice every 3 hours over 30 hours starting on day 4 PI, taking blood smears, red blood 458	

cell counts and collecting plasma for Luminex cytokine assays.  459	

Cytokines were assayed by the Human Immune Monitoring Centre at Stanford University using 460	

mouse 38-plex kits (eBiosciences/Affymetrix) and used according to the manufacturer’s 461	

recommendations with modifications as described below. Briefly, beads were added to a 96-well 462	

plate and washed in a Biotek ELx405 washer. 60uL of plasma per sample was submitted for 463	

processing. Samples were added to the plate containing the mixed antibody-linked beads and 464	

incubated at room temperature for one hour followed by overnight incubation at 4°C with shaking. 465	

Cold and room temperature incubation steps were performed on an orbital shaker at 500-600 rpm. 466	

Following the overnight incubation, plates were washed as above and then a biotinylated detection 467	

antibody was added for 75 minutes at room temperature with shaking. Plates were washed as above 468	

and streptavidin-PE was added. After incubation for 30 minutes at room temperature a wash was 469	

performed as above and reading buffer was added to the wells. Each sample was measured as 470	

singletons. Plates were read using a Luminex 200 instrument with a lower bound of 50 beads per 471	

sample per cytokine. Custom assay control beads by Radix Biosolutions were added to each well. 472	

Synchrony during rescheduling 473	

We staged the parasites from the blood smears collected from the infections used to assay cytokines 474	

(above) to investigate their synchrony during rescheduling. The infections from mismatched donor 475	

mice began 12 hours out of phase with the host SCN rhythms and the CoG for ring stage parasites 476	

reveals they had become rescheduled by 6 hours on day 4 PI. We focus on the ring stage as a phase 477	

marker – for the analysis of synchrony in these data and the divergence between LF and DF 478	

parasites – because rings are the most morphologically distinct, and so, accurately quantified, stage. 479	
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Blood glucose concentration 480	

In a third additional experiment, we entrained 10 eight-week-old male mice, strain MF1, to a standard 481	

lighting schedule for 2 weeks before randomly allocating them to one of two feeding treatments. One 482	

group (N=5) were allowed access to food between ZT 0 and ZT 12 (equivalent to the LF group in 483	

the main experiment) and the other group (N=5) allowed access to food between ZT 12 and ZT 0 484	

(equivalent to the DF group). After 10 days of food restriction we recorded blood glucose 485	

concentration every 2 hours for 30 hours, using an Accu-Chek Performa glucometer. 486	

Data analysis 487	

We used CircWave (version 1.4, developed by R.A. Hut; available from http://www.euclock.org/) to 488	

characterise host and parasite rhythms, and R v. 3.1.3 (The R Foundation for Statistical Computing, 489	

Vienna, Austria) for analysis of summary metrics and non-circadian dynamics of infection. 490	

Specifically, testing for rhythmicity, estimating CoG (a reference point to compare circadian rhythms) 491	

for host (body temperature, locomotor activity, blood glucose concentration) and parasite rhythms, 492	

and amplitude for parasite stage proportions, was carried out with CircWave for each individual 493	

infection. However, the cytokine data display high variation between mice (due to a single sample 494	

from each mouse) so we calculated a more robust estimate of phase than CoG by fitting a sine curve 495	

with a 24h period (using CircWave) and finding the maxima. Linear regression models and 496	

simultaneous inference of group means (using the multcomp R package) were run with R to compare 497	

summary measures that characterise rhythms, parasite performance, glucose concentration and 498	

disease severity. R was also used to construct and compared linear mixed effects models using 499	

which included mouse ID as a random effect (to account for repeated measures from each infection) 500	

to compare dynamics of parasite and RBC density throughout infections, and glucose concentration 501	

throughout the day.  502	
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