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Abstract

Biomolecular structure determination has long relied on heuristics based on physical insight; however, recent efforts
to model conformational ensembles and to make sense of sparse, ambiguous, and noisy data have revealed the value of
detailed, quantitative physical models in structure determination. We review these two key challenges, describe different
approaches to physical modeling in structure determination, and illustrate several successes and emerging technologies
enabled by physical modeling.

Highlights

• Quantitative physical modeling is emerging as a key
tool in structure determination

• There are different approaches to incorporate physi-
cal modeling into structure determination

• Modeling conformational ensembles and making sense
of sparse, noisy, and ambiguous data are two chal-
lenges where physical modeling can play a prominent
role

Introduction

Heuristics derived from physical insight have always
played an import role in biomolecular structure determina-
tion. However, more rigorous quantitative physical mod-
els are increasingly used to transform experimental data
into structures and ensembles. Physical approaches be-
come more important as the biomolecular system of study
becomes more flexible and conformationally heterogeneous
(Figure 1), and as experimental data becomes sparse, am-
biguous, or noisy (Figure 2). Systems with these charac-
teristics have recently come into focus, due to both the
recognition of the importance of conformational hetero-
geneity and the emerging range of experimental techniques
that can provide incomplete information about protein
structures [1–5].

Physical modeling has become increasingly powerful
over time, driven by improvements in computer power,
improved models of energy landscapes [6–8], and improved
algorithms for conformational [9–12] and data-driven [13–
17] sampling. Combined with advances in experimental
methodology, these developments are leading to a new era
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in structural biology where physical modeling plays a piv-
otal role [18–20].

In this review, we outline two challenges where physical
modeling can make contributions to structure determina-
tion, overview some recent successes, and provide a per-
spective on emerging areas where physical modeling will
be important.

There are several emerging challenges in structural
biology.

Challenge 1: Modeling conformational ensembles

When we refer to “the structure” of a biomolecular sys-
tem, we are actually referring to some continuous cloud of
structures in the neighborhood of a representative struc-
ture. While historically the single structure viewpoint has
dominated in structural biology, there is increasing recog-
nition of the importance of heterogeneity and dynamics.

Most measurements in structural biology are ensemble
averages, where the observed signal comes from the aver-
age across many molecules. The challenge of interpreting
such averaged data increases as the conformational ensem-
ble becomes more heterogeneous. A simple thought ex-
periment illustrates the central concept (Figure 1), where
three systems have the same average for some observable,
but different conformational distributions. One system
(orange) is tightly clustered, where the average conforma-
tion provides an excellent representation of the ensemble.
Another system (green) has a broad distribution, where
the average conformation is only somewhat representa-
tive. The final system (blue) has a multimodal distribu-
tion, where the average conformation is improbable and
not representative of the underlying ensemble at all. As
the experimental average is the same in each case, model-
ing is critical to making correct inferences about the en-
semble.
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Figure 1: Most experiments measure ensemble averages, which poses
a challenge as systems become more flexible, heterogeneous, and dy-
namic. This figure illustrates a thought experiment, comparing three
different ensembles with the same average for some observable, but
different conformational ensembles.

Challenge 2: Making sense of sparse, ambiguous, and noisy
data

An increasing variety of experimental methods can pro-
vide partial information about the structure of a system [1–
5]. While these experiments provide only an incomplete
picture, their appeal is that they are often applicable to a
wide range of systems, including those where traditional
approaches have proven intractable.

Figure 2 shows several common pathologies. First,
the data may be sparse, often only providing information
about a few degrees of freedom. Second, the data may be
ambiguous, where there are multiple molecular features
that could explain a particular signal, e.g. an NMR ex-
periment might tell us that two protons are close together,
but not specifically which ones. Finally, experimental data
is almost always corrupted by noise, which must be inter-
preted as such to avoid over-fitting. Noise comes in many
forms, ranging from simple additive noise (often modeled
by an appropriate distribution, e.g. Gaussian noise) to
more challenging cases where experimental artifacts lead
to the presence of false-positive and false-negative signals.

What do we mean by physical modeling?

The term “physical modeling” encompasses many ap-
proaches, ranging from physically-motivated heuristics to
models rooted in rigorous statistical mechanics. Heuristic

(a) Sparse: many possible structures agree with data.

(b) Ambiguous: signal can be explained by multiple
 molecular features.

(c) Noisy: some signals are spurious and do not
 correspond to true molecular features. 
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Figure 2: Conceptual illustration of the challenges faced in inte-
grative structural biology and other applications where the data is
sparse, ambiguous, and noisy.

approaches are motivated by physical considerations and
empirical observations. One example is the use of stere-
ochemical restraints during the refinement of X-ray crys-
tal structures [21] that prevent physically impossible bond
lengths and overlap between atoms, even though these un-
realistic features might lead to näıve improvements in the
agreement with experimental data. These heuristics are
not a comprehensive physical description of biomolecular
structure—clearly, one could not hope to predict the cor-
rect fold of a protein using only simple stereochemical re-
straints.

Conversely, statistical mechanics is a rigorous, com-
prehensive theory that connects the probability p(~r) of
observing a particular conformation with the potential en-
ergy V (~r) through the Boltzmann distribution:

p(~r) = Z−1 exp

[
−V (~r)

RT

]
, (1)
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where R is the gas constant, T is the absolute tempera-
ture, and Z is a normalization constant called the partition
function. Typically, the potential energy is modeled using
an empirical approximation called a force field [6, 7]. Sam-
ples from p(~r) are generated using molecular dynamics or
Monte Carlo simulations, often augmented by various en-
hanced sampling algorithms [10, 12, 13, 22].

Rosetta is another example of physical modeling [8].
Although the underlying philosophy and parameterization
of Rosetta differ substantially from those of statistical me-
chanical models, the underlying goal is essentially the same—
to reproduce the conformational landscape of a biomolec-
ular system of interest.

There are different approaches to incorporating
physical models into structure determination.

Constructing structural models of a biomolecular sys-
tem from one or more experimental datasets can be cast
as an inference problem that can be solved through a va-
riety of approaches (reviewed in [19, 20]). However, the
distinctions between these approaches can often be sub-
tle. In this section, we outline several characteristics that
distinguish different approaches.

Characteristic 1: What is the nature of the likelihood func-
tion?

The likelihood, L(θ|D) ∼ P(D|θ), is central to many
methods, where D is the observed data and θ is a set of
parameters specifying the structural ensemble, e.g. atomic
coordinates. The likelihood is typically built by combin-
ing a forward model, which calculates the experimental ob-
servable from a given structure or ensemble, with a noise
model, which calculates the probability of a given devia-
tion from the measured value [23, 24]. Success depends
critically on the quality of the forward model, as any in-
accuracies lead directly to errors in the final ensemble.

One must distinguish between likelihoods that consider
single structures from those that consider ensembles. We
refer to these as single-structure and ensemble likelihoods;
they are also referred to as likelihood functions and func-
tionals, respectively. Use of a single-structure likelihood
will make all members of the ensemble match experiment,
which may be acceptable for systems with only limited het-
erogeneity. But ensemble likelihoods, which ensure that
model averages match observations, are essential for more
heterogeneous systems.

The relationship between structure and observable may
be non-linear. For example, NOE and FRET measure-
ments are proportional to 〈r−6〉, leading to averages domi-
nated by (potentially) rare short-distance conformers. Sim-
ilarly, observation of chemical cross-linking indicates oc-
casional proximity of two residues, but as the cross-links
are irreversible once made, one cannot relate the average
degree of cross-linking to the average distance between
the residues. Furthermore, rather than only providing

averages, some experiments, like EPR or single-molecule
FRET, can provide distributions, which are potentially far
richer. In all cases, the likelihood function must correctly
capture these relationships in order to avoid biasing the
calculated ensemble.

Characteristic 2: What statistical formalism is used?

Maximum likelihood (ML) and Bayesian statistical ap-
proaches are two common ways to solve the structural in-
ference problem. Maximum likelihood methods aim to find
the single best set of parameters, θ̂, that maximize the
likelihood function. Näive ML methods determine the pa-
rameters based entirely on the data, making these methods
sensitive to noise and notoriously prone to over-fitting. To
mitigate this, it is common to use penalized ML methods,
where the aim is to minimize:

θ̂ = arg min
θ

(− lnL(θ|D) + U(θ)) , (2)

where U(θ) is a penalty function that may include sim-
ple restraints on stereochemistry, more detailed energetic
models given by force fields, or ad hoc penalty terms moti-
vated by physical considerations, e.g. the use of restraints
on crystallographic B-factors [25]. Such penalty terms are
a form of regularization and ensure individual conforma-
tions are physically reasonable, preventing over-fitting.

The Bayesian approach offers a different perspective [23,
24], where one seeks to find the joint distribution of pa-
rameters given the data. Bayes theorem is a simple and
elegant statement,

p(θ|D) ∝ L(D|θ)p(θ), (3)

that combines prior understanding with new information
in a statistically consistent way. The quantity of interest
is the posterior distribution, p(θ|D), which is obtained by
combining the likelihood with the prior, p(θ). The prior,
often modeled as the Boltzmann distribution, plays a sim-
ilar role to the penalty terms in ML methods, in that it
encodes our knowledge about what structures are a priori
probable.

A major differences between the two approaches is that
ML methods provide a point estimate of the best param-
eters, whereas Bayesian methods produce a joint distribu-
tion of parameters—or, more commonly, a set of samples
from the joint distribution generated by molecular dynam-
ics or Monte Carlo sampling. Bayesian methods naturally
provide an estimate of uncertainty that also captures the
coupling between different parameters. Bayesian maxi-
mum a posteriori (MAP) estimators seek to find the mode
of the posterior distribution, i.e. the single most likely set
of parameters, blurring the lines between ML and Bayesian
approaches.

Bayesian approaches readily allow for the inclusion of
“nuisance parameters”, which are unobserved, but nev-
ertheless influence the results of inference. Examples in-
clude the true values of experimental observables (opposed
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to noisy observations) or the exact values of empirical
constants used in forward functions. The Bayesian ap-
proach [23, 24] is to treat these as nuisance parameters,
with appropriate priors, that are inferred jointly with the
rest of the model. The resulting distribution gives the
likely values of the nuisance parameters and their influ-
ence on the generated ensemble.

Many approaches used in structural biology do not
neatly fall into either the ML or Bayesian frameworks.
These are often more ad hoc combinations of physically-
motivated scoring functions and sampling strategies that
do not produce a well-defined ensemble. For example,
traditional NMR refinement generates collections of low-
energy structures, but these do not correspond to well-
defined statistical or thermodynamic ensembles. Although
these methods have less rigorous statistical underpinning,
they are very common in structural biology and obviously
quite useful.

Characteristic 3: What principle is used to regularize en-
sembles?

The previous section outlined how penalty terms or pri-
ors can be used to regularize individual structures. How-
ever, without additional regularization, ensemble models
become prone to over-fitting due to poor data-to-parameter
ratios. For example, it is uncommon to see multi-copy
refinement of X-ray crystal structures [26]. Phillips and
co-workers undertook a systematic study of 50 experimen-
tal structures, and found that adding up to, on average,
∼ 10 copies yielded improved models [27], with over-fitting
occurring beyond that. Ensemble regularization methods
can help avoid such over-fitting.

One approach is to use the principle of maximum par-
simony, which seeks to find a minimum representative set
of conformations that adequately explain the experimental
data. These methods are typically based on re-weighting
or selection. A pool of conformations is generated from a
prior distribution using Monte Carlo or molecular dynam-
ics sampling. Weights are then assigned to each confor-
mation to bring calculated averages into agreement with
experimental observations. A variety of approaches are
possible [28–35] with several ways to choose the number
of representative conformations, including user specifica-
tion [29–31], clustering [32, 33], and penalty terms or priors
that favor sparse models where most weights are zero [35].

Another approach to ensemble regularization is based
on the principle of maximum entropy (MaxEnt), which
posits that the distribution that best reflects our current
state of knowledge is one that agrees with experimental ob-
servations, while simultaneously maximizing entropy [36,
37]. The Boltzmann distribution (Eq. 1) is the MaxEnt
distribution over conformations, subject to a constraint
relating the average energy and temperature [37]. When
experimental observations are included, one arrives at [38]

p(~r) =
e−

V (~r)
RT −

∑
i λifi(~r)∫

e−
V (~r)
RT −

∑
i λifi(~r)d~r

, (4)

where V (~r) is the potential energy, and {λi} are Lagrange
multipliers that must be determined in order satisfy agree-
ment between model averages and observations:∫

p(~r)fi(~r)d~r = f
(exp)
i , (5)

where fi(~r) is the function computing the ith observable

and f
(exp)
i is the corresponding experimental observation.

Equivalently, one can minimize the Kullback-Leibler diver-
gence between the inferred ensemble and the Boltzmann
distribution, while satisfying the constraints of Eq. 5.

MaxEnt methods fit the Lagrange multipliers, rather
than fitting the conformations directly. Because there is
one Lagrange multiplier for each observation, the data to
parameter ratio remains constant as the number of confor-
mations increases, which allows for large ensembles with-
out over-fitting. The magnitude of the Lagrange multipli-
ers provides insight into how strongly the prior was per-
turbed to match each experimental observation.

A variety of methods exist for MaxEnt ensemble de-
termination, as recently reviewed in [19, 20]. Approaches
include re-weighting [39, 40], iterative schemes [38, 41–
43], time-dependent potentials [44, 45], and restrained en-
semble or replica-averaged schemes [40, 46–52]. Pitera
and Chodera [38] identified a link between Eq. 4 and re-
strained ensemble schemes, which has been further clari-
fied [40, 52, 53].

Although potentially less prone to over-fitting, care is
still required when using maximum parsimony and Max-
Ent methods. These approaches are sensitive to the qual-
ity of the prior distribution and can be expected to per-
form poorly when the prior distribution differs substan-
tially from the true distribution.

The term “ensemble” is highly overloaded in struc-
tural biology.

In statistical mechanics, the term “ensemble” has a
specific technical meaning: the probability distribution
over all possible conformations of the system under speci-
fied conditions. Unfortunately, in structural biology it has
become common to refer to almost any collection of con-
formations as an ensemble, which can be confusing.

There are several reasons that an ensemble may be
heterogeneous. First, the ensemble may be a thermody-
namic ensemble, where the heterogeneity is intended to
reflect the true physical heterogeneity of the system at
equilibrium. Second, the ensemble may be an uncertainty
ensemble, where the heterogeneity reflects that there may
be many possible structures compatible with sparse, am-
biguous, or noisy data. Third, one can also distinguish
between uncertainty ensembles composed of samples from
well-defined statistical distributions, e.g. from Bayesian
approaches, and those that are simply collections of struc-
tures generated by some procedure. Caution is required
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when interpreting uncertainty ensembles, as the hetero-
geneity present is not necessarily predictive of the true
heterogeneity.

Whenever one interprets an “ensemble” there are sev-
eral key characteristics that must be considered. Does the
ensemble come from a maximum likelihood or Bayesian ap-
proach, or from some other method? Is a single-structure
or ensemble likelihood used? Do the structures sampled
come from a well defined distribution? How are errors
modeled? What priors or penalty functions are used?

Physical modeling offers solutions to challenges in
structural biology.

Hummer and co-workers introduced a Bayesian ensem-
ble refinement method BioEN, a combination of replica en-
semble refinement and the Ensemble Refinement of SAXS
(EROS) method, combining the principles of both restrain-
ing and reweighing [40].

Ensemble heterogeneity explains much of the difficulty
in characterizing intrinsically disordered proteins (IDPs)
experimentally, as they are ensembles of inter-converting
conformations [54, 55]. The Bayesian weighting method is
an approach for characterizing an ensemble of IDPs where
the weights are defined using a Bayesian estimate from
calculated chemical shift data [33]. This method has been
successful in determining the relative fractions of mutated
structures in an ensemble for aggregative proteins [56].

Of all biomolecules, RNA has been perhaps the most
challenging to simulate with molecular dynamics, as cur-
rent force fields are not accurate enough to reproduce ex-
periments [45]. Cesari and co-workers used a MaxEnt ap-
proach to bias RNA simulations to match J-coupling ex-
periments [45] and demonstrate that this can be used to
develop a self-consistent, transferable force field correction.

High ambiguity driven biomolecular docking (HAD-
DOCK), is a data-driven docking approach, that can take
highly ambiguous data from different sources and con-
vert them into distance restraints to guide docking pro-
cesses [57, 58]. HADDOCK has been used to study protein
complex interfaces using cryo-EM data [59] and protein
ligand complexes using sparse intermolecular NOEs [60].

The Integrative Modeling Platform (IMP), is a flexi-
ble software suite aimed at integrative structural biology,
which facilitates development of integrative applications,
models and methods, and allows incorporation of data
from diverse sources [15]. Large protein complex struc-
tures have been modeled with IMP using in vivo FRET
data through a Bayesian approach [61], and using a com-
bination of cross-linking data with biochemical and EM
localization data [62].

Rosetta is an extensive software suite aimed at pro-
tein structure prediction and molecular design. There
are several applications of Rosetta with sparse experimen-
tal data, where Monte Carlo-based fragment assembly is
guided towards native structures by data [63]. Backbone

chemical shifts and distance restraints have been used to
guide structure determination [64]. Also, paramagnetic
relaxation enhancement (PRE) [65], pseudo-contact shift
(PCS) [66], and residual dipolar coupling (RDC) [67] re-
straints have been used to similar effect. Recently, the
RASREC algorithm was developed, which yields better
models with narrower sampling [17, 68] and has been ap-
plied to NMR on deuterated samples up to 40 kDa [69, 70].

Metainference, a recent approach based on Bayesian
inference, can address statistical and systematic errors in
data produced by high-throughput techniques, and can
handle experimental data averaged over multiple states [14].
It is suitable for studying structural heterogeneity in com-
plex macromolecular systems. A combination of Metain-
ference and Parallel-bias Metadynamics (PBMetaD), an
accelerated sampling technique, provides an efficient way
of simultaneously treating error and sampling configura-
tion space in all-atom simulations [9]. Coupling Metain-
ference and Metadynamics has been particularly successful
in characterizing structural ensembles of disordered pep-
tides [71, 72].

Modeling Employing Limited Data (MELD) is a Bayesian
approach that combines statistical mechanics, detailed all-
atom physical models [7], and enhanced sampling to in-
fer protein structures from sparse, ambiguous, and noisy
data [13]. MELD was specifically designed to be robust
in the presence of false-positive signals, and has been ap-
plied to EPR, NMR, and evolutionary data [13], de novo
prediction of protein structures based on simple heuris-
tics [73, 74], and mutagenesis guided peptide-protein dock-
ing [75, 76].

Physical modeling is enabling emerging techniques
in structural biology.

Advances in physical modeling will be key to enabling
technologies for new approaches to structure determina-
tion. Below we outline just a few—of many—emerging
techniques where the ability to model ensembles and to
successfully treat sparse, ambiguous, and noisy data will
be critical.

Chemical cross-linking detected by mass spectrometry
is emerging as a potentially powerful tool in structure de-
termination. Developments have focused on improvements
in instrumentation [4, 77], cross-linking chemistries [78–
80], and data analysis [78, 79, 81, 82]. These techniques
are extremely sensitive, but the data can be highly am-
biguous, both false-positive and false-negative signals are
common, and one cannot relate the degree of cross-linking
to the average distance. Such data has recently been used
as restraints to guide Monte Carlo [83], molecular dynam-
ics [84, 85], and integrative modeling [81, 82] approaches.
The use of cross-linking restraints for structure predic-
tion was recently assessed during the 11th round of Crit-
ical Assessment of Structure Prediction [86, 87] and var-
ious shortcomings—both in experiment and modeling—
were identified.
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X-ray diffuse scattering experiments can produce infor-
mation about correlated motions in proteins that is com-
plementary to the information obtained from the more
typically analyzed Bragg scattering [88, 89]. Wall and
co-workers found good agreement between long molecular
dynamics simulations and measured diffuse scattering [89],
even in the absence of any fitting. The development of suit-
able ensemble refinement schemes would bring the models
into even better agreement with experiment and would
provide a powerful new tool for studying correlated mo-
tions of proteins.

Recent work has demonstrated the utility of paramag-
netic relaxation enhancement measurements in solid-state
NMR [90, 91]. These experiments provide less structural
information than traditional protein NMR experiments,
but, combined with suitable computational modeling, rep-
resent an increasingly viable avenue for structure determi-
nation [65, 91].

Finally, recent work has demonstrated the possibil-
ity of inferring residue–residue contacts from coevolution
analysis of homologous sequences [92–94], commonly re-
ferred to as evolutionary couplings. Baker and co-workers
were recently able to create models for 614 protein families
with unknown structures [95], several of which had folds
that are not in the Protein Data Bank. Montelione and
co-workers combined evolutionary couplings with sparse
NMR data, which provide complementary restraints for
modeling, to correctly determine structures for proteins
up to 41 kDa [3].

Conclusion and future perspectives

Physical insight has always been integral to structural
biology, but the dual challenges of modeling ensembles and
making sense of sparse, ambiguous, and noisy data mean
that quantitative physical models will become an increas-
ingly important part of modern structural biology. How
can we avoid misinterpreting measurement noise as struc-
tural heterogeneity? How can we recognize rare, but im-
portant, conformations buried within noisy data? Making
progress requires: (1) better experiments, including those
that are sensitive for rare conformations [96, 97] or pro-
vide distributions [97–99]; (2) improved models of the noise
and error inherent in the experimental data; (3) accurate
methods to back calculate observables from structural en-
sembles; (4) accurate physical models that can correctly
reproduce the conformational landscapes of biomolecules;
and (5) suitable statistical frameworks to interpret all of
this information in a coherent fashion. In the future, we
anticipate that approaches combining statistical inference,
physical modeling, and experiments will allow us to bet-
ter understand the dynamic and heterogeneous nature of
conformational ensembles, even in the presence of noisy,
sparse, or ambiguous data, which will be key to address-
ing important biological questions.
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finement by replica simulations and reweighting. Journal of
Chemical Physics, 143(24):12B634 1, 2015.

[41] Simon Olsson, Jes Frellsen, Wouter Boomsma, Kanti V. Mardia,
and Thomas Hamelryck. Inference of structure ensembles of
flexible biomolecules from sparse, averaged data. PLOS ONE,
8(11):e79439, 2013.

[42] Simon Olsson, Dariusz Ekonomiuk, Jacopo Sgrignani, and An-
drea Cavalli. Molecular dynamics of biomolecules through direct
analysis of dipolar couplings. Journal of the American Chemical
Society, 137(19):6270–6278, 2015.

[43] Michael Habeck. Bayesian approach to inverse statistical me-
chanics. Physical Review E, 89(5):052113, 2014.
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