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Abstract	
 
The	fast	evolution	of	pathogenic	viruses	has	allowed	for	the	development	of	phylodynamic	
approaches	that	extract	information	about	the	epidemiological	characteristics	of	viral	genomes.	
Thanks	to	advances	in	whole	genome	sequencing,	they	can	be	applied	to	slowly	evolving	
bacterial	pathogens	like	Mycobacterium	tuberculosis.	

In	this	study,	we	investigate	the	epidemiological	dynamics	underlying	two	M.	tuberculosis	
outbreaks	using	phylodynamic	methods.	The	first	outbreak	occurred	in	the	Swiss	city	of	Bern	
(1993-2012)	and	was	caused	by	a	drug-susceptible	strain	belonging	to	the	phylogenetic	M.	
tuberculosis	Lineage	4.	The	second	outbreak	was	caused	by	a	multidrug-resistant	(MDR)	strain	of	
Lineage	2,	imported	from	the	Wat	Tham	Krabok	(WTK)	refugee	camp	in	Thailand	into	California.	

There	is	little	temporal	signal	in	the	Bern	data	set	and	moderate	temporal	signal	in	the	WTK	data	
set.	We	estimate	an	evolutionary	rate	of	0.0039	per	single	nucleotide	polymorphism	(SNP)	per	
year	for	Bern	and	0.0024	per	SNP	per	year	for	WTK.	Nevertheless,	due	to	its	high	sampling	
proportion	(90%)	the	Bern	outbreak	allows	robust	estimation	of	epidemiological	parameters	
despite	the	poor	temporal	signal.	Conversely,	there’s	much	uncertainty	in	the	epidemiological	
estimates	concerning	the	WTK	outbreak,	which	has	a	small	sampling	proportion	(9%).	Our	
results	suggest	that	both	outbreaks	peaked	around	1990,	although	the	Bernese	outbreak	was	
only	detected	in	1993,	and	the	WTK	outbreak	around	2004.	Furthermore,	individuals	were	
infected	for	a	significantly	longer	period	(around	9	years)	in	the	WTK	outbreak	than	in	the	Bern	
outbreak	(4-5	years).		
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Our	work	highlights	both	the	limitations	and	opportunities	of	phylodynamic	analysis	of	
outbreaks	involving	slowly	evolving	pathogens:	(i)	estimation	of	the	evolutionary	rate	is	difficult	
on	outbreak	time	scales	and	(ii)	a	high	sampling	proportion	allows	quantification	of	the	age	of	
the	outbreak	based	on	the	sampling	times,	and	thus	allows	for	robust	estimation	of	
epidemiological	parameters.	

Introduction	
	
Whole	genome	sequencing	(WGS)	of	clinical	M.	tuberculosis	isolates	is	performed	retrospectively	
and	allows	to	confirm/refute	suspected	epidemiological	links	to	identify	individuals	contributing	
to	transmission,	and	explore	drug-resistance	and/or	compensatory	mechanisms	which	emerged	
during	anti-tuberculosis	treatment	[1–6].	Although	WGS	analysis	has	the	potential	to	reveal	more	
complex	epidemiological	dynamics	such	as	how	long	the	outbreak	was	not	controlled,	the	time	
patients	are	infectious	for,	the	proportion	of	sampled	cases,	and	the	transmission	potential	of	
different	strains,	these	epidemiological	parameters	are	rarely	estimated	for	slowly	evolving	
bacterial	pathogens	such	as	M.	tuberculosis	[2,	5,	7].	In	the	context	of	tuberculosis	disease,	
answering	those	questions	may	help	to	evaluate	and	improve	treatment	strategies	and	control	
programs.		

Phylodynamic	analysis	of	real	time	WGS	data	can	shed	light	on	temporal	dynamics	of	disease	
outbreaks,	for	example	to	determine	if	there	is	ongoing	transmission	[5].	Here,	we	employ	
phylodynamic	methods	to	shed	further	light	on	two	M.	tuberculosis	outbreaks.	The	first	outbreak	
was	detected	around	1991	in	the	city	of	Bern,	Switzerland,	where	twenty-two	related	cases,	
mainly	homeless	individuals	and	substance	abusers,	were	identified	initially	[8].	Using	a	novel	
combination	of	strain-specific	SNP	screening	assay	and	targeted	WGS,	a	tuberculosis	cluster	
spanning	21	years	and	involving	68	patients	was	identified	[3,	7].		The	genomic	analysis	revealed	
that	this	outbreak	was	caused	by	a	Lineage	4	strain	(Euro-American)	of	M.	tuberculosis,	and	all	
but	one	showed	no	evidence	of	antibiotic	resistant	conferring	mutations.	The	analysis	revealed	
three	sub-clusters	within	the	outbreak,	one	of	them	associated	to	HIV	coinfection.	

The	second	data	set	consists	of	30	MDR	strains	imported	to	California	during	resettlement	of	
refugees	from	the	refugee	camp	at	Wat	Tham	Krabok	(WTK)	[4].	Whole	genome	analysis	
confirmed	that	the	strains	causing	the	outbreak	were	multidrug-resistant	and	belonged	to	the	
Lineage	2	(East-Asian,	Beijing	genotype)	of	M.	tuberculosis.	Genomic	data	supported	a	single	case	
whose	isolate	occupied	the	central	node	of	the	transmission	network	indicating	the	presence	of	a	
super-spreader.	Epidemiological	data	integrated	with	the	transmission	chain	also	demonstrated	
multiple	independent	importation	events	from	Thailand	with	reactivation	and	transmission	
within	California	over	a	22-year	period.		

In	this	study,	we	aim	to	understand	the	dynamics	of	tuberculosis	outbreaks	by	inferring	
phylogenetic	trees	together	with	epidemiological	parameters,	in	particular,	transmission	and	
recovery	rates,	from	genome	sequence	data	using	phylodynamic	methods.	

Methods	
Reconstruction	of	transmission	dynamics		
First,	we	explored	the	temporal	signal	in	the	sequence	alignments	using	TempEst	[9].	

The	main	analysis	of	both	data	sets	was	done	within	the	Bayesian	MCMC	framework	BEAST2	
[10].	We	assume	that	the	phylogeny	spanned	by	the	genomic	samples	is	a	suitable	approximation	
of	the	transmission	tree,	such	that	we	can	estimate	epidemiological	parameters	simultaneously	
with	the	phylogenetic	tree.	We	employ	two	phylodynamic	methods,	the	birth-death	skyline	plot	
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(BDSKY)	[11]	and	the	multi-type	birth-death	model	(MTBD)	[12].		Both	assume	that	an	infection	
event	can	be	considered	as	the	“birth”	of	a	newly	infected	individual,	while	a	recovery	event	
(successful	treatment)	is	a	“death”.	While	the	BDSKY	model	assumes	that	an	infected	individual	is	
immediately	infectious	upon	infection,	the	MTBD	model	allows	us	to	incorporate	the	fact	that	M.	
tuberculosis	infections	usually	start	with	a	latent	period	in	which	the	infected	individual	is	not	yet	
infectious.	

In	both	analyses	we	employ	a	general	time	reversible	substitution	model	with	gamma	distributed	
rate	heterogeneity	and	a	proportion	of	invariant	sites	(GTR	+	I	+	Γ).	A	relaxed	lognormal	clock	is	
used	to	model	the	variation	of	evolutionary	(substitution)	rates	across	branches,	such	that	we	
estimate	a	mean	clock	rate	q	(per	SNP	per	year)	and	standard	deviation	s	for	the	lognormal	
branch	rate	distribution.	All	parameters	are	estimated	jointly.	The	prior	distributions	used	are	
summarized	in	TABLE 1. 

Phylodynamic	analysis	with	the	birth-death	skyline	model	
The	birth-death	skyline	model	[11]	describes	a	prior	distribution	for	a	transmission	tree	and	is	
based	on	a	stochastic	birth-death	process,	with	birth	(λ),	death	(μ)	and	sampling	(ψ)	rates.	
Individuals	become	non-infectious	upon	sampling	with	probability	r	∈	[0,1]	[13].	Typically,	the	
probability	r	is	close	to	1	if	sampling	is	accompanied	by	successful	treatment.		To	investigate	the	
change	of	epidemiological	dynamics,	the	period	covered	by	the	phylogeny	is	divided	into	
intervals,	and	parameters	are	constant	within	an	interval	but	may	change	between	intervals.	We	
can	estimate	the	effective	reproduction	number	Re,	through	the	alternative	parametrization	of	
the	model	using	the	effective	reproduction	number	Re	=	λ	/(μ	+	rψ),	the	rate	at	which	individuals	
become	non-infectious	δ	=	μ	+	rψ	and	the	sampling	proportion	s	=	ψ	/	(μ	+	ψ)	.	We	employ	m	=	5	
intervals	to	estimate	potential	changes	in	Re,	and	assume	that	δ	is	constant	through	time.	The	
sampling	proportion	s	is	set	to	zero	before	the	first	sample,	and	assumed	to	be	a	positive	
constant	thereafter.		

Phylodynamic	analysis	with	the	multi-type	birth-death	model	–	incorporating	the	latent	period	
The	MTBD	model	allows	us	to	incorporate	and	investigate	the	exposed	phase.	In	the	following	we	
use	the	terms	‘latent’	and	‘exposed’	interchangeably,	referring	to	the	time	during	which	
individuals	are	infected	but	not	yet	infectious.	The	multi-type	version	of	the	birth-death	skyline	
model	[12]	allows	us	to	distinguish	between	two	types	of	infected	individuals:	(i)	those	who	are	
not	yet	infectious	(typically	assigned	to	a	compartment	E),	and	(ii)	those	who	are	infectious	
(compartment	I).	Previous	work	has	indicated	that	phylogenetic	tools	can	estimate	the	overall	
infected	period	(including	the	exposed	and	infectious	phases),	but	that	it	is	difficult	to	estimate	
the	exposed	and	infectious	periods	separately	[14].	Hence,	we	run	three	versions	of	this	analysis,	
with	the	infectious	period	fixed	to	either	6	months	(δ=2),	3	months	(δ=4)	or	2	months	(δ=6)	and	
report	the	results	for	each	of	those	setups.		

	

TABLE	1	

	

	

Mean	
substitut
ion	rate	
q	

Standar
d	
deviatio
n	s	

Effective	
reproduc
tion	
number	
Re		

Recovery	
rate	δ	

Exposed	rate	
σ	

Sampling	
proportio
n	s	

Origin	
of	
sample	

Removal	
(upon	
sampling)	
probability	r	

Bern	
(BDSKY)	

Unif(0,∞)			 Exp(0.33
)	

LogN(0,1)	 LogN	
(exp(0.5)*,1
)	

-	 Beta(45,5)	 Unif(0,
40)	

Unif(0,1)	
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Bern	
(MTBD)	

Unif(0,∞)			 Exp(0.33
)	

LogN(0,1)	 Fixed	to	2,	4	
or	6	

LogN(exp(m),1
)	
m=1/(2-1/δ)*	

Beta(45,5)	 Unif(0,
40)	

Unif(0,1)	

Thailand/	
California	
(BDSKY)	

Unif(0,∞)			 Exp(0.33
)	

LogN(0,1)	 LogN(exp(0.
5)*,1)	

-	 Beta(10,90
)	

Unif(0,
100)	

Unif(0,1)	

*Mean	determined	to	correspond	to	an	infected	duration	(i.e.	the	sum	of	the	exposed	and	infectious	periods)	of	2	years.	

Data	sets	
Sampling	procedures,	strain	isolation,	sequencing,	accession	numbers	for	the	sequences,	and	
sequence	analysis	are	described	in	detail	in	[3].	In	brief,	we	used	the	Illumina	platform	to	
sequence	68	patients	associated	with	the	Bernese	outbreak	and	46	from	the	WTK	outbreak	
spanning	more	than	10	and	36	years,	respectively.	An	alignment	of	133	variable	positions	among	
68	isolates	from	the	Bern	outbreak	[3]	and	an	alignment	of	150	variable	positions	among	30	
Californian	cases	from	the	WTK	outbreak	were	used	[4].	Possible	drug	resistance	conferring	
mutations	as	described	in	[4]	were	excluded	from	the	alignment.	Only	one	isolate	per	patient	was	
included	and	the	isolation	dates	of	the	strains	were	used	as	sampling	times.	

Results	
TB	in	Bern	
The	Lineage	4	Bernese	data	set	shows	positive	correlation	between	genetic	divergence	and	
sampling	time,	but	there	is	little	temporal	signal	(TempEst	R2=0.05).	

The	epidemiological	parameter	estimates	we	obtain	for	the	Bernese	outbreak	largely	agree	
among	the	different	model	specifications.	We	estimate	that	the	temporal	origin	of	the	Bernese	
data	set	was	around	1986	with	the	95%	highest	posterior	density	intervals	(HPD)	ranging	from	
1985	–	1988.		

Assuming	a	model	without	an	exposed	phase	(BDSKY)	we	estimate	an	initial	high	effective	
reproduction	number	Re	of	4.9	(median,	95%	HPD:		2.6-8.1).	Around	1991,	it	declined	drastically,	
staying	below	the	epidemic	threshold	1	for	the	rest	of	the	sampling	period	(Figure	1).	The	
recovery	rate	δ	is	estimated	to	be	0.2	(median),	suggesting	an	infected	period	of	5	years.	The	
sampling	proportion	does	not	deviate	from	its	prior	distribution	and	is	hence	estimated	at	90%.	
We	estimate	that	the	data	set	contains	one	sampled	ancestor	(95%	HPD,	0	–	4),	with	infected	
individuals	being	removed	upon	sampling	with	98%	probability	(95%	HPD,	90-100%).	The	mean	
substitution	rate	for	the	variant	sites	is	estimated	to	be	3.9	x	10-3	(95%	HPD,	2.4	x	10-3	–	6.1	x	10-
3).	Table	2	summarizes	the	median	posterior	estimates	and	their	95%	highest	posterior	density	
(HPD)	intervals.	Figure	2	shows	the	maximum	clade	credibility	that	was	generated	from	the	
posterior	distribution	of	trees	using	TreeAnnotator,	which	is	part	of	BEAST	version	2.4	[10].	

	

TABLE	2	

	

	

Mean	
substit
ution	
rate	q	
per	SNP	
per	
year	

Standard	
deviation	
s	

Effective	
reproduc
tion	
number	
Re		

(before	1992)	

Effective	
reproduct
ion	
number	
Re		

	(after	1992)	

Recovery	
rate	δ	

Exposed	
rate	σ	

Sampling	
proportio
n	s	

Time	of	
epidemic	
origin	of	
sample		

Removal	
(upon	
sampling)	
probabilit
y	r	
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Bern	
(MTBD)	
δ=2	

0.0051 
 
(0.00281
-0.0088) 

0.95 
 
(0.60-1.34) 

2.28 
 
(1.41-3.40) 

0.24 
 
(0.06-0.50) 

2	(fixed)	 0.25 
 
(0.16-0.38) 

0.87 
 
(0.76-0.96) 

1986.75 
 
(1985.03-
1987.47) 

0.98 
 
(0.93-1) 

Bern	
(MTBD)	
δ=4	

0.0057 
 
(0.0029-
0.0106) 

1.00 
 
(0.65-1.44) 

2.25 
 
(1.39-3.33) 

0.22 
 
(0.05-0.47) 

4	(fixed)	 0.24 
 
(0.16-0.34) 

0.85 
 
(0.73-0.95) 

1987.08  
 
(1985.24-
1987.47) 

0.98 
 
(0.93-1) 

Bern	
(MTBD)	
δ=6	

0.0059	

(0.0030-
0.011)	

1.01 
 
(0.65-1.43) 

2.23 
 
(1.39-3.30) 

0.24 
 
(0.06-0.48) 

6	(fixed)	 0.24 
 
(0.16-0.34) 

0.83 
 
(0.71-0.94) 

1987.2  
 
(1985.07-
1987.47) 

0.97 
 
(0.92-1) 

Bern	
(BDSKY)	

0.0039	

(0.0023-
0.0061)	

0.90	

(0.58-
1.27)	

See	Figure	1.	

	

0.20	

(0.12-0.29)	

NA	 0.90	

(0.81-
0.97)	

1986.39	 	

(1985.4-
1987.18)	

0.98 
 
(0.90-1)	

Thailand
/	
California	

0.0024	

(0.0007-
0.0038)	

0.27	

(0.00055-	
0.63)	

See	Figure	3.	

	

0.13	

(0.037-
0.27)	

NA	 0.08	

(0.04-
0.15)	

1975.58	 	

(1935.85-
1993.09)	

0.49 
 
(0.10-1)	

	

Explicit	incorporation	of	the	exposed	period	in	the	MTBD	model	allows	us	to	distinguish	the	
average	duration	that	infected	individuals	remain	infectious.	Due	to	the	computational	
complexity	of	the	model	we	only	allowed	one	change	in	the	effective	reproduction	number	Re	to	
have	occurred	in	1992.	Before	1992,	we	estimate	median	Re	values	around	2.25	and	afterwards	
the	median	estimates	are	significantly	below	the	epidemic	threshold	1.	Under	the	MTBD	model	
we	fixed	the	rate	δ	at	which	infected	individuals	become	non-infectious	to	2,	4	or	6,	suggesting	an	
infected	period	of	6,	3	or	2	months.	The	median	rate	σ	at	which	infected	individuals	become	
infectious	is	around	0.25,	that	is,	on	average	infected	individuals	became	infectious	after	4	years	
in	each	of	the	three	scenarios.	Again,	we	estimate	that	the	data	set	contains	one	sampled	
ancestor,	with	infected	individuals	being	removed	upon	sampling	with	98%	probability.	The	
mean	substitution	rate	for	the	variant	sites	is	estimated	to	be	5.1	x	10-3	(95%	HPD,	2.8	x	10-3	–	8.8	

FIGURE	1:	BERN	REPRODUCTION	NUMBER	THROUGH	TIME	(BDSKY)	

The	median	effective	reproduction	number	(black	line)	with	its	95%	highest	posterior	density	(HPD)	interval	(shaded	
area).	The	grey	bars	display	a	histogram	of	the	number	of	cases	diagnosed	per	year.		
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x	10-3)	when	δ=2,	5.7	x	10-3	(95%	HPD,	2.9	x	10-3	–	1.1	x	10-2)	when	δ=4	and	5.9	x	10-3	(95%	HPD,	
3.0	x	10-3	–	1.1	x	10-2)	when	δ=6	(Table	2).	

FIGURE	2:	BERN	MAXIMUM	CLADE	CREDIBILITY	TREE	

	

	

TB	in	Hmong	migrants	from	Thailand	
The	Lineage	2	WTK	data	set	shows	positive	correlation	between	genetic	divergence	and	
sampling	time,	and	a	moderate	level	of	temporal	signal	(TempEst	R2=0.35).	

We	analysed	this	data	set	under	the	BDSKY	model,	and	allowed	m	=	4	intervals	to	estimate	
changes	in	the	effective	reproduction	number	Re.	The	temporal	origin	of	this	data	set	is	estimated	
around	1976	with	the	95%	HPD	interval	ranging	from	1935	–	1993.	There	is	much	uncertainty	in	
the	estimate	of	the	effective	reproduction	number	Re,	its	median	and	95%	HPD	interval	are	
shown	in	Figure	3.	The	rate	δ	at	which	infected	individuals	become	non-infectious	is	estimated	to	
be	0.13	(median),	suggesting	an	infected	period	of	8	years.	The	median	sampling	proportion	
estimate	is	8%	(95%	HPD,	4	–	15%).	We	estimate	that	the	data	set	contains	no	sampled	ancestors	
(95%	HPD,	0	–	2),	with	the	probability	to	be	removed	upon	sampling	r	=	64%	(95%	HPD,	10	–	
100%).	The	mean	substitution	rate	for	the	variant	sites	is	estimated	to	be	2.4	x	10-3	(95%	HPD,	
7.2	x	10-4	–	3.8	x	10-3).	Figure	4	shows	the	maximum	clade	credibility	that	was	generated	from	
the	posterior	distribution	of	trees	using	TreeAnnotator,	which	is	part	of	BEAST	version	2.4	[10].	
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Due	to	the	large	uncertainty	in	the	BDSKY	estimates	we	did	not	attempt	analysis	of	the	WTK	data	
set	under	the	more	complex	MTBD	model.		

FIGURE	4:	HMONG	MAXIMUM	CLADE	CREDIBILITY	TREE	

	

	

FIGURE	3	

The	median	effective	reproduction	number	(black	line)	with	its	95%	highest	posterior	density	(HPD)	interval	(shaded	
area).	The	grey	bars	display	a	histogram	of	the	number	of	cases	diagnosed	per	year.		
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Discussion	
In	this	study,	we	used	Bayesian	phylodynamic	methods	to	reconstruct	the	epidemiological	
dynamics	of	two	M.	tuberculosis	WGS	data	sets	corresponding	to	two	unrelated	outbreaks.	We	
quantify	the	time	of	the	start	of	the	outbreak,	and	the	effective	reproductive	number	through	
time.		

There	is	much	more	uncertainty	in	the	epidemiological	parameters	estimated	from	the	WTK	
outbreak	than	the	Bern	outbreak.	The	Bernese	outbreak	is	characterized	by	(i)	the	outbreak	
being	restricted	to	the	medium	size	Swiss	city	Bern	and	(ii)	a	large	sampling	proportion.	Indeed,	
many	cases	were	sampled	shortly	after	infection	and	subsequent	cases	have	been	recovered	by	a	
SNP	screening	assay	and	targeted	WGS,	such	that	an	estimated	90%	of	secondary	(i.e.	infectious)	
cases	linked	to	this	outbreak	are	included	in	the	data	set.	This	high	sampling	proportion	and	the	
geographical	containment	of	the	Bernese	outbreak	are	the	likely	cause	of	the	higher	confidence	
of	the	estimates	obtained	for	this	dataset,	because	the	sampling	times	of	sequences	in	a	densely-
sampled	outbreak	are	very	informative	for	the	age	of	an	outbreak,	and	thus	allow	to	time-
calibrate	the	phylogeny	and	quantify	transmission	and	recovery	rates.		On	the	other	hand,	the	
WTK	data	set	has	roughly	half	the	number	of	samples	and	a	much	lower	sampling	proportion	of	
9%	(median	estimate).	Furthermore,	although	the	outbreak	started	in	Thailand,	our	WTK	data	
set	consists	entirely	of	cases	imported	into	California.	This	sparse	outbreak	sample	does	not	
contain	much	information	regarding	the	age	of	the	outbreak,	resulting	in	much	uncertainty	in	the	
epidemiological	estimates.		

	

Our	analyses	were	conducted	using	phylodynamic	methods	implemented	in	the	Bayesian	MCMC	
framework	BEAST	version	2.4	[15],	which	means	that	we	are	estimating	so-called	time-trees	
using	molecular	clock	models.	Before	using	such	models	one	should	explore	the	temporal	signal	
in	sequence	alignments,	which	can	be	done	using	TempEst	[9].	While	both	data	sets	exhibit	a	
positive	correlation	between	genetic	divergence	and	sampling	time,	there	is	a	moderate	level	of	
temporal	signal	only	in	the	WTK	data	set	(R2=0.35).	After	scaling	to	account	for	SNP	alignment,	
we	obtain	a	median	evolutionary	rate	of	6.7	x	10-8	for	the	WTK	outbreak.		The	WTK	data	set	
belongs	to	Lineage	2,	for	which	Duchene	et	al.	[16]	were	unable	to	reliably	determine	the	
evolutionary	rate.	As	outbreak	data	sets	are	often	not	suitable	for	mutation	rate	estimation	this	
estimate	should	be	taken	with	a	grain	of	salt.	For	a	robust	estimate	one	would	want	to	collect	
longitudinal	data	over	a	longer	time	period	[16].	

There	is	little	temporal	signal	in	the	Lineage	4	Bernese	data	set	(R2=0.05),	which	explains	the	
uncertainty	in	our	clock	rate	estimates	of	the	Bernese	outbreak.	Our	results	show	that	the	
estimated	time	of	the	epidemic	origin	and	the	epidemiological	parameters	are	robust	to	the	
differing	clock	rate	estimates,	see	Table	2.		

We	hypothesize	that	the	two	data	sets	are	an	example	of	the	time	dependency	of	molecular	rate	
estimates	[17]:	the	estimates	of	the	evolutionary	rate	for	the	Bernese	outbreak	represent	a	high	
short-term	rate	of	evolution,	whereas	due	to	the	delayed	sampling,	the	WTK	estimate	is	a	low	
longer-term	mutation	rate	of	evolution.	Hence,	our	evolutionary	rate	estimates	are	not	suitable	
for	comparison	between	the	two	M.	tuberculosis	lineages.		

Our	phylodynamic	analyses	allowed	us	to	estimate	the	temporal	dynamics	of	the	Bernese	
outbreak.	Despite	the	fact	that	the	sampling	dates	range	from	1987	to	2011,	our	results	support	
the	hypothesis	that	the	epidemic	peaked	around	1990	[3].	This	indicates	that	the	peak	of	the	
outbreak	occurred	several	years	before	it	was	detected.	Indeed,	most	of	the	transmission	events	
likely	occurred	between	1990	and	1991,	although	the	majority	of	cases	was	only	reported	in	
1993	[3].	This	refutes	the	previous	hypothesis	that	disease	would	have	occurred	shortly	after	
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infection,	with	short	latent	periods	[18],	due	to	the	population	characteristics	in	the	affected	
population	of	the	Bernese	outbreak	(homeless,	substance	abusers,	etc.).		

Both	models	employed	for	analysis	of	the	Bernese	outbreak	(BDSKY	and	MTBD)	suggest	that	the	
average	infected	period	lasted	about	4-5	years.	While	in	BDSKY	the	infected	period	is	equivalent	
to	the	infectious	period,	the	infected	period	in	the	MTBD	model	is	the	sum	of	the	infectious	and	
exposed	periods.	In	the	latter	we	assume	an	infectious	period	of	2,	3	or	6	months	[19],	and	in	
each	of	those	cases	the	exposed	period	is	robustly	estimated	around	4	years.	While	this	means	
that	both	models	agree	on	the	overall	infected	period	to	last	around	4-5	years,	we	know	that	
MTBD	is	the	more	realistic	model.	Hence,	we	conclude	that	an	–	on	average	–	infected	patient	in	
the	Bern	outbreak	was	in	the	latent/exposed	stage	of	the	disease	for	about	4	years	before	
becoming	infectious	and	consequently	being	diagnosed	and	treated	shortly	after	[19].	

For	the	WTK	outbreak,	we	estimated	an	infectious	period	of	eight	years,	which	is	significantly	
higher	than	the	infectious	period	estimated	for	the	Bernese	outbreak	(p-value	<	2.2	x	10-16).	This	
may	be	due	to	a	delay	in	sampling	and	treatment,	due	to	the	sampling	having	taken	place	in	
California	only,	such	that	patients	were	likely	sick	and	infectious	for	longer.	Furthermore,	while	
the	WTK	outbreak	was	caused	by	an	MDR	strain,	the	Bernese	outbreak	was	caused	by	a	sensitive	
strain.	Resistance	is	a	likely	cause	of	delayed	treatment	success	[20].	

Our	study	shows	that	phylodynamic	analysis	of	WGS	data	can	shed	light	on	the	temporal	
dynamics	of	tuberculosis	outbreaks.	Analysis	of	the	Bernese	outbreak	has	revealed	that	even	
when	there	is	little	temporal	signal,	we	can	robustly	estimate	epidemiological	parameters	if	the	
sampling	proportion	is	large.	Conversely,	in	the	WTK	outbreak	there	is	much	uncertainty	in	the	
epidemiological	parameter	estimates	despite	a	moderate	temporal	signal.	This	may	be	due	to	a	
difference	in	transmission	dynamics	in	Thailand	versus	California	as	well	as	the	fact	that	the	
epidemic	peak	likely	occurred	before	the	first	samples	were	taken.			

Overall,	we	believe	that	real	time	outbreak	WGS	together	with	phylodynamic	methods	will	
improve	future	outbreak	investigation	as	phylodynamic	analysis	can	shed	light	on	the	timing	of	
the	epidemic	origin	and	transmission	dynamics	through	time.		
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