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 2

Abstract  22 

To stratify cancer patients for most beneficial therapies, it is a priority to define robust 23 

molecular subtypes using clustering methods and “big data”. If each of these methods produces 24 

different numbers of clusters for the same data, it is difficult to achieve an optimal solution. Here, 25 

we introduce “polyCluster”, a tool that reconciles clusters identified by different methods into 26 

context-specific subtype “communities” using a hypergeometric test or a measure of relative 27 

proportion of common samples. The polycluster was tested using a breast cancer dataset, and latter 28 

using uveal melanoma datasets to identify novel subtype communities with significant metastasis-29 

free prognostic differences. Available at: https://github.com/syspremed/polyClustR  30 

 31 
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Background 40 

 Recently, advances in omics technologies have lead to large volumes of data being collected 41 

on molecular profiles, including gene expression, in various cancers. Cancers of all types exhibit 42 

inter-tumoral (between patient) heterogeneity that can be quantified in part by gene expression. This 43 

heterogeneity can help explain the differential prognosis in cancer patients treated with the same 44 

therapies. A well-established example is the specific efficacy of trastuzumab (Herceptin) in HER2-45 

positive breast cancer [1]. Previously, we have suggested potential differential cetuximab (anti-46 

EGFR therapy) response in colorectal cancer (CRC) subtypes [2]. More recently, trials of 47 

oxaliplatin in Stage II and III CRC found that its effectiveness may be limited to certain subtypes 48 

published by us [2, 3]. In pancreatic cancer, we observed a relatively increased response to 49 

gemcitabine in quasi-mesenchymal (QM) subtype cell lines compared to classical subtype cell lines 50 

[4]. This result corroborates with the finding by Mofitt et al., that patients from basal-like pancreatic 51 

cancer subtype (equivalent to our QM subtype) has improved response to adjvant therapy compared 52 

to classical subtype pancreatic tumors [5].  Similarly, we showed potential subtype-specific 53 

therapies using a panel of breast cancer cell lines and drug response analysis [6]. Nevertheless, for 54 

accurate prediction of therapy responses, the challenge lies in defining robust and clinically relevant 55 

subtypes.  56 

 57 

In breast cancer, where current opinion lies with the existence of 5 intrinsic gene expression 58 

subtypes (basal, HER2/ERBB2, luminal A, luminal B, and normal-like), studies have variously 59 

reported a number of subtypes ranging between 4 [7] and 10 [8]. While multiple factors are 60 

involved in this apparent discrepancy in defining a number of cancer subtypes, the clustering 61 

methodologies can also significantly contribute to this difference. There are various clustering 62 

algorithms that are regularly employed for this purpose, and each has its own strengths according to 63 
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the underlying structure of the data it is applied to. As clustering algorithms have a huge range of 64 

potential applications, selection of the appropriate algorithm to use in any given situation can be 65 

difficult. At the same time, the need for the user to inspect the results of each algorithm over a range 66 

of numbers of clusters (k) and select the optimal solution are often subjective. This situation has 67 

been improved by the adoption of various consensus clustering techniques, which allow for visual 68 

and quantitative examination of multiple re-runs of the same algorithm so the effects of random 69 

starting points can be taken into consideration. 70 

However, consensus clustering does not diminish the influence the choice of algorithm has 71 

on the clustering solution. The application of different consensus clustering algorithms leads to 72 

different number of subtypes (number of clusters, k), and hence, defining the optimal number of 73 

clusters is often challenging. This is due to various factors in the design of the algorithm: whether it 74 

is ‘greedy’, that is, if it makes the locally optimal choice at each individual stage at the possible 75 

expense of finding a global optimum; whether cluster centroids must be located at data points; and 76 

how iterative algorithms evaluate their convergence to a solution are some examples [9]. This 77 

makes the use of a single algorithm to cluster gene expression profiles, as is often done in subtyping 78 

studies, risky. In addition, the clusters found may well be valid, but information about either larger 79 

stratification of the data or small but distinct sub-subtypes of low frequency may be lost [10]. It is 80 

for this reason that finding methods of reconciling optimal clustering solutions identified by 81 

different algorithms is necessary. Cluster reconciliation not only validates the clusters from 82 

different algorithms – it can also reveal in greater detail the structure in the data on the macro and 83 

the micro scale, from broad classifications resulting from a handful of important functional groups, 84 

to rarer and less well-defined sub-subtypes. It also reveals more about the efficacy of the clustering 85 

algorithms themselves [10, 11].  86 

Here, we demonstrate how to identify optimal solutions and define subtype “communities” 87 

by reconciling clusters identified from three different consensus clustering methods - hierarchical 88 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/228551doi: bioRxiv preprint 

https://doi.org/10.1101/228551


 5

clustering (HC) [12, 13], k-means (KM) [14], and non-negative matrix factorization (NMF) [15]. 89 

The clusters were further reconciled using at least two approaches. The first, a hypergeometric test 90 

to determine the probability that two clusters share the same samples by chance, was previously 91 

used to successfully reconcile subtypes of CRC found via clustering in two studies which found 92 

three and five optimal subtypes, respectively [2, 10, 16]. It was determined via this analysis that the 93 

three subtypes could be appropriately divided into the five sub-subtypes. When four further studies 94 

into CRC were published, finding between 3 and 6 optimal clusters [17-20], the Jaccard index was 95 

applied to help understand the relationships between these solutions and find “consensus molecular 96 

subtypes” (CMS) [11]. The second and a new reconciliation measure used here – calculating the 97 

relative proportion of samples in a smaller cluster present in a larger one (termed Eason-98 

Sadanandam index) – differs from measures of cluster similarity such as the Jaccard index in order 99 

to give sub-subtypes a high score, even if they are much smaller than a larger cluster (see Methods 100 

section). 101 

All the above reconciliation methods are part of our new framework or package called 102 

“polyCluster”. The framework is flexible that other methods can be included any time. Here, we 103 

demonstrate how our new framework can be used to identify breast cancer gene expression 104 

“subtype communities” and to compare with existing intrinsic subtypes [7]. Moreover, we have 105 

applied this to uveal melanoma gene expression profiles to define novel gene expression “subtype 106 

communities” with different prognosis and chromosomal aberrations associated with them.  107 

 108 

 109 

 110 

 111 

 112 

 113 
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Results and Discussion 115 

Our reconciliation method (Figure 1) uses a matrix of preprocessed and normalized gene 116 

expression (or any other similar data) and performs the following:  a) applies different consenusus 117 

clustering methods (including NMF, HC and KM) and uses statistical scores (specific to each 118 

method described below) for each clustering to determine the optimal number of clusters; and b) 119 

reconciles the results from different clustering methods and identifies a consensus solution by 120 

creating network of clusters that defines communities of integrated subtypes using methods such as 121 

the hypergeometric test and proportion of maximum intersection (PMI). We then identify the 122 

optimal “community” with highest average silhouette width [21] and compare this reconciliation to 123 

known subtypes, if they exist, for that set of samples. To illustrate this, we used published gene 124 

expression profiles from breast cancer and uveal melanoma as examples. 125 

 126 

Application to reconcile breast cancer “subtype communities” with intrinsic subtypes 127 

Breast cancer subtypes defined by multiple clustering methods 128 

For this purpose, we used breast tumor gene expression data (n = 118) from a published 129 

study [22]. Details of initial clustering of this dataset and selection of k clusters for each algorithm 130 

are provided in Figures S1A-C. Initially, we applied the NMF to the 2258 most highly variable 131 

genes from this Chin data set as selected by standard deviation (SD>0.8). We identified highest 132 

cophenetic correlation coefficient of 0.9997 at k subtypes for NMF kNMF=2 followed by 0.9962 at 133 

kNMF=6. Silhouette width also showed peaks at kNMF at 2 and 6 (Figures S1 A-C). In order to 134 

capture the most heterogeneity, we chose kNMF=6, and named the clusters breast cancer (b)NMF1 to 135 

6. Overall, known subtypes of these samples [22] were significantly associated with these clusters 136 

(Fisher’s exact test; p<0.001). Specifically, the clusters bNMF1, bNMF3 and bNMF4 were 137 

significantly associated with luminal A, basal and luminal B, respectively (hypergeometric test; 138 

false discovery rate; FDR<0.01) (Figure 2A). The basal subtype was also border-line significantly 139 
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associated (FDR=0.2) with bNMF5, suggesting the existence of a sub-subtype of basal breast 140 

cancer that was not identified earlier when subtypes for this dataset were predicted by correlation 141 

with intrinsic subtype signatures [23] [7]. bNMF2 and bNMF6 were not significantly associated 142 

with any of the published subtypes. Gene set enrichment analysis (GSEA) of these unidentified 143 

subtypes revealed associations with metaplastic breast cancer (bNMF2, FDR<0.01) and with 144 

17q21-q25 amplicon gene sets (bNMF6, FDR < 0.1) (Figure S2A-B). Overall, application of NMF 145 

to the Chin data set identified clusters that partially overlapped with published subtypes, and others 146 

with interesting breast cancer biology. 147 

 148 

Since NMF identified extra subtypes in Chin data set, we applied two additional clustering methods 149 

– consensus hierarchical clustering (HC) and K-means (KM). When we applied consensus 150 

hierarchical clustering to the same data, kHC=2 and kHC=6 had the highest silhouette widths. 151 

(Figures S1A and C). The cophenetic coefficient after kHC= 6 does not increase significantly and 152 

the consensus plot showed consensus clusters (Figures S1A and C). Hence, we chose six HC 153 

clusters to again cover the most heterogeneity. The clusters from HC for breast cancer data were 154 

defined as breast cancer (b)HC. As with the NMF clusters, these clusters were significantly 155 

associated with the known subtypes of these samples (Fisher’s exact test; FDR<0.001). The bHC1, 156 

bHC3 and bHC6 clusters were significantly (hypergeometric test; FDR<0.01) associated with basal, 157 

luminal A and normal-like subtypes, respectively (Figure 2B). Both bHC2 and bHC5 were 158 

significantly (FDR<0.01) associated with luminal B. bHC4 was marginally significantly associated 159 

with luminal A subtype, and bHC5 with the ERBB2 (HER2) subtype, with less significance 160 

(FDR<0.2; Figure 2B). 161 

 162 

Additionally, we applied consensus KM clustering to the Chin data set. While both the 163 

cophenetic coefficient and silhouette width showed highest peaks at kKM=3 and 4 (after kKM=2), we 164 
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observed that consensus clustering at these kKMs did not show clear consensus clusters. There were 165 

not large differences in cophenetic coefficient, silhouette width and consensus clusters at kKM 166 

between 4 and 7 (Figure S1A and D). Hence, we chose kKM=7 as an optimal cluster. All of these 167 

KM clusters (defined as breast cancer (b)KM were significantly associated with known breast 168 

cancer subtypes (Figure 2C; Fisher’s exact test; p < 0.001), unlike the NMF and HC clusters. 169 

Specifically, bKM1 and bKM4 were associated with basal, bKM2 with luminal B and bKM3, 170 

bKM5 and bKM6 with luminal A (hypergeometric test; FDR < 0.01). bKM7 was significantly 171 

associated with the ERBB2 subtype, which was not highly significant with any NMF or HC 172 

clusters. bKM3 was marginally associated with the normal-like subtype (FDR=0.08). Direct 173 

comparison of the two basal clusters through GSEA revealed enrichment of multiple gene sets 174 

associated with invasive breast cancer, immunity and cytokines (Figure S2C-F). This clearly 175 

suggests that different clustering algorithms have the inherent capacity to identify distinct clusters. 176 

Here, KM has identified clusters with more significant association to published subtypes.  177 

 178 

Identification of breast cancer “subtype communities”  179 

The existence of multiple clustering solutions defined by different algorithms poses the 180 

question of what number of clusters is optimal, and how they reconcile between different methods. 181 

To address these questions, we chose two different reconciliation methods – hypergeometric test 182 

and proportion of maximum intersection. The results from each of the reconciliation methods are 183 

discussed below.  184 

 185 

Previously, we have used the hypergeometric test to assess enrichment of samples between 186 

two CRC classifications (including ours) as a means of reconciling subtypes [10]. Similarly, we 187 

have used this analysis here to reconcile breast cancer clusters between the three different (NMF, 188 

HC and KM) algorithms utilized above. Subsequently, in order to group those clusters with 189 
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significant similarity into “subtype communities” , we performed network community detection by 190 

applying weighted label propagation method (using FDR values as edge weights) [24]. As a result, 191 

we observed six “subtype communities” (groups of clusters; bHYP1-6) based on this analysis 192 

(Figure 3A). 193 

 194 

There was significant association with the known subtypes and these communities (Fisher’s 195 

exact test; p<0.001). We observed that five communities were primarily and significantly 196 

(hypergeometric test; FDR< 0.05) associated with published breast cancer subtypes – bHYP3 and 197 

bHYP4 with luminal A, bBHYP2 with luminal B and bHYP1 and bHYP6 with basal  (Figures 3A 198 

and S3A). Four of the communities (bHYP1-4) contained clusters from all three clustering 199 

algorithms (Figure 3A). Interestingly, each of the luminal A and basal subtypes were split into two 200 

communities. One basal community (bHYP6) contained the immune-enriched bKM4 cluster. One 201 

of the luminal A communities (bHYP3) contained a number of samples from the ERBB2 subtype in 202 

a cluster that was enriched for a metaplastic breast cancer signature (bNMF2; Figures 3A and 203 

S3A), while the other (bHYP4) contained some luminal B samples in the 17q21-q25 amplicon-204 

enriched cluster (bNMF6; Figures 3A and S3A). Finally, there was a community (bHYP5) with 205 

mixture of normal-like and ERBB2 subtype samples. This community was the most mixed in terms 206 

of intrinsic subtypes. Overall, hypergeometric test-based reconciliation expanded the breast cancer 207 

subtypes to 6 communities.  208 

 209 

Our PMI method is similar to the Jaccard analysis that we used recently to reconcile CRC 210 

subtypes as a part of the CRC Subtyping Consortium (CRCSC) [11], with the difference that it 211 

weights sub-groups of a larger cluster as strongly as identical clusters of the same size (see 212 

Methods). Here, we applied the PMI method to reconcile subtypes from NMF, HC and KM similar 213 

to what we performed using the hypergeometric test. Unlike the hypergeometric method, PMI 214 
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identified five communities (bPMI1 to 5; Figures 3B and S3B), four (bPMI2 to 5) of which were 215 

analogous to hypergeometric communities (bHYP2, 3, 4 and 5). The final community (bPMI1) was 216 

a combination of the two basal hypergeometric communities (bHYP1 and 6). These communities 217 

were significantly associated with known subtypes, overall (Fisher’s exact test; p < 0.001). As 218 

expected, four of the five communities represent luminal A (bPMI3 and 4), luminal B (bPMI2) and 219 

basal (bPMI1) communities (hypergeometric; FDR<0.05). The other community (bPMI5) was a 220 

mixture of HER2/ERBB2 and normal-like (Figures 3B and S3C). 221 

 222 

 To chose optimal “subtype community” between HYP and PMI communities, we calculated 223 

the silhouette width [21] for all samples in the different communities (Figures 3 and S4).  The 224 

average silhouette widths for HYP communities were 0.06 and that for PMI communities were 225 

0.07. Hence, PMI communities with highest average silhouette width were chosen as optimal.  226 

 227 

This application of the pipeline to a well-characterised cancer has demonstrated its ability to 228 

identify new biologically distinct “subtype communities” of patients, alongside those subtypes 229 

which have already been extensively described. We next sought to apply this pipeline to a cancer 230 

with molecular subtypes that have not been explored so comprehensively, although uveal melanoma 231 

classes at gene expression levels are known [25-27]. 232 

 233 

Application to uveal melanoma and identification of novel “subtype communities” 234 

Identification of subtype communities 235 

Compared to breast cancer, uveal melanoma is a cancer type that has not been extensively 236 

subtyped, presumably due to its low incidence. This scarcity of samples makes clustering a 237 

challenge – clusters discovered are less likely to be robust due to their small size. It is in cases such 238 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/228551doi: bioRxiv preprint 

https://doi.org/10.1101/228551


 11

as this where the reconciliation of clusters from multiple algorithms may present benefits in terms 239 

of increasing confidence in the results of clustering. 240 

 241 

As with the breast cancer data, we applied the three clustering algorithms of HC, KM and 242 

NMF to a dataset of the 6146 most variable genes (SD>0.8) from 58 patients with uveal melanoma  243 

(GSE22138, [28]). By performing the same assessment of cophenetic coefficient, silhouette width 244 

and consensus matrices, we discovered four clusters by HC, six clusters by KM and five clusters by 245 

NMF (Figure S5A-D). This demonstrates that different clustering methods yield different clusters 246 

using the same data set. However, reconciling the results from these methods to identify the optimal 247 

number of clusters can characterize the more heterogeneity in uveal melanoma that may be 248 

associated with disease phenotypes such as metastasis and abnormalities in chromosome 3. 249 

 250 

By reconciling these subtypes by a hypergeometric test followed by community detection, 251 

we identified five “subtype communities” of clusters (Figure 4A). When we assessed these 252 

communities for the key molecular feature of chromosome 3 aneuploidy, we discovered a 253 

significant association of these communities with this feature (Fisher’s exact test; p<0.001); one 254 

community – melanoma mHYP2 – was significantly enriched (hypergeometric test; FDR<0.001) 255 

for monosomy, and another (mHYP5) was significantly enriched (FDR< 0.05) for both disomy and 256 

partial monosomy (Figures 4A and S6A). Two of the remaining three communities showed less 257 

significant associations with chromosome 3 disomy (mHYP4) and monosomy (mHYP1; 258 

hypergeometric test; FDR<0.2) respectively, while the final community (mHYP3) was not 259 

significantly enriched for either. A similar pattern of associations was observed when assessing four 260 

“subtype communities” defined by the PMI method (Figure 4B), with one community each 261 

representing monosomy and disomy (mPMI1 and mPMI4, respectively), and one mixed 262 

disomy/partial monosomy/monosomy community (mPMI2) – however the association was not 263 
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statistically significant (Fisher’s exact test; p=0.577).  (Figures 4B and S6B). HYP subtypes were 264 

chosen over PMI subtypes for significant association with known key molecular features of uveal 265 

melanoma and having lower number of samples with negative silhouette width in this cohort 266 

(Figure S7). 267 

 268 

Biological understanding of uveal melanoma subtype communities 269 

Next, we sought to understand these communities by performing GSEA, and discovered that 270 

one of these communities (mHYP1) was significantly enriched (FDR<0.05) for gene sets associated 271 

with immune pathways (e.g. cytokine-cytokine receptor interactions, T cell receptor signaling and 272 

JAK-STAT pathway; FDR<0.05; Figure 5A-D). On the other hand, another subtype (mHYP3) was 273 

associated with neural cell types (e.g. neuron markers, neurotransmitter signaling, neural subtype 274 

glioblastoma; Figure 5E-H; FDR<0.05). The last communities (mHYP2, mHYP4 and mHYP5) did 275 

not significantly associate with any gene sets. This could indicate that mHYP2 enriched for 276 

chromosome 3 monosomy and mHYP4 may be by disomy, may be defined by that particular 277 

phenotype as opposed to a coherent transcriptomic pattern. 278 

 279 

Patient prognostic differences between uveal melanoma subtype communities 280 

Since more than 50% uveal melanoma patients undergo metastasis [28], we assessed the 281 

metastasis-free prognosis of the uveal melanoma subtype communities using the GSE22138 [28] 282 

data set. Among the two highly frequent communities, mHYP2 (37%) showed significantly poorest 283 

metastasis-free prognosis, whereas mHYP5 (28%) showed better prognosis.  Both mHYP4 (20%) 284 

and mHYP1 (11%) communities showed intermediate prognosis (Figure 6A). 285 

 286 

Validation of uveal melanoma subtype communities 287 
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Due to the low frequency of some of these communities in this dataset (5% mHYP3, 11% 288 

mHYP1), we sought to validate them in an independent dataset consisting of 58 patients with uveal 289 

melanoma (GSE44295). Patients were assigned to subtypes based on the correlation of their gene 290 

expression profile with the prediction analysis of microarrays (PAM) [29] centroids of each 291 

community. In the validation cohort, 31% of patients were assigned to the mHYP1 (immune-292 

enriched) group, 19% mHYP2 (monosomy-enriched), 14% mHYP3 (neural-enriched), 5% mHYP4 293 

(undetermined) and 31% mHYP5 (disomy/partial monosomy-enriched). In terms of prognosis, 294 

these groups showed statistically significant differential metastasis-free survival (p = 0.00747; 295 

Figure 6B). Analogous to the previous dataset, mHYP2 and mHYP5 communities showed poor and 296 

good prognosis respectively. While mHYP1 showed intermediate prognosis, mHYP4 couldn’t be 297 

assessed due to low sample size of only 5% (n=3). Interestingly and similar to the training 298 

(GSE22138) dataset, 82% of mHYP2 (monosomy-enriched) group in the validation cohort 299 

underwent metastasis during follow-up, compared to only 11% of the mHYP5 (disomy/partial 300 

monosomy-enriched) group patients. In addition, 33% of intermediate prognostic mHYP4 301 

(undetermined) and 44% mixed prognostic mHYP1 (immune-enriched) patients experienced 302 

metastasis. With increased frequency of mHYP3 (neural-enriched) community, we observed that it 303 

has poor overall survival and 57% of the mHYP3 samples were undergoing metastasis (Figure 6B). 304 

Overall, this identifies and validates novel uveal melanoma subtype communities and their 305 

prognostic significance. 306 

 307 

Comparison of subtype communities to known uveal melanoma classes 308 

Previously, transcriptomic subtypes of uveal melanoma have been defined by clustering of 309 

gene expression profiles. Two classes were discovered – class 1, with good prognosis and 310 

association with chromosome 3 disomy; and class 2, with poor prognosis, associated with 311 

chromosome 3 monosomy and metastasis [25-27]. To reconcile these communities with the gene 312 
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expression subtypes, we checked for gene set enrichment of the gene signatures [26] for class 1 and 313 

class 2 uveal melanomas in this cohort. The class 2 signature was enriched and borderline enriched 314 

in the mHYP1 community (immune-enriched; FDR < 0.001; Figure 6C) and mHYP2 (monosomy; 315 

FDR = 0.27; Figure 6D) groups, respectively, whereas, unexpectedly, the class 1 signature was not 316 

significantly enriched in any other group. This may indicate that the class 1 signature may be a 317 

heterogeneous set of patients who are not confined to any of our given community. Overall, this 318 

suggest that our novel uveal melanoma subtype communities reveal additional heterogeneity with 319 

clinical significance that requires further investigation.  320 

 321 

Conclusions 322 

These results demonstrate that no one clustering algorithm should be relied on to produce 323 

clusters which are robust and capture all heterogeneity in a dataset. Instead, multiple algorithms 324 

should be applied to the same dataset, and their results compared and reconciled. Our polyCluster 325 

tool provides a straightforward interface to cluster datasets using multiple algorithms, provides 326 

statistics on the quality of each clustering, and allows the user to fully understand how each result is 327 

related through multiple reconciliations. The demonstration that some low-frequency clusters – 328 

which may be lost or discarded as outliers if only one algorithm is applied – are consistently 329 

identified across algorithms lends credence to their validity, and here such communities were 330 

additionally validated in an independent dataset. Thus, the reconciliation of multiple clustering 331 

results enables finer stratification of patients’ molecular profiles enabling more focused biological 332 

profiling. 333 

 334 

 335 
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Methods  336 

Datasets 337 

The breast cancer dataset [22] consists of 118 gene expression profiles generated from 338 

frozen resected samples. Patients in this were mostly early-stage, and were a mixture of node- and 339 

ER-positive and -negative. The discovery uveal melanoma dataset (GSE22138 [28]) consists of 340 

gene expression profiles for 63 untreated patients, chromosome 3 monosomy status and follow-up 341 

metastasis-free survival information. The validation dataset (GSE44295 [30]) contains 58 gene 342 

expression profiles from enucleation specimens, with metastasis-free survival information. 343 

 344 

Finding the optimal number of clusters 345 

 It is a not optimal for each of the above clustering methods to find local solutions which 346 

depend on the initial conditions, rather than robust clusterings that are stable over various input 347 

parameters. To address this, consensus clustering approaches repeat several iterations of the same 348 

algorithm using different random starting points, and can also perform the clustering over different 349 

subsets of samples. Consensus clustering for each algorithm was performed over a range of k-values 350 

from 2 to 10 and over multiple subsets of the data. The results of the consensus clustering were then 351 

inspected in order to determine the optimal k. Determining the optimal k from visual inspection 352 

alone is subjective, and so quantification of the consensus clustering is required. Here, the 353 

cophenetic correlation coefficient [31] and the silhouette width [21] were used to score each 354 

clustering. 355 

 356 

Hypergeometric test 357 

 Previous works have used the hypergeometric test to determine if different algorithms’ 358 

subtypes correspond to one another [10]. In this pipeline, comparisons can be made between any 359 
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number of clustering algorithms. The hypergeometric test based false discovery rate (FDR) 360 

indicating the significance of the size of the overlap between two clusters was used.  361 

 362 

Statistical analysis 363 

FDR values for enrichment of gene sets were reported as calculated by the Broad Institute’s 364 

GSEA software [32]. Kaplan-Meier analysis was used to assess survival and p-values determined 365 

from the log-rank test. PAM analysis to generate centroids and assign subtypes using Pearson 366 

correlation and gene expression data was done as previously described [11]. 367 

 368 

Software 369 

Code for hierarchical and k-means consensus clustering was adapted from the 370 

ConsensusClusterPlus v1.36.0 [33] R package. NMF was performed via the nmf v0.20.6 R package 371 

[34]. The igraph R package v1.0.1[35] was used for plotting networks and community detection. 372 

Silhouette width was calculated and plotted using the silhouette function from the R package cluster 373 

v2.0.4 [36]. Survival analysis was performed using the survival v2.39-5 R package [37]. GSEA was 374 

performed using the Broad Institute GSEA software [32]. The pipeline described in this paper is 375 

publicly available on GitHub at https://github.com/syspremed/polyClustR.  376 

 377 

 378 

 379 

 380 

 381 
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Figure Legends 518 

Figure 1. An overview of our pipeline for cluster reconciliation. Gene expression – or other 519 

equivalently structured molecular data – is input as a genes by samples matrix. This data is then fed 520 

through multiple consensus clustering algorithms (in this case, HC, KM and NMF) to produce 521 

multiple clustering solutions. These are then reconciled to create “subtype communities” of similar 522 

clusters from across the algorithms’ solutions, by applying community detection to networks 523 

representing the similarity between clusters from all the algorithms. 524 

 525 

Figure 2. Breast cancer subtypes and their association with intrinsic subtypes – application of 526 

polyCluster. (A-B) Similarity of each set of clusters generated by consensus A) NMF, B) HC and 527 

C) KM to the known breast cancer subtypes of each sample (as assigned by correlation to PAM 528 

centroids) using 118 breast cancer samples from a published dataset [22]. A hypergeometric test 529 

was used to test the significance of overlap between the clusters and the known subtypes. bNMF, 530 

bHC and bKM represent NMF, HC and KM subtypes, respectively. Norm – normal-like, lumA – 531 

luminal A and lumB – luminal B subtypes.  532 

 533 

Figure 3. Subtype communities of breast cancer identified using polyCluster. (A) A 534 

hypergeometric (HYP) test and (B) PMI was used to assess the significance of the overlap between 535 

each pair of clusters using Chin breast cancer data set. The resulting FDR corrected p values were 536 

plotted as edge colours/weights in this network, with each node representing a cluster. The size of 537 

each node represents the number of samples that cluster contains, and those nodes in a lighter shade 538 

represent clusters with associations to known subtypes that are not significant (FDR corrected p > 539 

0.05). Gray shading marks dense groups of clusters as defined by network community detection. 540 

bHYP and bPMI represent HYP and PMI subtype breast cancer communities, respectively. 541 

 542 
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Figure 4. Subtype communities of uveal melanoma identified using polyCluster. (A) A 543 

hypergeometric (HYP) test and (B) PMI was used to assess the significance of the overlap between 544 

each pair of clusters using uveal melanoma data set. The resulting FDR corrected p values were 545 

plotted as edge colours/weights in this network, with each node representing a cluster. The size of 546 

each node represents the number of samples that cluster contains, and those nodes in a lighter shade 547 

represent clusters with associations to known subtypes that are not significant (FDR corrected p > 548 

0.05). Gray shading marks dense groups of clusters as defined by network community detection. 549 

mHYP and mPMI represent HYP and PMI subtype melanoma communities, respectively. 550 

 551 

 552 

Figure 5. GSEA enrichment plots of (A) the mHYP1 uveal melanoma community, showing 553 

significant enrichment of immunity-related gene sets, and (B) the mHYP3 uveal melanoma 554 

community, showing significant enrichment of neural-related gene sets. 555 

 556 

Figure 6. Prognosis and GSEA analysis of uveal melanoma subtype communities. (A-B) 557 

Metasisis-free survival in the A) discovery and B) validation cohorts, respectively, was significantly 558 

different between communities. (C-D) GSEA enrichment plots of C) the mHYP1 and (B) the HYP3 559 

uveal melanoma communities, showing significant enrichment of class 2 published subtypes,. 560 

 561 
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