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ABSTRACT 1 
The human gut microbiota comprises a dynamic ecological system that contributes significantly 2 
to human health and disease. The ecological forces that govern community assembly and 3 
stability in the gut microbiota remain unresolved. We developed a generalizable model-guided 4 
framework to predict higher-order consortia from time-resolved measurements of lower-order 5 
assemblages. This method was employed to decipher microbial interactions in a diverse 12-6 
member human gut microbiome synthetic community. We show that microbial growth 7 
parameters and pairwise interactions are the major drivers of multi-species community 8 
dynamics, as opposed to context-dependent (conditional) interactions. The inferred microbial 9 
interaction network as well as a top-down approach to community assembly pinpointed both 10 
ecological driver and responsive species that were significantly modulated by microbial inter-11 
relationships. Our model demonstrated that negative pairwise interactions could generate 12 
history-dependent responses of initial species proportions on physiological timescales that 13 
frequently does not originate from bistability. The model elucidated a topology for robust 14 
coexistence in pairwise assemblages consisting of a negative feedback loop that balances 15 
disparities in monospecies fitness levels. Bayesian statistical methods were used to evaluate 16 
the constraint of model parameters by the experimental data. Measurements of extracellular 17 
metabolites illuminated the metabolic capabilities of monospecies and potential molecular basis 18 
for competitive and cooperative interactions in the community. However, these data failed to 19 
predict influential organisms shaping community assembly. In sum, these methods defined the 20 
ecological roles of key species shaping community assembly and illuminated network design 21 
principles of microbial communities.  22 
 23 
INTRODUCTION 24 
Microbes have evolved in diverse microbial communities that occupy nearly every environment 25 
on Earth, spanning extreme environments such as acid mine drains and hot springs to 26 
multicellular organisms. The gut microbiota is a dense of collection of microorganisms that 27 
inhabits the human gastrointestinal tract1–3 and performs numerous functions to impact human 28 
physiology, nutrition, behavior and development4–9. The core functions of the gut microbiota are 29 
partitioned among genetically distinct populations and integrated into community-level functions 30 
such as resistance to invasion and complex chemical transformations. Such collective functions 31 
are realized by the combined interactions of diverse microbial species operating on multiple time 32 
and spatial scales and could not be achieved by a single monospecies population. The degree 33 
of spatial structuring in the gut microbiota varies across length scales: at a macroscale of 34 
hundreds of micrometers, bacteria cluster into distinct habitats, whereas at a scale of 35 
micrometers intermixing of community members has been observed3,10,11.  36 
 The resilience of microbiomes, defined as the capacity to recover from perturbations, is 37 
strongly linked to microbial diversity. Indeed, a reduction in microbial diversity of the human gut 38 
microbiome is associated with multiple diseases, suggesting that a high-dimensional and 39 
functionally heterogeneous ecosystem promotes human health12. Understanding the molecular 40 
and ecological factors influencing the stability and resilience of the gut microbiota has 41 
implications for the development of targeted interventions to modulate system behaviors. 42 
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Central to this problem is inferring unknown microbial interactions and developing tools to 43 
predict temporal changes in community behaviors in response to environmental stimuli.  44 
 The gut microbiota is composed of hundreds of bacterial species, the majority of which 45 
span the Firmicutes, Bacteroidetes and Actinobacteria phyla13. Constituent strains of the gut 46 
microbiota have been shown to persist over decades, demonstrating that community 47 
membership is stable as a function of time14.  Perturbations to the system such as dietary shifts 48 
or antibiotic administration can shift the operating point of the gut microbiota to an alternative 49 
state15. While the identities of the organisms and microbial co-occurrence relationships across 50 
individuals have been elucidated16, we lack a quantitative understanding of how microbial 51 
interactions shape community assembly, stability and response to perturbations. For example, 52 
the molecular mechanisms that enable coexistence of the dominant phyla Firmicutes and 53 
Bacteroidetes as well as dynamic shifts in the Firmicutes-to-Bacteroidetes ratio, an indicator of 54 
human health17,18 are not well understood8.  55 

The balance between cooperation and competition among constituent organisms 56 
dictates community-level properties such as metabolic activities and stability. Negative 57 
interactions have been shown to dominate microbial interrelationships in synthetic aquatic 58 
microcosms19. However, the prevalence of competition and cooperation in microbial 59 
communities occupying other diverse environments remains elusive. Direct negative 60 
interactions in microbial consortia can originate from competition for resources or space, 61 
biomolecular warfare or production of toxic waste products20. Positive interactions can stem 62 
from metabolite interchange or detoxification of the environment. The plasticity of pairwise 63 
microbial interactions can be augmented by conditional modulation by a third organism (higher-64 
order interactions)21. Ecological driver species, which exhibit a large impact on community 65 
structure and function, represent key nodes in the network that could be manipulated for 66 
achieving maximal control of community behaviors22.  67 

Deciphering microbial interactions is a challenging problem and key step towards 68 
understanding the organizational principles of microbial communities. Computational models at 69 
different resolutions can be used to infer microbial interaction networks23. Dynamic 70 
computational models can be used to predict and analyze temporal behaviors including 71 
response to perturbations and community assembly. Further, tools from dynamical systems 72 
theory can be used to analyze system properties including stability and parameter sensitivity24. 73 
A multitude of uncertainties in model structure and unknown parameters precludes the 74 
construction of mechanistic models that represents the bipartite network of metabolite-mediated 75 
interactions in microbial consortia. Generalized Lotka-Volterra (gLV) is a reduced complexity 76 
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ordinary differential equation model that represents microbial communities with a limited number 77 
of parameters that can be deduced from properly collected time-series data.  78 

Here we develop a systematic modeling and experimental pipeline to dissect the 79 
microbial interactions shaping the assembly of a synthetic community composed of 12 diverse 80 
species spanning major phyla of the human gut microbiota including Bacteroidetes, Firmicutes, 81 
Actinobacteria, and Proteobacteria. Time-resolved measurements of monospecies and pairwise 82 
assemblages were used to train a predictive dynamic computational model of multi-species 83 
communities. The network interaction pattern revealed influential and ecologically responsive 84 
organisms and was used to define the roles of constituent community members. Bacteroidetes 85 
exhibited an overall negative impact on the community, whereas specific members of 86 
Actinobacteria and Firmicutes displayed numerous cooperative inter-relationships. Pairwise 87 
topologies linked by positive and negative inter-relationships exhibited a broad parameter 88 
regime for stable coexistence in the model, providing insights into the networks that promote 89 
coexistence among phyla in the gut microbiota. The model showed that pairwise consortia that 90 
displayed history-dependent responses of initial species proportions were enriched for negative 91 
interactions and this behavior frequently did not arise from bistability, highlighting that 92 
community assembly can occur over a broad range of timescales. The metabolic capabilities of 93 
monospecies were elucidated using exo-metabolomics profiling and these data pinpointed a set 94 
of metabolites predicted to mediate positive and negative interactions. However, the metabolite 95 
profiles failed to forecast influential organisms modulating community assembly. Together, 96 
these results show that combinations of pairwise interactions can represent the composite 97 
behaviors of multi-species communities and these networks can realize a diverse repertoire of 98 
qualitatively distinct community responses.  99 
 100 
RESULTS 101 
 102 
Probing the temporal behaviors of monospecies and pairwise assemblages 103 
We aimed to dissect the microbial interactions influencing community assembly in a reduced 104 
complexity model gut community. To this end, a synthetic ecology encompassing prevalent 105 
human-associated intestinal species Bacteroides thetaiotamicron (BT), Bacteroides ovatus 106 
(BO), Bacteroides uniformis (BU), Bacteroides vulgatus (BV), Blautia hydrogenotrophica (BH), 107 
Collinsella aerofaciens (CA), Clostridium hiranonis (CH), Desulfovibrio piger (DP), Eggethella 108 
lenta (EL), Eubacterium rectale (ER), Faecalibacterium prausnitzii (FP) and Prevotella copri 109 
(PC) was designed to mirror the functional and phylogenetic diversity of the natural system (Fig. 110 
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1a) 25. These species have been shown to contribute significantly to human health and are 111 
implicated in multiple human diseases26–31 (Supplementary Table I).  112 
 Synthetic assemblages were arrayed in microtiter plates in an anaerobic chamber using 113 
an automated liquid handling procedure (see Materials & Methods). The communities were 114 
serially transferred at 24 hr intervals to monitor community assembly over many cell generations 115 
and to reflect recurrent temporal perturbations to the gut microbiota such as diet and colonic 116 
transit time (Fig. 1b). Multiplexed 16S rRNA gene sequencing was performed in approximately 117 
12 hr intervals to elucidate the temporal variations in community structure. The relative 118 
abundance for each species was computed as the sum of the read counts for each organism 119 
divided by the total number of reads per condition (see Materials & Methods). Since model 120 
construction is aided by absolute abundance information32,33, the total biomass of the 121 
communities was monitored approximately every 30 min using absorbance at 600 nm (OD600).  122 

 
Figure 1. Experimental design for high-throughput characterization of synthetic human gut 123 
microbiome consortia. (a) Phylogenetic tree based on the 16S rRNA V3/V4 region of a 12-member 124 
synthetic ecology spanning the major phyla in the gut microbiome including Actinobacteria, Bacteroidetes, 125 
Firmicutes and Proteobacteria. (b) Schematic of the experimental design for this study. Species were 126 
combined at a 1:1 or 19:1 initial ratio based on absorbance measurements at 600 nm (OD600) into 127 
microtiter plates using liquid-handling robotic manipulation. Approximately every 12 hr, samples were 128 
collected for multiplexed 16S rRNA gene sequencing (red and purple bars, top). Relative abundance was 129 
measured using multiplexed 16S rRNA gene sequencing of the V3/V4 region using dual-indexed primers 130 
compatible with an Illumina platform (stacked bar plot, bottom right). To mirror periodic fluctuations in 131 
nutrient availability and monitor community assembly over many generations, serial transfers were 132 
performed in approximately 24 intervals (purple bars, top) by transferring the communities into fresh 133 
media using a 1:20 dilution. In parallel, time-resolved OD600 measurements of monospecies and 134 
consortia were performed.  135 
 136 

To infer microbial interactions, time-resolved measurements of monospecies and all 137 
pairwise communities (66 total) were performed using a 1:1 initial abundance ratio based on 138 
OD600 values (PW1 dataset, Fig. S1). Monospecies growth and community composition were 139 
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measured based on absorbance at 600 nm (OD600) and multiplexed 16S rRNA gene 140 
sequencing, respectively (see Materials & Methods). The monospecies displayed a broad range 141 
of growth rates, carrying capacities and lag phases (M dataset, Fig. S2). Pairwise consortia 142 
exhibited diverse growth responses and dynamic behaviors including coexistence or single-143 
species dominance (Fig. S1). The distribution of absolute abundance of each species across 144 
communities in PW1 revealed changes in growth in the presence of a second organism (Fig. 145 
S3). Absolute species abundance was normalized to the monospecies carrying capacity to 146 
evaluate relative changes in the baseline fitness of each organism in the presence of second 147 
species. Bacteroides displayed unimodal distributions with a mean approximately equal to the 148 
monospecies carrying capacity, indicating the majority of species did not significantly modify 149 
Bacteroides fitness. Specific organisms such as PC, FP and DP exhibited bimodal or long-tail 150 
distributions, demonstrating that growth was significantly altered in the presence of specific 151 
organisms.  152 

To further probe the dynamic responses of pairwise consortia, a set of 15 consortia (Fig. 153 
1b) inoculated at two different initial species proportions (initial conditions) based on OD600 154 
values (95% species A, 5% species B and the second wherein these percentages were 155 
reversed) were characterized using our experimental workflow (PW2 dataset, Fig. S4). The 156 
community behaviors in PW2 was classified into the following categories: (1) single species 157 
dominance; (2) stable coexistence wherein both species persisted above a threshold in the 158 
community for the duration of the experiment; (3) history-dependence whereby communities 159 
inoculated using distinct initial species proportions mapped to different community structures, or 160 
(4) other for communities that did not quantitatively satisfy the relative abundance thresholds for 161 
cases 1-3 (Fig. S5). A subset of the communities classified in the other category displayed 162 
weak history-dependent response potentially attributed to variability among biological replicates. 163 
The qualitative behaviors of the remaining 51 pairwise communities were classified based on 164 
community structure at an initial (t = 0) and final (t = 72 hr) time point using the PW2 165 
experimental design wherein the organisms were inoculated using two distinct initial conditions 166 
(95% species A, 5% species B and the reciprocal percentages, Fig. S5a). Our results 167 
demonstrated that approximately 50%, 24% and 12% of pairwise communities displayed 168 
dominance, stable coexistence and history-dependence, respectively (Fig. S5b).  169 
 170 
Construction of a dynamic computational model of the community 171 
A generalizable modeling framework was developed to infer parameters from time-series 172 
measurements of relative abundance and total biomass (OD600). The generalized Lotka-173 
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Volterra (gLV) model represents microbial growth, intra-species interactions and pairwise inter-174 
species interactions and can be used to predict the dynamic behaviors of the community and 175 
analyze system properties such as stability and parameter sensitivity. To minimize overfitting of 176 
the data, a regularized parameter estimation method was implemented that penalized the 177 
magnitude of the parameter values (see Materials & Methods). Three training sets were 178 
evaluated based on predictive capability: (T1) M; (T2) M, PW1; (T3) M, PW1, PW2. A range of 179 
regularization coefficient values (λ) was scanned to balance the goodness of fit to the training 180 
sets and degree of sparsity of the model (Fig. S6). The parameterized gLV model trained on T3 181 
captured the majority of pairwise community temporal responses (Fig. 2a,b). However, the 182 
model did not accurately represent the dynamic behaviors of a set of communities including 183 
BH,EL; PC,CA; BO,CH; ER,BH and PC,BH.  184 

 
Figure 2. Model training of generalized Lotka-Volterra (gLV) to time-resolved measurements of 185 
monospecies and pairwise assemblages. (a) Relative abundance as a function of time for all pairwise 186 
communities. Experimental measurements and model fits are represented as data points and lines, 187 
respectively. The model was trained on T3 (M, PW1 and PW2). In each subplot, time and species relative 188 
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abundance is displayed on the x- and y-axis, respectively. Stars denote datasets with a sum of mean 189 
squared errors greater than a threshold value of 0.15. Error bars represent 1 s.d. from the mean of at 190 
least three biological replicates. (b) Temporal changes in relative abundance of a selected set of pairwise 191 
assemblages inoculated at 5% species A, 95% species B or 95% species A, 5% species B based on 192 
OD600 values. Time and relative abundance are represented by the x and y-axis, respectively. Data 193 
points and lines represent experimental measurements and model fits, respectively. Error bars represent 194 
1 s.d. from the mean of at least three biological replicates. (c) Inferred microbial interaction network 195 
based on model training on T3. Gray and green edges denote negative (αij < 0) and positive (αij > 0) 196 
interactions and the edge width represents the magnitude of the inter-species interaction coefficient. 197 
Node size is proportional to the monospecies steady-state abundance (xe = -µiαii

-1). To highlight 198 
significant interactions, inter-species interaction coefficients with a magnitude less than 1e-5 were not 199 
displayed. 200 
 201 
 Thresholding the magnitude of the inter-species interaction coefficients using a value of 202 
1e-5 yielded a densely connected network whereby 77% of species pairs exhibited an 203 
interaction. Of these interactions, 61% and 16% were positive and negative, respectively (Fig. 204 
2c). Bacteroides (BO, BV, BU and BT) displayed a net negative impact on the network, whereas 205 
EL, BH and CH positively stimulated a large number of species (Fig. S7a). Pairwise networks 206 
were enriched for amensalism (-/0, 36%), competition (-/-, 33%) and predation (+/-, 26%) (Fig. 207 
S7b). FP was the recipient of five positive interactions, suggesting that the fitness of FP is 208 
coupled to the composition of the community (Fig. S3). To determine the contribution of positive 209 
modulators to FP abundance, we examined a 6-member gLV model composed of FP, BH, BU, 210 
BV, CH and DP. The combined set of five positive inter-species interactions was required to 211 
alter FP abundance by >2-fold and single and dual inter-species interactions yielded a moderate 212 
increase in FP abundance at 72 hr (Fig. S7c). Therefore, FP represents an ecologically 213 
responsive organism that is significantly enhanced by the presence of multiple organisms in the 214 
community. Corroborating this notion, FP exhibited significant variability in absolute abundance 215 
across PW1 communities and frequent coexistence with other organisms (Fig. S3, S5). By 216 
contrast, BH (10 incoming interactions) and CH (9 incoming interactions) were negatively 217 
impacted by the largest number of species in the community. Hierarchical clustering of the gLV 218 
interaction coefficients demonstrated that phylogenetic relatedness was not a dominant 219 
predictor of microbial inter-relationships with the exception of Bacteroides, which exhibited a 220 
similar interaction pattern (Fig. S8). Therefore, evolutionary similarity was not a major variable 221 
structuring the microbial interaction network34,35.  222 
 223 
Model validation using informative multi-species assemblages   224 
To validate the model, time-resolved measurements of relative abundance of the full (12-225 
member) and all single-species dropout communities (11-member consortia, Fig. 3a) and total 226 
community biomass (Fig. S9) were performed. To determine if the synthetic community could 227 
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recapitulate the abundance pattern observed across human gut microbiome samples, we 228 
compared the abundance profiles in the synthetic community at 72 hr and median relative 229 
abundance across human samples. The median abundance of 7 species in the metagenomics 230 
sequencing data of human fecal samples and mean abundance in the synthetic community 231 
were correlated (ρ = 0.79, P < 0.05)36, suggesting that microbial growth parameters and inter-232 
species interactions are major variables influencing community structure in the human gut 233 
microbiota (Fig. S10).  234 

Characterization of the temporal variation in community structure in the presence and 235 
absence of each organism elucidated the contributions of single species to community 236 
assembly. The absence of EL, BO or BU significantly altered community assembly compared to 237 
the full community, whereas elimination of all remaining organisms did not notably change 238 
community structure as a function of time (Fig. S11a). Further, the EL- consortium (community 239 
lacking EL) exhibited a lower species diversity scored by Shannon equitability index EH (see 240 
Materials & Methods) for the duration of the experiment compared to the full community, 241 
indicating that EL promotes community diversity (Fig. S11b). In contrast to the EL- community, 242 
the BO- and BU- consortia exhibited a transient decrease in community diversity and delayed 243 
recovery to the full community EH set point by 72 hr. The EL- community exhibited a significantly 244 
lower carrying capacity compared all other multi-species assemblages, indicating that EL plays 245 
an important role in shaping community structure, fitness and diversity (Fig. S9). The impact of 246 
EL on community dynamics was disproportionately related to its stable low abundance in the full 247 
community, in contrast to the influential and highly abundant organisms BO and BU (Fig. 3a). 248 
The species impact score (species relative abundance in the full community at 72 hr plus the 249 
sum of the outgoing gLV inter-species interaction coefficients) was correlated to the difference 250 
in community structure for single-species dropouts (ρ = 0.7, P < 0.05, Fig. S12), suggesting that 251 
the inferred ecological network and relative abundance pattern could explain the contributions of 252 
organisms to multi-species community assembly.  253 
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Figure 3. Validation of the parameterized Lotka-Volterra model to time-series data of informative 254 
multi-species communities. (a) Stacked bar plots of 11 and 12-member multi-species communities 255 
including all single species dropouts (X- represents the absent organism in the community) and the full 256 
community (full). Time and relative abundance are represented on the x and y-axis of each subplot, 257 
respectively. The absent organism is designated at the top of each subplot. Colors represent different 258 
organisms in the community. (b) Box plots of the metrics used to evaluate the predictive capability of 259 
models trained on different datasets. Pearson correlation coefficient for three model training sets (left) 260 
including T1: monospecies (M); T2: M and pairwise 1 (PW1); T3: M, PW1 and pairwise 2 (PW2). Sum of 261 
mean squared errors for the T1, T2 and T3 training sets (right). On each box, the red line represents the 262 
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median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme 263 
data points and the outliers are plotted as red crosses. (c) Heat-map of Pearson correlation coefficients 264 
across time (x-axis) and multi-species communities (y-axis). Pearson correlations were statistically 265 
significant (P-value < 0.05) except for the EL- at 36 hr (P = 0.062), BU- at 61 hr (P = 0.47) and BO- at 266 
24.3 hr (P = 0.051). Circles (black) denote conditions that were not statistically significant. (d) Comparison 267 
between model prediction and experimental data for each organism in the full community as a function of 268 
time. On each subplot, the x and y-axis represents time and relative abundance of each species, 269 
respectively. Data points (red) and lines (blue) denote experimental data and model predictions. Species 270 
names are displayed in the upper left corner of each subplot. Error bars represent 1 s.d. from the mean of 271 
six biological replicates.  272 
 273 
 The predictive capabilities of the parameterized gLV models were evaluated using the 274 
time-series measurements of multi-species communities. Validation metrics included the 275 
Pearson correlation coefficient between the model prediction and relative abundance 276 
measurements and the sum of mean squared errors of relative abundance across all species in 277 
each community (see Materials & Methods). The model trained on T1 (M) exhibited the lowest 278 
median Pearson correlation coefficient (ρ) of 0.45 (not statistically significant) and largest error 279 
compared to the models trained on T2 (M, PW1) and T3 (M, PW1, PW2) (Fig. 3b), 280 
demonstrating that monospecies growth parameters alone are not predictive of multi-species 281 
community assembly. The addition of PW1 to model training significantly increased the 282 
predictive capability of the model (median ρ = 0.79), highlighting that pairwise interactions are 283 
major variables driving community dynamics. The inclusion of PW2 (T3 training set) further 284 
improved the correlation (median ρ = 0.85) and decreased the median error, indicating that the 285 
dynamic responses of communities inoculated using distinct initial species proportions were 286 
informative for inferring model parameters.   287 

The predicted steady-state abundance of monospecies based on the model and the 288 
fraction of each species in the full community at 72 hr were not correlated (ρ = 0.46, P = 0.13), 289 
corroborating the notion that monospecies growth parameters alone failed to forecast temporal 290 
changes in multi-species structures (Fig. S13). Whereas FP exhibited low monospecies fitness 291 
(Fig. S2), this organism displayed the second highest abundance level in the full community, 292 
which was consistent with a large number of positive incoming interactions present in the 293 
inferred gLV network (Figs. 2c, S7a,c, S13). By contrast, BV persisted at low abundance in the 294 
full community and exhibited high steady-state monospecies abundance, consistent with a large 295 
number of inhibitory incoming inter-species interactions (Fig. S7a). Therefore, the pattern of 296 
ecological interactions provided insight into significant deviations in species fitness in the 297 
absence and presence of the community.  298 

To evaluate the predictive capability of the model, the quantitative relationship between 299 
the model and data was examined for each species as a function of time using the parameter 300 
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estimate based on training set T3 (Fig. 3c). Across the majority of time points and multi-species 301 
consortia, the Pearson correlation coefficient between the model prediction and experimental 302 
data explained a high fraction of the variance and was statistically significant. While the model 303 
captured the temporal responses of the majority of species, the model did not reproduce the 304 
behavior of BT in the multi-species consortia and deviated at specific time intervals for BO and 305 
CH (Fig. 3d).  306 
 Incorporating additional data sets into the model training procedure could reduce the 307 
contributions of noise to parameter estimates and provide additional parameter constraints. To 308 
this end, the model was trained on M, PW1, PW2 and the time-resolved measurements of the 309 
full community (training set T4) and was validated on the set of single-species dropout 310 
communities (Fig. S14). The model predictive capability trained on T4 was improved compared 311 
to T3 and explained 81% of the variance (ρ = 0.9) on average of the multi-species community 312 
temporal responses. Model parameter sets based on T3 and T4 were highly correlated with the 313 
exception of a small number of microbial interactions (Fig. S14b). Approximately half (55%) of 314 
the interaction coefficients that were present or absent based on model training on T4 compared 315 
to T3 involved the ecologically influential species EL and BO (Figs S14c, S11a). In sum, the 316 
pairwise gLV model could accurately predict multi-species community dynamics and thus 317 
conditional interactions played a minor role in driving community assembly.   318 
 319 
History dependence and robust coexistence in pairwise assemblages 320 
We analyzed the model to elucidate the origins of history-dependent behaviors in pairwise 321 
communities (Fig. S5). The inferred network based on the model revealed that 6 of the 8 322 
pairwise communities that exhibited history-dependent behaviors were linked via mutual 323 
inhibition and the remaining two networks displayed unidirectional negative interactions (Fig. 324 
4a). To probe the quantitative behaviors of the mutual inhibition network topology, we analyzed 325 
the parameter regime that generates history-dependence and bistability. Bistability is a property 326 
of a dynamical system whereby the system has two stable steady-states and can exhibit long-327 
term dependence of the state of a system on its history, referred to as hysteresis. Bistability is a 328 
possible outcome of a gLV model of pairwise mutual inhibition37.  329 

History-dependent dynamic behavior in the model was defined as the difference in 330 
species abundance following 72 hr for communities inoculated using two distinct initial species 331 
proportions (95% species A, 5% species B and the reciprocal condition) and does not require 332 
bistability. In 5 of the 6 mutual inhibition networks, the pairwise consortia were not operating 333 
within a bistable parameter regime, indicating that the observed history-dependent responses 334 
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stemmed from a prolonged duration of time for community assembly. A range of inter-species 335 
interaction coefficient values beyond the bistable parameter regime displayed memory of initial 336 
conditions that persisted for at least 72 hr, indicating that mutual inhibition can generate 337 
protracted kinetic dependence of the states of a system on its history. The inferred parameters 338 
for the bistable BU, BT consortium were located on the boundary between monostability and 339 
bistability, suggesting that the system's bistable behavior was not robust to parameter variations 340 
(Fig. 4a).  341 
 To investigate the physiological significance of such history-dependent behaviors, we 342 
examined the capacity for history-dependence across a broad range of simulated pairwise 343 
consortia serial dilution rates (Fig. S15). The rate of serial dilution represents colonic transit 344 
time, a major variable shown to modulate human gut microbiome composition, diversity and 345 
functions38,39. Pairwise communities BO,BT; DP,PC and CA,PC exhibited history-dependent 346 
responses up to 168 hr across a range of dilution rates due to strong inhibitory microbial 347 
interactions. Together, our modeling results demonstrate that the frequency of environmental 348 
shifts can promote history-dependent behaviors over physiological timescales (days) in 349 
monostable pairwise communities coupled by mutual or unidirectional negative interactions.   350 
Perturbations that shift the system’s operating point away from steady-state could augment the 351 
duration of time that the system displays history-dependence due to slow timescales for 352 
returning to a steady-state. Together, these results highlight that community assembly can 353 
evolve over long timescales, thus challenging a steady-state operating point assumption for the 354 
human gut microbiome40.  355 
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Figure 4. History-dependence and robust species coexistence in pairwise consortia motifs. (a) 356 
History-dependence can stem from negative inter-species interactions in pairwise communities. Six 357 
pairwise communities that experimentally displayed history-dependent behaviors (Fig. S5b) and are 358 
coupled by mutual inhibitory interactions in the inferred network. Network topology (left) and heat-map of 359 
history-dependent responses (right) across a range of inter-species interaction coefficient values. The line 360 
width and node size of the network diagram represents the magnitude of the inter-species interactions 361 
and steady-state monospecies abundance, respectively. Memory of initial conditions in the model is 362 
defined as the absolute value of the difference in species absolute abundance at 72 hr for communities 363 
initialized at two different conditions: x1 = 0.0158, x2 = 0.0008 or x1 = 0.0008, x2 = 0.0158 using a serial 364 
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dilution experimental design (Fig. 1b). The black box denotes the set of α12 and α21 values yielding 365 
bistability in the model. The circle (red) indicates the inferred parameters based on training set T3. (b) 366 
Coupled positive and negative interactions can yield a broad parameter regime for species coexistence. 367 
Network diagram (inset) represents the magnitude, sign and direction of the inferred inter-species 368 
interactions between CH (x1) and ER (x2). Dashed (gray) and solid (orange) lines indicate a positive and 369 
negative interaction, respectively. The line width and node size denotes the magnitude of the inter-370 
species interaction coefficients and steady-state abundance of the monospecies, respectively. Heat-map 371 
of the ratio of x1 (CH) to x2 (ER) at 72 hr as a function of the inter-species interaction coefficients α12 and 372 
α21. Initial conditions for simulations were x1o = 0.0008, x2o = 0.0158. The circle (black) indicates the 373 
inferred parameters for the CH, ER consortium based on training set T3. (c) Heat-map (right) of the ratio 374 
of x1 to x2 at 72 hr across a broad range of growth rate parameter values (µ1 and µ2). Initial conditions for 375 
simulations were x1o = 0.0008, x2o = 0.0158. The line (white) outlines the parameter regimes for 376 
coexistence and single-species dominance at steady-state. The circle (black) represents the inferred 377 
parameter values for the CH, ER consortium.  378 
 379 
 A subset of pairwise consortia exhibited stable coexistence wherein communities 380 
inoculated at distinct initial species proportions converged to a non-zero abundance level above 381 
a defined threshold that persisted for the duration of the experiment (Fig. 2b, S5). Stable 382 
coexistence whereby both species have non-zero abundance at steady-state is a possible 383 
outcome of the generalized Lotka-Volterra model37. To evaluate the robustness of coexistence 384 
across different network topologies, we analyzed a pairwise consortium composed of CH and 385 
ER that converged to an approximately equal abundance ratio as a function of time from two 386 
disparate initial conditions (Fig. 2b). The inferred pairwise network consisted of a positive and 387 
negative coupling between CH and ER (Fig. 4b). The positive and negative interaction topology 388 
yields a broader parameter regime of coexistence compared to mutual inhibition (Fig. 4b,c, 389 
S16a,b). The combination of positive and negative interactions establishes a negative feedback 390 
loop on the abundance of an organism that has higher monospecies fitness (e.g. CH), thus 391 
leading to stable coexistence with an organism that has lower monospecies fitness (e.g. ER) as 392 
a function of time.  393 

Coexisting species pairs were linked by positive and negative interactions and mutual 394 
inhibition in 50% and 25% of cases, mirroring the disparity in parameter space that realized 395 
coexistence between the two distinct topologies (Fig. 4b,c, S16). The remaining species pairs 396 
that displayed coexistence encompassed unidirectional positive (12.5%), unidirectional negative 397 
(6.25%) and mutualism (6.25%). Several dominant phyla were connected by positive and 398 
negative interactions in the phylum-level interaction network, representing the average inter-399 
species interaction coefficient for all organisms associated with a given phylum, suggesting that 400 
this topology promotes stable coexistence in the gut microbiota (Fig. S17).  401 
 402 
Analysis of model parameter constraint 403 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2017. ; https://doi.org/10.1101/228395doi: bioRxiv preprint 

https://doi.org/10.1101/228395
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

Previous parameter estimation methods have failed to examine the uncertainty in parameter 404 
estimates41,42. Methods from Bayesian statistics can illuminate the uncertainty in the parameter 405 
values using the Posterior distribution, which represents the probability of the parameters given 406 
the data. To this end, the Metropolis Hastings Markov Chain Monte Carlo (MCMC) method was 407 
implemented to randomly sample from the posterior distribution (see Materials & Methods). The 408 
coefficient of variation (CV) of 99% of parameters was less than 0.5 for 200000 iterations, 409 
indicating that the parameters were constrained by the data (Fig. S18a). Parameters that were 410 
present or absent based on training on T4 compared to T3 exhibited a higher median CV value 411 
of 0.22 compared to the unchanged set that had a median CV equal to 0.16 (Figs. S14b,c, 412 
S18b). These data suggest that model training on T4 provided additional constraint for specific 413 
parameters that displayed larger uncertainty in parameter estimates.   414 
 The correlation between all parameter pairs in the model (12090 total combinations) was 415 
evaluated to determine parameter identifiability (Fig. S18c). Parameters that do not influence 416 
observable variables are non-identifiable due to practical or structural reasons and can be 417 
correlated with other parameters43 (Fig. S18d,e). Approximately 11% of parameter pairs 418 
displayed a Pearson correlation coefficient greater or less than 0.6 and -0.6, indicating that the 419 
majority of parameters could be distinguished. Correlated interaction coefficients greater or less 420 
than 0.6 and -0.6 were approximately 7-fold lower magnitude on average than parameters that 421 
exhibited higher identifiability (Fig. S18f). In the parameter estimation procedure, regularization 422 
will lead to the reduction of the magnitude of parameters that do not link to the observable 423 
outputs. 424 
 425 
Interrogating microbial environmental impact using conditioned media 426 
The net environmental impact of a single species at a defined time point can be represented by 427 
conditioned media, which contains secreted metabolites and has been depleted for specific 428 
resources. Positive interactions may be indicative of transformations of media components into 429 
substrates that can be utilized by the recipient species or detoxification of the environment. 430 
Negative interactions may derive from depletion of key nutrients or production of toxic 431 
compounds. In some cases, multiple mechanisms can combine to yield a net positive or 432 
negative effect on growth. Environmental pH is a major variable that can influence microbial 433 
growth responses. In co-culture, the environmental pH may not change as significantly 434 
compared to monoculture growth due to differences in metabolite secretion and degradation in a 435 
community. For example, cross-feeding of metabolic by-products such as acetate in the gut 436 
microbiota is a prevalent mechanism that could alter environmental pH44–46.  437 
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We investigated whether the difference in the recipient species growth responses in the 438 
presence and absence of conditioned media from a source organism could be used to map 439 
microbial inter-relationships (Fig. S19). To this end, a conditioned media impact score RCM was 440 
defined as the ratio of the cumulative sum of the recipient organism growth response for 30 hr in 441 
75% conditioned media to unconditioned media. An RCM > 1 or RCM < 1 indicated a positive or 442 
negative influence of the source organism on the recipient organism. To evaluate the 443 
contribution of pH to the conditioned media growth responses, pH adjusted conditioned media 444 
was prepared by modifying the pH to match the value of the unconditioned media. 445 

Several factors could lead to disagreements between RCM and the gLV inter-species 446 
interaction coefficients, including, for example, a difference in metabolite utilization and 447 
secretion patterns of an organism in the presence of a second species47.  Nevertheless, 75% of 448 
conditions were in qualitative agreement with the inferred gLV interaction coefficients (Fig. S19). 449 
Of the interactions that showed qualitative disagreement between conditioned media and 450 
inferred gLV interaction coefficients, 45% displayed low identifiability based on Metropolis-451 
Hastings MCMC using Pearson correlation coefficient thresholds of -0.6 and 0.6, suggesting 452 
that model parameter uncertainties could also contribute to the observed inconsistencies. 453 
Together, these data corroborated the parameter estimation pipeline and showed that a high 454 
fraction of microbial inter-relationships could be qualitatively deciphered based on conditioned 455 
media responses.  456 
 457 
Elucidating metabolic capabilities of monospecies via exometabolomics  458 
Metabolite interchange is a dominant mode of microbial interactions. To elucidate the bipartite 459 
structure of the metabolite and species network for the synthetic community, exo-metabolomics 460 
profiling of 97 major metabolites was performed on monospecies. The metabolite profiles were 461 
analyzed at an initial and final time point that occurred prior to 24 hr to mirror the community 462 
experimental design with the exception of DP due to insufficient accumulation of biomass for 463 
metabolomics measurements within the 24-hour period (Fig. 1b, S20). Relative changes in 464 
metabolite abundances were computed using the log2 fold change of the final and initial time 465 
point and a significance threshold of at least two-fold was applied to the data (Fig. 5a,b). We 466 
performed clustering analysis of the metabolite utilization and secretion bipartite networks to 467 
identify similarities in metabolite profiles. The clustering pattern did not the recapitulate the 468 
phylogenetic relationships, demonstrating that distantly related species can occupy similar 469 
resource utilization niches (e.g. BH and EL or FP and ER) and closely related species can 470 
utilize distinct resources (e.g. BH and ER) (Fig. 1a).  471 
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 Our results showed a lack of correlation between the number of consumed metabolites 472 
and the total biomass produced by each monospecies at the corresponding time point. CH 473 
consumed the largest total number of metabolites in comparison to other organisms, thus 474 
representing a hub in the metabolite utilization network (Fig. 5c). The total biomass produced by 475 
CH was not proportional to the total number of consumed metabolites or sum of log2 fold 476 
changes in utilized metabolites, suggesting that CH could be funneling energy towards cellular 477 
processes beyond biomass (Figs. 5c, S21a). Corroborating these results, CH exhibited a large 478 
number of positive and negative outgoing edges in the inferred inter-species interaction network 479 
(Fig. S7a).  480 

The sum of log2 fold changes in metabolite secretion was correlated with total 481 
monospecies biomass (Rs = 0.83, P < 0.002), relative abundance in the full community at 72 hr 482 
(Rs = 0.66, P < 0.05) and the number of outgoing negative interactions for each organism (Rs = 483 
0.65, P < 0.05) based on inferred ecological network, where Rs represents the Spearman rank 484 
correlation coefficient (Fig. S21b,c,d). These data suggest that metabolite secretion was a 485 
better predictor of species fitness and negative ecological interactions compared to the 486 
metabolite utilization pattern. The resource co-utilization network pinpointed significant resource 487 
competition among Bacteroides for a set of core metabolites (Fig. 5d). A network of predicted 488 
metabolite interchange illuminated producers (Bacteroidetes), consumers (EL and CA) and 489 
species that played dual roles (FP, ER and CH). Metabolites predicted to mediate the largest 490 
number of pairwise negative interactions via resource competition included methyl-5’-491 
thioadenosine (55 pairs), N-methylanthraniic acid (6 pairs) and dihexose (3 pairs) (Fig. S22a). 492 
Metabolites implicated in three or more positive interactions due to predicted metabolite cross-493 
feeding encompassed cytidine, adenine and 2-ketobutyric acid (Fig. S22b). FP was predicted to 494 
utilize several metabolites produced by BU, BO, PC, BT and CH, suggesting a potential 495 
molecular basis of positive modulation by BU and CH in the inferred inter-species interaction 496 
network (Fig. 2c, Fig. S7a,c). However, the metabolite profiles failed to predict the influential 497 
role of EL in mediating community assembly, fitness and diversity (Fig. 5d,e).  498 
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Figure 5. Exo-metabolomic profiling of major metabolites elucidated the metabolic capabilities of 499 
monospecies. (a) Bipartite network of species (left) and metabolites (right) for metabolites that 500 
decreased by at least two-fold compared to the abundance of each metabolite at the beginning of the 501 
experiment. Colors represent modules containing many overlapping interactions in the network. Network 502 
partitioning into modules was performed using BiMat48. Metabolites in bold were depleted and secreted 503 
by distinct organisms. (b) Bipartite network of species (left) and metabolites (right) for metabolites that 504 
increased in abundance by at least two-fold compared to the beginning of the experiment. Metabolites 505 
highlighted in bold were depleted or secreted by different species. (c) Scatter plot of the number of 506 
consumed metabolites using a threshold of two-fold vs. the OD600 value of the monospecies culture at 507 
the corresponding time point. Error bars represent 1 s.d. from the mean of three biological replicates. (d) 508 
Predicted resource utilization interaction network. Each edge represents at least two co-consumed 509 
metabolites and the edge width is proportional to the number of co-consumed metabolites. Node size is 510 
proportional to the total number of consumed metabolites for each species. (e) Predicted metabolite 511 
interchange network representing metabolites that were secreted or utilized by distinct organisms. Arrows 512 
point from the source species to the consumer organism. Node size and line width are proportional to the 513 
total number of secreted metabolites and number of predicted metabolite interactions, respectively. 514 
Species at the top and bottom of the network are primarily producers or consumers, respectively. 515 
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DISCUSSION 516 
Developing the capabilities to predict microbial community dynamics in response to 517 
environmental stimuli is a first step towards elucidating the organizational principles of microbial 518 
communities and devising strategies for precisely manipulating ecological properties. The 519 
discovery of significant microbial inter-relationships and ecological driver species in the network 520 
can be exploited as novel control parameters for microbiomes. To this end, we developed a 521 
generalized parameter estimation pipeline to build predictive dynamic models of microbial 522 
communities complementary to previously published methods49. In contrast to statistical network 523 
models, dynamic frameworks can be used to extract mathematical principles and probe system 524 
properties such as ecological stability, history-dependence and response to perturbations. 525 
Further, the inferred network can be used to define ecological roles for each species and model 526 
could be harnessed as a predictive tool for designing sub-communities with desired properties. 527 
We capitalized on methods from Bayesian statistics to go beyond a single parameter estimate 528 
to evaluate the uncertainty in parameters given the data. Future work will harness this 529 
information for experimental design by iteratively guiding the selection of informative 530 
experiments to reduce parameter uncertainties and thus enhance the predictive capabilities of 531 
the model.   532 

Our results substantiate the notion that pairwise interactions dominate multi-species 533 
ecological dynamics50. Previous work showed that pairwise phenomenological models of low 534 
dimensional assemblages (2-3 species) trained on an interval of time of Monod-based 535 
community models failed in some cases to predict future dynamic behaviors51. The mechanistic 536 
models considered in this study involved a limited number of metabolites, whereas microbes 537 
likely interact via a high-dimensional vector of metabolites. Future work will explore the 538 
capability of pairwise models to recapitulate the dynamics of mechanistic models that capture 539 
such complexities. Here we show that pairwise interactions can realize diverse behaviors 540 
encompassing history-dependence, coexistence and single-species dominance. Combinations 541 
of such interactions in multi-species assemblages can yield a diverse repertoire of dynamic 542 
behaviors and realize systems-level properties including stability, resistance to invasion and 543 
resilience to disturbances52–54.  544 

We find that negative interactions can promote history-dependent responses over 545 
physiological timescales in response to environmental perturbations, demonstrating that the 546 
timescales of community assembly are contingent on network couplings and growth 547 
parameters. As such, dynamic frameworks are essential for dissecting and forecasting system 548 
behaviors away from steady-state. The steady-state assumption for gut microbiome composition 549 
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is not valid if the timescales of environmental perturbations that steer the system away from 550 
steady-state occur faster than the time required to converge to a steady-state40. Indeed, inputs 551 
to the gut microbiota such as dietary shifts may steer the system away from a steady-state55, 552 
thus forcing the system to operate in a regime outside of steady-state due to prolonged 553 
timescales of community assembly.  554 
   We interrogated a synthetic ecology composed of prevalent human-associated 555 
intestinal species that play major roles in human health and disease (Supplementary Table I). 556 
Our systematic approach to interrogate community assembly rigorously defined the ecological 557 
contributions of community members based on the inter-species interaction patterns. For 558 
example, the pairwise network revealed hubs for negative (Bacteroidetes) and positive 559 
interactions (EL, CH and BH). A top-down community assembly approach to investigate single-560 
species dropouts pinpointed influential organisms that shape multi-species community assembly 561 
including EL, BO and BU. A positive and negative interaction topology that can realize robust 562 
species coexistence linked representative species from the major phyla Bacteriodetes, 563 
Firmicutes and Actinobacteria. Bacteroidetes and Firmicutes have unique and complementary 564 
metabolic specializations in the gut microbiota8, consistent with the numerous positive 565 
interactions deciphered between members of these phyla. Bacteroides and Prevotella have 566 
been shown to be anticorrelated across individuals56,57. A recent study demonstrated that 567 
gnotobiotic mice colonized with BT and PC exhibited lower absolute abundance of both species 568 
compared to mono-colonized gnotobiotic mice, suggesting an inhibitory interaction58. In line with 569 
these results, BT excluded PC in pairwise experiments (Fig. 2a, S5a) and the inferred network 570 
illuminated a negative outgoing interaction from BT to PC (Fig. 2c). A previous study showed 571 
that BT negatively influences BV in metagenomics time-series data from one individual, 572 
corroborating a negative outgoing interaction from BT to BV in the inferred gLV network (Fig. 573 
2c)59. Future work will illuminate the molecular mechanisms that promote stable coexistence 574 
and dynamic shifts in the proportions of key organisms in the gut microbiota in response to 575 
environmental perturbations.   576 

Exo-metabolomics profiling identified CH as a hub for metabolite consumption and BU 577 
and CH as major producers of metabolites in the community. Indeed, CH had the potential for 578 
significant environmental impact via utilization and secretion of a broad repertoire of 579 
metabolites. However, CH was low abundance in the full community and a community lacking 580 
CH did not exhibit significant changes in community dynamics, fitness or diversity compared to 581 
the full community, suggesting that a large number of inhibitory incoming interactions precluded 582 
CH from playing an influential role in community dynamics (Figs. 3d, S7a, S9, S11a). 583 
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Therefore, ecological inter-relationships can limit or enhance an organism's potential for 584 
environmental impact in the context of a community. 585 

The patterns of central metabolite consumption and secretion failed to predict influential 586 
species in community assembly, indicating a complex mapping between metabolite interchange 587 
and microbial interactions. For example, EL--a major driver species in the community--588 
performed transformations on a moderate number of metabolites that were not implicated in 589 
metabolite interchange, whereas the metabolite hub CH did not significantly shape community 590 
assembly. Beyond central metabolites, secondary metabolites or signaling molecules could 591 
contribute to the observed ecological relationships. Metabolite secretion as opposed to 592 
utilization was correlated to the number of negative inter-species interactions, suggesting that 593 
negative interactions may derive from mechanisms beyond resource competition such as 594 
biomolecular warfare or production of toxic metabolic by-products. Negative interactions could 595 
lead to funneling of intracellular resources towards non-metabolic cellular processes such as 596 
stress, thus contributing to the lack of correlation between ecological interactions and resource 597 
utilization.  598 

Microbial interactions have been probed in several synthetic ecologies of varying 599 
complexity including 18 Streptomyces strains60, 4-member freshwater isolates61 and 8 soil 600 
bacterial isolates composed of 6 strains from the Pseudomonas genus50. A significant fraction of 601 
the Streptomyces pairwise communities displayed frequent history-dependent and rare 602 
coexistence behaviors, which could be attributed to numerous mutual inhibitory pairwise 603 
interactions60. By contrast, history-dependent responses were not detected in the synthetic 604 
consortium of 8 soil isolates and coexistence was the prevalent community behavior50. On 605 
timescales of minutes, members of the freshwater isolate community did not display negative 606 
interactions that diminished cellular redox activity61. Here, we interrogated the pairwise 607 
community dynamic behaviors in a 12-member anaerobic community spanning four distinct 608 
phyla. This community showed diverse pairwise behaviors including single-species dominance, 609 
coexistence and history-dependence. Lower energy yields from anaerobic metabolism, which 610 
requires the concerted activities of distinct community members to achieve chemical 611 
transformations, may lead to differences in the pattern of ecological inter-relationships in 612 
anaerobic vs. aerobic communities. Such variations in the molecular mechanisms driving 613 
microbial interactions across distinct environments ranging from soil to the human intestinal 614 
system can manifest as differences in community-level properties including diversity, stability 615 
and dynamic responses to perturbations. 616 
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Positive interactions were observed frequently in the synthetic human gut microbiome 617 
community19. Indeed, the influential species EL positively impacted many species in the 618 
network, demonstrating that cooperation, as opposed to competition, can significantly influence 619 
community assembly, fitness and diversity. Therefore, our results underscore the role of 620 
cooperation in promoting ecological diversity in contrast to a previous study that showed 621 
negative interactions augment community diversity and stability in models of ecological 622 
networks54. Future work will elucidate how the plasticity of pairwise interactions in response to 623 
changeable environments mediates community assembly and stability in higher-dimensional 624 
microbiomes that mirrors the complexity of the natural system.   625 

 626 
 627 
MATERIALS AND METHODS 628 
 629 
Starter culture inoculations 630 
Cells were cultured in an anaerobic chamber (Coy Lab Products) using mixed gas tanks 631 
containing 85% N2, 5% H2 and 10% CO2. Starter cultures for community measurements were 632 
inoculated from 200uL single-use 25% glycerol stocks into 15mL of Anaerobic Basal Broth 633 
(ABB) media (Oxnoid) in an anaerobic chamber and incubated at 37°C without shaking. To 634 
compare strains in similar growth phases that displayed variability in the duration of lag phases, 635 
the strains were partitioned into slow and fast growth categories inoculated 41 hr or 16 hr prior 636 
to the beginning of the experiment, respectively. Strains in the slow growth category included B. 637 
hydrogenotrophica (BH), F. prausnitzii (FP), C. aerofaciens (CA), P. copri (PC), E. rectale (ER), 638 
and D. piger (DP). Fast growing strains encompassed B. uniformis (BU), B. vulgatus (BV), B. 639 
thetaiotaomicron (BT), B. ovatus (BO), C. hiranonis (CH), and E. lenta (EL).   640 
 641 
Microbial community culturing   642 
Each constituent strain was inoculated at 0.01 OD600 in microbial communities unless 643 
otherwise noted. In multi-species assemblages, the total initial OD600 was 0.01 OD600 x n, 644 
where n represents the number of strains in the community. For PW1, each component was 645 
normalized to OD600 of 0.01 and then mixed in equal proportion. For PW2, the major and minor 646 
strains were inoculated at 0.0158 and 0.0008 OD600, respectively. The microbial communities 647 
were arrayed using a liquid-handling robot (Biomek) into 96-well sequencing plates covered with 648 
a gas-permeable seal (Breath-Easy) and incubated at 37°C without shaking. In parallel, aliquots 649 
of the communities were transferred into a 384-well absorbance plate and grown in a F200 650 
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Infinite plate reader (Tecan) for OD600 measurements at 30 min intervals. Samples from the 651 
sequencing plate were collected approximately every 12 hr for a total of 72 hr. At each time 652 
point, samples were mixed and 400 µL was transferred to a 96-well collection plate. The 653 
collection plate was centrifuged at 4000 RCF for 10 min and 380 µL of the supernatant was 654 
removed with a multichannel pipette. Serial transfers were performed at 24 hr intervals into 655 
fresh media using a 1:20 dilution. Species diversity was scored by the Shannon equitability 656 
index EH where 𝐸! = 𝐻   ln 𝑆!! and 𝐻 =   − 𝑝! ln 𝑝!   !

!!! . Here, S, H and pi  denotes the number of 657 

species in the community, Shannon diversity index and relative abundance of the ith species, 658 
respectively.   659 
 660 
Genome extractions  661 
Genomic DNA (gDNA) extractions were performed using the QIAamp 96 DNA QIAcube HT Kit 662 
(Qiagen) with minor modifications including an enzymatic lysis pre-treatment step and the use of 663 
a vacuum manifold to perform column purification steps. Enzymatic lysis was performed as 664 
follows: cell pellets were re-suspended in 180 µL of enzymatic lysis solution containing 20 665 
mg/mL lysozyme (Sigma-Aldrich), 20 mM Tris-HCl pH 8 (Invitrogen), 2 mM EDTA, and 1.2% 666 
Triton-X-100. Samples were incubated at 37°C for 30 min with shaking. Following the initial 667 
incubation, 4 µL of 100 ng/µL RNAse A (Qiagen) was added and samples were incubated at 668 
room temperature for ~1 min prior to administering 125 µL of proteinase K to buffer VXL 669 
(Qiagen). Samples were incubated for an additional 30 min at 56°C with shaking, 325 µL of 670 
ACB buffer was added and the samples were transferred to a 96-well column plate for 671 
purification. Samples were washed with 600 µL of AW1, AW2, and ethanol (Sigma-Aldrich). 672 
Following the ethanol wash, samples were allowed to dry for approximately 5 min. Finally, the 673 
gDNA samples were eluted using AE buffer pre-warmed to 56°C into a 96-tube rack plate and 674 
stored at -20°C.  675 
 676 
Illumina primer design, library preparation and sequencing 677 
Dual-indexed primers were designed for multiplexed next-generation amplicon sequencing on 678 
Illumina platforms. Each 90-99 base pair (bp) forward and reverse primers consisted of an 679 
indexed 5’ Illumina adaptor, heterogeneity spacer62 and 3’ annealing region to amplify 466 bp of 680 
the V3-V4 variable region of the 16S rRNA gene. The set of 64 unique forward (6 bp) and 681 
reverse (8 bp) indices allowed multiplexing of 1536 samples per sequencing run. 682 
Oligonucleotides (Integrated DNA Technologies) were arrayed into 96-well plates using a stock 683 
concentration of 1 µM.  684 
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 Following gDNA extraction, gDNA concentrations were quantified using the Quant-iT 685 
dsDNA High Sensitivity kit (ThermoFisher) and normalized to approximately 3 ng/µL. PCR 686 
amplification of the V3/V4 region of the 16S rRNA gene was performed with Phusion High 687 
Fidelity DNA-polymerase (NEB) for 18-25 cycles using 0.05 µM of each primer. PCR amplicons 688 
were pooled by plate (96 conditions), purified (Zymo Research) and quantified using the Quant-689 
iT dsDNA High Sensitivity kit. The samples were normalized to the lowest sample concentration 690 
and then combined in equal proportions to generate the library. The library was quantified prior 691 
to loading using quantitative real-time PCR (KAPA Biosystems) on a CFX96 real time PCR 692 
detection system (Bio-Rad). Following amplification, the library was diluted to 4.5 nM and 693 
loaded on the Illumina MiSeq platform for 300 bp paired-end sequencing.   694 
 695 
Data analysis pipeline for 16S rRNA gene sequencing 696 
A reference database containing the V3/V4 16S rRNA gene sequences was constructed by 697 
assembling consensus sequences based on next-generation sequencing of monospecies 698 
cultures. To process the sequencing data, the MiSeq Reporter software demultiplexed the 699 
indices and generated the FASTQ files using the bcl2fastq algorithm. Custom Python 2.6.6. 700 
scripts were used for subsequent data processing steps and are available for download at 701 
Github (https://github.com/ryanusahk/NextGenSequencingScripts_RH). First, paired-end reads 702 
are merged using PEAR (Paired-End reAd mergeR) v0.9.063. The global alignment tool in 703 
USEARCH v8.0 mapped each sequence to the reference database. A 97.5% alignment 704 
threshold was implemented to distinguish the closely related species B. thetaiotaomicron and B. 705 
ovatus. Relative abundance was computed by summing the read counts mapping to each 706 
organism divided by the total number of reads per condition. The data was exported for analysis 707 
in MATLAB (Mathworks).    708 
 709 
Conditioned media experiments 710 
Strains were inoculated in 15 mL ABB according to the standard overnight culture inoculation 711 
protocol. To prepare the conditioned media, 10 mL of the source organism cultures were 712 
transferred to 50 mL Falcon tubes and filtered in the anaerobic chamber using Steri-Flip (EMD 713 
Millipore). 10 mL ABB media was filtered as a control. Following pH measurements of the 714 
conditioned and unconditioned medias, 5 mL was filtered a second time. The remaining 5 mL of 715 
each conditioned media was adjusted to the pH of the filtered ABB media using 1M NaOH 716 
or 1M HCl and sterile filtered to represent the pH adjusted condition. The response organisms 717 
were normalized to an OD600 of 0.04 in ABB media. A Biomek 3000 liquid handling robot was 718 
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used to transfer 60 µL of conditioned media into a 384-well plate (Corning) and 20 µL of the 719 
response organisms were added to a final OD600 of 0.01 in 75% conditioned media by volume. 720 
Plates were sealed (Diversified Biotech) and monitored every 30 min for 72 hr in a F200 Tecan 721 
Infinite Pro plate reader at 37°C.  722 
 723 
Bacterial culturing for metabolomics 724 
A large batch of ABB media was prepared and used for all steps in the metabolomics 725 
experiments. ER and FP were grown in ABB media supplemented with 33 mM acetate (Sigma). 726 
Overnight cultures were grown for 72 hours at 37°C in 30 mL of ABB to saturation, diluted to 727 
0.01 OD600 and aliquoted into three 30 mL replicates in a 4-well plate (E&K Scientific). A well 728 
containing media was used to evaluate metabolite degradation as a function of time. Samples 729 
were collected an initial time point immediately following cell inoculation.  730 

At each time point, the wells were mixed via serological pipet prior to sample collection 731 
and 800µL was removed for LC-MS. The samples were centrifuged at 6000 RCF for 5 min and 732 
600 µL of supernatant was removed and filtered with a 0.22 µm filter unit (EMD Millipore). The 733 
supernatant was dispensed and simultaneously filtered into a microcentrifuge tube prior to 734 
freezing at -80°C. To elucidate metabolite profiles, samples were collected at varied time 735 
intervals for each organism prior to 24 hr except DP due to insufficient biomass accumulation for 736 
metabolomics measurements within the 24 hr time interval. 737 
 738 
Exo-metabolomics measurements 739 
Media samples (0.5 mL) were lyophilized until dry in a Labconco 6.5 L lyophilizer (Labconco, 740 
Kansas City, MO) and stored at -80°C until extraction. In preparation for LC-MS analysis, the 741 
dried samples were resuspended in 200 µL MeOH containing internal standards (25 µM 742 
3,6-dihydroxy-4-methylpyridazine, 4-(3,3-dimethyl-ureido)benzoic acid, d5-Benzoic acid, 743 
9-anthracene carboxylic acid, 13C-glucose, 13C-15N-phenylalanine), bath sonicated for 20 mins, 744 
then centrifuge-filtered through a 0.22 µm PVDF membrane (Pall) and placed into glass HPLC 745 
vials.   746 

Liquid chromatography tandem mass spectrometry (LC-MS/MS) was performed on 747 
extracts using an Agilent 1290 Ultra High Performance Liquid Chromatography stack (Agilent 748 
Technologies), with MS and MS/MS data collected using an Agilent 6550 Q-TOF (Agilent 749 
Technologies). Normal phase chromatographic separation was performed using a 150 x 2.1 750 
mm, 5 µm, 200 Å SeQuant ZIC-pHILIC column (EMD Millipore) and guard column: 20 x 2.1 mm, 751 
5 µm (EMD Millipore).  The column was maintained at 40°C and solvent flow rate at a constant 752 
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of 0.25 ml/min with a 2 µL injection volume for each sample.  The HILIC column was 753 
equilibrated with 100% buffer B (90:10 ACN:H2O w/ 5 mM ammonium acetate) for 1.5 minutes, 754 
diluting buffer B down to 50% with buffer A (H2O w/ 5 mM ammonium acetate) for 23.5 minutes, 755 
down to 40% B over 3.2 minutes, to 0% B over 6.8 minutes, and followed by isocratic elution in 756 
100% buffer A for 3 minutes.  Samples were maintained at 4°C. Full MS spectra were collected 757 
from m/z 70-1050, with MS/MS fragmentation data acquired using 10, 20 and 40V collision 758 
energies at approximately 10,000 resolution. Metabolites were identified based on exact mass 759 
and retention time coupled with comparing MS/MS fragmentation spectra to purchased 760 
standards. 761 

LC-MS data was analyzed using the Agilent MassHunter Qualitative Analysis (Agilent 762 
Technologies) followed by the Metabolite Atlas workflow64. A set of criteria was used to evaluate 763 
each of the detected peaks and assign a level of confidence in the compound identification. 764 
Compounds given a positive identification had matching retention time and m/z to a pure 765 
standard run using the same methods described above. A compound with the highest level of 766 
positive identification additionally had a matching MS/MS fragmentation spectrum to either an 767 
outside database (METLIN) or collected in house. Putative identifications were assigned to 768 
compounds with matching m/z and MS/MS spectrum. 769 
 770 
Model 771 
The generalized Lotka-Volterra (gLV) model was used to represent microbial community 772 
dynamics. The gLV model is a set of coupled ordinary differential equations that represent the 773 
temporal variation in species abundance (xi). The model equations are: 774 

𝑑𝑥!
𝑑𝑡

=   𝑥!(𝜇! + 𝛼!"𝑥!

!

!!!

) 

where n, µ, αii, αij represent the number of species, growth rates, intra-species and inter-species 775 
interaction coefficients, respectively. This model requires that the intra-species interaction 776 
coefficients are negative (αii < 0). Inter-species interaction coefficients αij can be positive or 777 
negative, representing a stimulatory or antagonistic microbial interaction.  778 
 779 
Parameter estimation and validation  780 
Custom scripts in MATLAB (Mathworks) were used for model analysis and parameter 781 
estimation. A generalizable parameter estimation framework was developed to infer the 156 (n2 782 
+ n) parameters of the gLV model from time-series species abundance data. The experimental 783 
data included time-series measurements of OD600 for monospecies and communities and 784 
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relative abundance of each species in the communities based on 16S rRNA gene sequencing. It 785 
is challenging to infer model parameters from compositional data generated by next-generation 786 
sequencing since this is an underdetermined problem and there are many solutions that would 787 
yield the same relative abundance output59. The absolute abundance of each species was 788 
estimated by the product of the relative abundance and the OD600 value (total biomass) at 789 
each time point. The nonlinear programming solver requires an initial point to the optimization 790 
problem. The initial point was computed by transforming the gLV system of equations into a 791 
linear system of equations: 792 
 793 

𝑑log  (𝑥!)
𝑑𝑡

= 𝜇! +    𝛼!"𝑥!

!

!!!

 

 794 
A linear least-squares algorithm (MATLAB) with bounds was used to solve for the unknown 795 
parameters using monospecies and time-series pairwise community measurements.  796 

To minimize overfitting of the data, L1 regularization was used to penalize non-zero 797 
parameter values. Experiments were weighted equally in the objective function. A nonlinear 798 
programming solver (MATLAB) was used to minimize the following objective function:  799 

𝐹! =
1
𝑝

!

!!!

(𝑦! − 𝑦!)!
!

!!!

+ 𝜆 Θ
!

!!!

 

 800 
l, m and p denote community datasets, species in each community and time points, 801 
respectively. 𝜆 and Θ represent the regularization coefficient and the parameter vector. 𝑦! and 802 
𝑦! designate the model prediction and experimental measurement of absolute abundance of a 803 
species at a specific time interval k.  804 

In the optimization problem, an optimal 𝜆 value was identified to minimize overfitting of 805 
the data by balancing the goodness of fit and sparsity of the model. To do so, values of 𝜆 were 806 
scanned from 10-5 to 10. An optimization method was implemented to infer the best estimate of 807 
the model parameters using a specific value of λ (λ = 0.0077). The goodness of fit of the model 808 
was computed using the following equation: 809 
 810 

𝐺! =
1
𝑝

(𝑟! − 𝑟!)!
!

!!!

!

!!!

 

  811 
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where m, p, 𝑟 and 𝑟 represent species, time points, predicted relative abundance and measured 812 
relative abundance, respectively. Validation of the model was performed using 𝐺! and the 813 

Pearson correlation coefficient between the model prediction and experimental data of all 814 
species in each community at each time point.   815 
 816 
Parameter uncertainty analysis 817 
Bayes rule introduces the notion of prior and posterior information: 818 

𝑃 𝜃 𝑦 =   
𝑃 𝑦 𝜃 𝑃 𝜃

𝑃 𝑦
 

The parameters and data are represented by 𝜃 and y. We assume that the error is normally 819 
distributed with a mean of 0 using the following equation 𝑦   =   𝑓 𝜃 + 𝜖, where 𝜖~𝑁 0,𝜎! . The 820 
Posterior distribution 𝑃 𝜃 𝑦  represents the uncertainty in the parameters. Since direct sampling 821 
from the Posterior distribution is challenging, the Metropolis-Hastings algorithm was used to 822 
estimate this distribution. Four independent chains were simulated for 500000 iterations from 823 
randomly sampled parameter values using a normal distribution with the mean equal to the best 824 
parameter estimate and standard deviation of 0.3 times the value of each parameter. A chain 825 
simulated for 500000 iterations from the single best estimate was also performed. A burn-in 826 
period of the first 300000 was excluded from the analyses to allow the chain to converge to the 827 
stationary distribution. The Gelman-Rubin potential scale reduction factor (PSRF) was used to 828 
evaluate convergence of the posterior distribution estimate. If the chains have converged to the 829 
target posterior distribution the PRSF should be close to 1. Our results showed that 81% of 830 
parameters had a PRSF less than 3.  831 
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