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Abstract 

RNA is a functionally versatile molecule that plays key roles in genetic regulation and in 

emerging technologies to control biological processes. Computational models of RNA 

secondary structure are well-developed but often fall short in making quantitative predictions of 

the behavior of multi-RNA complexes. Recently, large datasets characterizing hundreds of 

thousands of individual RNA complexes have emerged as rich sources of information about 

RNA energetics. Meanwhile, advances in machine learning have enabled the training of 

complex neural networks from large datasets. Here, we assess whether a recurrent neural 

network model, Ribonet, can learn from high-throughput binding data, using simulation and 

experimental studies to test model accuracy but also determine if they learned meaningful 

information about the biophysics of RNA folding. We began by evaluating the model on 

energetic values predicted by the Turner model to assess whether the neural network could 

learn a representation that recovered known biophysical principles. First, we trained Ribonet to 

predict the simulated free energy of an RNA in complex with multiple input RNAs. Our model 

accurately predicts free energies of new sequences but also shows evidence of having learned 

base pairing information, as assessed by in silico double mutant analysis. Next, we extended 

this model to predict the simulated affinity between an arbitrary RNA sequence and a reporter 

RNA. While these more indirect measurements precluded the learning of basic principles of 

RNA biophysics, the resulting model achieved sub-kcal/mol accuracy and enabled design of 

simple RNA input responsive riboswitches with high activation ratios predicted by the Turner 

model from which the training data were generated. Finally, we compiled and trained on an 

experimental dataset comprising over 600,000 experimental affinity measurements published on 

the Eterna open laboratory. Though our tests revealed that the model likely did not learn a 

physically realistic representation of RNA interactions, it nevertheless achieved good 
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performance of 0.76 kcal/mol on test sets with the application of transfer learning and novel 

sequence-specific data augmentation strategies. These results suggest that recurrent neural 

network architectures, despite being naïve to the physics of RNA folding, have the potential to 

capture complex biophysical information. However, more diverse datasets, ideally involving 

more direct free energy measurements, may be necessary to train de novo predictive models 

that are consistent with the fundamentals of RNA biophysics. 

 

Author Summary 

The precise design of RNA interactions is essential to gaining greater control over RNA-based 

biotechnology tools, including designer riboswitches and CRISPR-Cas9 gene editing. However, 

the classic model for energetics governing these interactions fails to quantitatively predict the 

behavior of RNA molecules. We developed a recurrent neural network model, Ribonet, to 

quantitatively predict these values from sequence alone. Using simulated data, we show that 

this model is able to learn simple base pairing rules, despite having no a priori knowledge about 

RNA folding encoded in the network architecture. This model also enables design of new 

switching RNAs that are predicted to be effective by the “ground truth” simulated model. We 

applied transfer learning to retrain Ribonet using hundreds of thousands of RNA-RNA affinity 

measurements and demonstrate simple data augmentation techniques that improve model 

performance. At the same time, data diversity currently available set limits on Ribonet’s 

accuracy. Recurrent neural networks are a promising tool for modeling nucleic acid biophysics 

and may enable design of complex RNAs for novel applications. 

 

Background 

RNA is involved in myriad functional roles in biological systems, from control of gene expression 

to splicing to protein synthesis, and serves as a key player in biotechnology tools, from RNA 
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silencing to CRISPR/Cas9 to reengineered ribosomes.[1–8] These RNAs interact with each 

other and with other biomolecules in complex, dynamic ways that are highly dependent on the 

cellular environment in which they reside.[9,10] Understanding and controlling these processes 

requires a quantitative understanding of the energetics that govern these interactions. The 

classic nearest-neighbor model of nucleic acid energetics developed by Turner and colleagues 

is based upon careful parameterization of the energies of each possible motif formed.[11–13] 

However, this model makes strong assumptions about motif energies and interactions and relies 

on modest amounts of optical melting data.[11,14] Limited by the need for expert tuning and low 

measurement throughput, this model falls short in accurately predicting these interactions in 

many applications.[15,16] 

 

Recently, technological developments have enabled high-throughput biophysical measurements 

of tens of thousands if individual RNAs, a rich source of data for refining models of RNA 

energetics. These techniques, which make use of repurposed Illumina sequencing tools, enable 

the measurement of RNA-RNA and RNA-protein affinities over millions of individual clusters on 

an RNA array in a wide variety of experimental conditions.[17–20] However, the complex 

relationship of these measurements to underlying energetic parameters makes it difficult to 

refine individual motif energies using these rich datasets. Thus, alternative models and 

optimization methods are needed to fully leverage these datasets for building quantitative 

models of RNA energetics. 

 

Toward this end, advances in training neural network models have enabled extraction of 

relevant features from large, complex datasets. These deep learning models have recently 

propelled major improvements in many machine learning tasks, such as image classification, 

machine translation, and speech recognition.[21–24] They have also been successfully applied 
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to modeling biological systems, although less work has been carried out in regression as 

opposed to classification tasks.[25–28] Among neural network architectures that have been 

successful in deep learning, recurrent neural networks (RNNs) have had a particularly large 

impact on processing temporal or sequence data, such as natural language or 

speech.[22,29,30] This architecture might be expected to naturally transfer to processing 

biological sequence data and has the potential to encode the level of complexity involved in 

making quantitative predictions of RNA interactions. Furthermore, such neural networks may be 

able to learn and predict non-nearest-neighbor effects and tertiary interactions that are not 

captured with classic physics-based nearest-neighbor models. Neural networks also offer the 

prospect of dramatic decreases in calculation speed for long RNA sequences or multi-RNA 

complexes, which currently incur computational expenses that scale with worse than polynomial 

time in sequence length.[31] 

 

Here, we evaluate the effectiveness of a recurrent neural network, Ribonet, for predicting the 

energetics governing RNA interactions and recovering behavior consistent with biophysical 

principles. Specifically, our goal is to predict the energetics of RNAs in complex with other input 

RNAs at various concentrations. Using simulated free energy data, we demonstrate that, given 

enough training examples, Ribonet can capture base pairing information, despite having no a 

priori information about RNA biophysics and no explicit secondary structure information for the 

training molecules. In contrast, simulated affinity data, which involve free energy differences 

over multiple states and thus are a more complex function of secondary structure, were too 

indirect to allow Ribonet to learn this base-pairing level information. Nevertheless, these affinity-

trained Ribonet models were accurate enough to facilitate design of novel RNA switches that 

modulate their affinity to a reporter in response to binding of an input. Further, we use transfer 

learning and data augmentation to train models on experimental RNA-RNA and RNA-protein 
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affinity measurements, achieving good predictive performance on held-out test sets but failing to 

recover known principles of RNA biophysics. Together, these results suggest that RNNs are a 

promising architecture for use in predicting the energetics of RNA interactions and could 

potentially be extended to other complex biophysical measurements that are a function of 

sequence. However, more direct experimental measurements are necessary to enable training 

of physically realistic models. 

 

Results 

A recurrent network model of complex RNA interactions  

RNNs are designed specifically for data that take the form of a sequence of elements and thus 

can be naturally applied to nucleic acid sequences. In fact, a direct parallel can be drawn 

between the mathematical operations applied in a classic partition function algorithm and those 

of a long short term memory (LSTM) unit, an architecture common in machine translation 

tasks.[23,32] In this mapping, the cell state stores the partition functions of subsequences, 

although the activation functions typically used in an LSTM are different from those in the Turner 

model parallel (Figure 1A & 1B).[33] To make our data compatible with these existing 

components of deep learning architectures, we encoded each measurement as a sequence of 

one-hot vectors to serve as input to an RNN. Each experimental measurement is characterized 

by the design sequence as well as the concentrations and sequences of zero or more input 

RNAs. The one-hot vectors representing the sequences of each RNA were multiplied by the log 

concentration of that species. Input RNA sequences were placed at the beginning of the input to 

the RNN, followed by the design RNA, with each strand separated by a zero vector (Figure 1C). 

The resulting sequence of vectors, representing each base in the sequence, was fed from 5′ to 

3′ end as input to a 2-layer, 1024-unit LSTM RNN. The final states of each layer were then 
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passed through two fully connected layers to aggregate the features extracted, resulting in a 

final numerical ΔG prediction (Figure 1D). 

 

Exploring the expressivity of the RNN model on simulated free energies 

As a first test of a recurrent neural network representation of RNA folding, we evaluated the 

expressivity of Ribonet on simulated energetic measurements from the existing nearest-

neighbor model. Success in this task would demonstrate that an RNN can mimic a model that is 

constrained by known biophysical principles, suggesting the architecture may be suitable for 

modeling RNA energetics. 

 

We began by training on free energy values for each complex relative to the fully unfolded and 

dissociated RNA, the most direct energetic characterization of an RNA fold (Figure 2A). Such 

data can be obtained empirically through optical melting experiments, albeit not at the 

throughput possible for other, less direct energetic measurements. We trained the model on 

simulated folding free energies for complexes consisting of randomly generated designs in 15 

different conditions chosen to match available experimental measurements (1, 10–20 in Table 

2). Designs were generated by introducing the reverse complements of the input RNAs into a 

random sequence at random positions (see Methods for details). For each design, the free 

energy was computed over a full ensemble of simulated secondary structures, as would best 

mimic an actual experimental scenario. As a standard of comparison for this dataset, two 

different parameter sets of the Turner model available in the NUPACK software gave 

calculations with root-mean-square error (RMSE) of 7.65 kcal/mol, giving a rough estimate of 

the error resulting from these parameter estimates. A 1-nearest neighbor model, which predicts 

based on the closest measurement in the training set, yielded an RMSE of 18.1 kcal/mol, setting 

a rough upper on our performance (Figure S1). To determine how much data are necessary to 
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parameterize this model, we trained on datasets of varying size from 10,000 to 500,000 

sequences. We found that 500,000 training sequences were needed in training to avoid 

overfitting (Figure 2B). Using this training set, we were able to achieve excellent predictive 

performance of 5.46 kcal/mol, better than the error between two Turner parameter sets (Figure 

2C). 

 

As a test of whether the trained model was able to represent detailed secondary structure 

information, we evaluated the model on all double mutants of a randomly generated sequence 

distinct from the training data (Figure 2D). This analysis revealed that the RNN is appropriately 

sensitive even to small changes in the input sequence. Moreover, it detects base pairing effects, 

seen as diagonal segments on a heat map of double mutants; two mutations can restore the 

formation of a Watson-Crick base pair broken by single mutations (Figure 2D, insets). However, 

not all such base-pairing signals computed in the Turner model simulations (Figure 2D, top left) 

were captured by Ribonet and signals predicted by the RNN model were typically weaker, 

indicating less sensitivity to base-pairing than an explicit representation. Finally, we made 

predictions for input concentrations outside the range seen in the training data, to test if the 

model learned biophysically reasonable concentration effects. This free energy model produced 

an irregular pattern that does not match that of the simulated pattern over concentration space 

(Figure 2E). This suggests that, given enough data, the RNN model is expressive enough to 

capture the behavior of the Turner model of RNA energetics but cannot correctly extrapolate 

outside the concentration range seen in training. 

 

Applying Ribonet to simulated affinity measurements 

To more closely replicate how existing high-throughput experimental datasets might enable 

Ribonet training, we then generated a simulated dataset of predicted affinities to a reporter RNA 
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molecule. For each sequence, we simulated the RNA-reporter affinities for 15 different 

conditions (1, 10–20 in Table 2). Sequences were randomly generated as in the folding free 

energy simulations, but affinities were computed by finding the difference in free energy 

between the complexes with and without the reporter molecule (Figure 3A, see Methods for 

details). As a comparison point, two different Turner parameter sets differ by an RMSE of 1.08 

kcal/mol over the same sequences, while a simplistic 1-nearest neighbor model based on 

sequence similarity achieves an RMSE of about 3.3 kcal/mol (Figure S2). A learning curve 

revealed that more than 300,000 sequences were necessary to avoid overfitting the model 

(Figure 3B). Performance of 1.54 kcal/mol was achieved even with only 10,000 sequences 

(Figure S3A), less than the number of data collected in high-throughput experiments. The model 

trained on 500,000 sequences achieved even better predictive performance, with a test RMSE 

of 1.15 kcal/mol (Figure 3C). Although this model required fewer data to reach convergence 

than the absolute free energy study above, the resulting model does not exhibit base-pairing 

effects, as was the case in the free energy-trained model, and again did not extrapolate well to 

concentrations outside those seen in training (Figure 3D & E). We also tested a model trained 

on randomly generated input RNA sequences, rather than a fixed set of input sequences, to 

determine if a more diverse set of data would provide enough additional biophysical information. 

While these models did not perform better in terms of display of base pairing signals in double 

mutant tests or extrapolation to out-of-range input RNA concentrations, they did make more 

accurate predictions for complexes involving input RNAs not seen in training (Figure S3B & 

S3C). These tests suggest that Ribonet is able to capture affinity information with strong 

predictive power but without accurately capturing base-pairing effects or the functional form of 

affinity expected from statistical mechanics. 
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Despite its inability to recover physically realistic aspects of RNA folding, the accuracy of 

Ribonet for estimating affinities may still be useful for guiding design. We used a Monte Carlo 

algorithm to design an RNA sensor for an input RNA molecule, using the RNN as a scoring 

function and the Turner calculations as gold standard (Figure 4A, see Methods for details). In 

sequence optimization, we allowed both mutations and shifts of the input and reporter binding 

sites (Figure 4B). While shifts were accepted more often, mutations often preceded score 

increases, suggesting they are essential to sampling sequence space effectively (Figure 4C). 

We found that almost all designs improved over the initial sequence, as predicted by the Turner 

model, with the best designs achieving a fold change in affinity of almost 105 (Figure 4D). The 

RNN-predicted fold changes agreed well with those simulated by the Turner model. These 

simulation results suggest that a model trained on sufficiently large datasets can represent the 

behavior of the RNA well enough to design new sequences from scratch. However, design 

became less effective with a model trained on a smaller dataset (Figure 4E). Further, it failed for 

design of sensors for input RNAs not seen in the training dataset (Figure S4A), even using the 

model trained on random input sequences (Figure S4B). 

 

Evaluating Ribonet on experimental affinity measurements 

Having gained an understanding of the nuances of Ribonet’s model architecture in relation to 

existing computational models, we trained the model on a rich dataset of affinity measurements. 

The Eterna massive open laboratory enables citizen scientists to design complex, multi-state 

RNAs using an intuitive graphical user interface.[20] Details of player strategies and 

performance are being reported in a separate manuscript; a brief summary follows. Various 

design challenges were posed as in-game puzzles with secondary structure constraints over 

multiple conditions defined by the concentrations of one or more input RNA strands. Players 

started with switch puzzles, where the aim was to design a molecule whose binding to a 
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reporter RNA is dependent upon the presence or absence of a single input RNA. Next, players 

designed logic gates, which modulate their reporter binding based on the presence or absence 

of two input RNAs. Lastly, players moved to designing RNAs with an analog response, tuning 

the reporter affinity based on the ratio of concentrations of two to three input RNAs. Over 65,000 

designs were made for these four puzzle types, collected over 9 different rounds (Table 1). 

While the library of designs contains a fair number of highly similar sequence clusters, it still 

represents a diverse collection of sequences targeting these 3 different types of puzzles (Figure 

5A). Each sequence was synthesized on an RNA array, and its affinity to a fluorescent reporter 

RNA was measured by quantifying the fluorescence over varying reporter concentrations using 

a repurposed Illumina sequencing machine (see Methods for more details).[17] Each design 

was measured in up to 19 different input conditions, resulting in over 600,000 distinct affinity 

measurements. 

 

Notably, these data are limited in range due to experimental constraints and contain less 

diverse sequences than the random simulated data (Figure 5A). To set a baseline for how well 

Ribonet might learn from realistic experimental datasets, we applied constraints to our simulated 

data to more closely match the experimental data. First, we filtered out points in the training 

data outside the experimentally measurable range, which reduced the 500,000 sequence 

dataset by about 5-fold. Test performance for data within the filtered range was good, with an 

RMSE of 0.92 kcal/mol, although worse than a similarly sized, unfiltered dataset, with an RMSE 

of 1.24 kcal/mol over values with nearly five-fold higher variance (Figure S5A). For test points 

outside the window, ΔG values were predicted to be near the edge of the measurable range 

(Figure S5B). This pileup is the expected behavior, because the model is unlikely to predict 

values beyond the range seen in the training data; however, the result underscores the inability 

of the model to learn physically reasonable extrapolations. In addition, we tested the model on 
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simulated ∆𝐺s for the sequences probed in available experiments instead of randomly 

generated sequences. The performance was far poorer than that for a comparably-sized 

randomly generated dataset, most likely due to the lower diversity of sequences (Figure S5C). 

 

We then moved to experimental data, starting with a Ribonet model trained only on data from a 

single type of puzzle, with a fixed reporter sequence and a fixed set of three input RNAs (round 

7 in Table 1). We used separate rounds of design and experiments for our training and test sets, 

with the test set having 3 additional experimental conditions not seen in the test set. As a lower 

bound on expected performance, the RMSE between technical replicates, which is a lower 

bound on our performance, is 0.39 kcal/mol (Figure S6A). As an upper bound, the RMSE for a 

1-nearest neighbor model based on sequence similarity is 1.20 kcal/mol (Figure S6B, see 

methods for details). This bound is significantly tighter than that for simulation studies above 

due to the low sequence diversity of the designs and experimental measurement limits, setting a 

stringent bound for the performance of Ribonet. Further, the classic Turner model of RNA 

folding predicts these data poorly, with an RMSE of 2.73 kcal/mol (Figure S7). Training on 

120,348 measurements over 10,046 sequences, we found that the model typically converged 

after about 50 epochs and significantly overfit to the training data, as evidenced by a large gap 

between training and test accuracy (Figure 5B). In our analysis of test set prediction results, we 

applied a Levenshtein distance threshold to the closest sequence in the training set to ensure 

that we did not include measurements unfairly similar to those in the training data (see Methods 

for details). For this model, the best model reaches an RMSE of 0.91 kcal/mol (Figure S8A). 

including predictions for experimental conditions not seen in the training data (Figure S9). 

 

Because we had already trained Ribonet on simulated data from the Turner model, we 

hypothesized that performing transfer learning from the simulated model would accelerate and 
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improve training. Thus, we trained models initialized with weights from the 500,000-sequence 

trained affinity model and compared those to randomly initialized weights. The training loss 

converged much more quickly, as expected, and also to a better test accuracy of 0.83 kcal/mol 

(Figure 5B). While the models were still overfit, as evidenced by a large gap between test and 

training accuracy, the performance was not only significantly better but also much more 

consistent across runs (Figure 5C). The preinitialized runs reached a median RMSE of 0.85 

kcal/mol, with the best model reaching 0.83 kcal/mol (Figure 5D). For the rest of the models 

described, the transfer learning approach was used to initialize weights. 

 

We then expanded our RNN models to increasing levels of generality, beyond the “single 

puzzle” setup used as an initial test case. As models become more general, the number of 

distinct puzzles and the associated amount of data available to train the model increases. 

However, the space of interactions that the model must represent also increases as the data 

involve more diverse inputs and reporters. For example, 29,542 additional sequence designs 

involve binding of an MS2 viral coat protein to specific RNA binding sites, but this protein-RNA 

interaction is captured through a new energetic parameter instead of those of RNA-RNA binding 

in designs tested previously. We tested three additional levels of model generality. “Single 

reporter” models generalized over multiple puzzles with the same reporter sequence, “all RNA” 

models included all measurements with RNA reporters over many puzzles and reporters, and 

“all reporter” models further included measurements with protein-based reporters. Empirically, 

we found that the addition of more complex RNA reporter data had no effect on performance 

(Figure 5E & S8), but predictive performance for protein reporters was poor, with RMSE of 1.06 

kcal/mol (Figure S10). Our results suggest that training a more general model can allow for 

broader usability of the resulting model without compromising the predictive performance. In the 
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case of including non-RNA reporters, however, additional information may need to be encoded 

to help the RNN understand how the reporter interacts with the design molecule. 

 

Data augmentation to enhance model performance 

Our analysis on simulated data suggested that a dataset of tens of thousands sequences, such 

as that used in each of our models is not sufficient to obtain optimal performance. To better 

understand the data dependence of this RNN for real data, we trained the model on varying 

sized subsets of the data to build a learning curve.[34] To generate these datasets, we clustered 

the sequences based on Levenshtein distances and cut the tree to form 10 subsets of unequal 

size but similar distance between clusters (see Methods for more details). Training on subsets 

of data containing increasing numbers of clusters revealed that a strong downward trend in 

RMSE continues up to the maximum dataset size (Figure 6B). These learning curves suggest 

that the performance of Ribonet remains strongly data-limited. 

 

Data augmentation is a method commonly used in deep learning to increase the effective 

dataset size.[21,35,36] Although the techniques for augmentation are most well-established for 

image data, we hypothesized that the same ideas might be expanded to our datasets. We 

tested four approaches to augmenting our dataset (Figure 6A). First, we introduced additional 

copies of each data point for each possible ordering of the input sequences, since the chosen 

ordering is arbitrary. Secondly, we added a copy of each data point with a circular permutation 

of the design sequence. We have observed that top solutions of Eterna players are often 

circular permutations of each other (unpublished work). Thus, we hypothesize that this 

transformation may produce designs with similar behavior. Thirdly, reflection of input sequences 

has been used in machine translation to transform input data, despite the lack of semantic 

meaning in such data.[23] We introduced an additional copy of each data point with each 
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sequence reversed, passed from 3′ to 5′ end instead of 5′ to 3′. This augmentation has the 

potential to increase signal for base pairing, as the equivalent helices can still form in a reflected 

secondary structure, even though the energetics of these alternative helices are different 

according to the classical Turner model.[11] Lastly, in a similar effort to encode additional base 

pairing information, we reverse complement each sequence to create an additional copy of each 

data point. To evaluate the effect of these augmentations on model performance, we used the 

“single puzzle” model, again using 10 trials with different random seeds to assess the variance. 

Although only the reordering approach worked in simulation (Figure S11), we observed a 

significant improvement in the performance for experimental data with the models trained on 

every type of augmented data, with p-values of 3.4x10−2 for reordering of inputs, 1.2x10−2 for 

circular permutations, 1.3x10−7 for reversed sequences, 9.4x10−10 for reverse complements, and 

2.8x10−6 for all methods applied simultaneously (Figure 6C). The reverse complement 

augmentation method was able to achieve an RMSE of as low as 0.76 kcal/mol, compared to 

0.83 kcal/mol without augmentation (Figure 6D). Performance with varying distance cutoffs is 

shown in Figure S12. These results suggest that simple transformations are able to encode 

additional information in model training, and reverse complementation is particularly effective, 

potentially by introducing additional base pairing information. These types of strategies may 

enable models to learn more biophysically relevant information from less data. 

 

The best model trained with data augmentation still does not learn base pairing information in a 

test on double mutants (Figure S13). However, the behavior over wide concentration ranges is 

relatively smooth, with the exception of a discontinuity at 100 nM of the second input RNA 

(Figure 6E). This discontinuity may be a result of this being a frequent concentration choice in 

our set of experimental conditions. Overall, these tests suggest that Ribonet has the potential to 

produce biophysically realistic representations over concentration extrapolation, despite 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 1, 2017. ; https://doi.org/10.1101/227611doi: bioRxiv preprint 

https://doi.org/10.1101/227611
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 15 

containing no explicit constraints to force this behavior. It remains unclear whether Ribonet can 

learn base-pairing information from simulated or experimental affinity data. 

 

Discussion 

Here, we describe a novel RNN-based method, Ribonet, for predicting the affinity of RNA-RNA 

interactions in the context of different environmental conditions. We show that it exhibits the 

expected base pair effects when trained with simulated folding free energy data generated using 

a classic Turner model, despite the lack of a priori information about RNA folding. When instead 

trained with simulated affinity data, models lack this explicit biophysical information but still 

perform well enough to facilitate design of an RNA sensor. We successfully apply transfer 

learning to train Ribonet on data generated through the Eterna platform and high-throughput 

array experiments. We find that the models generally benefit from more diverse data but are 

unable to learn from a naïve representation of protein reporters. Finally, we introduce data 

augmentation techniques specific to nucleic acid sequence data that significantly improve 

performance. 

 

This work represents one of the first applications of deep learning to a regression task in 

biology.[37,38] While we were able to achieve fairly good performance, as compared to prior 

biophysical models or 1-nearest neighbor models, we have shown that we are currently limited 

by the size of our dataset, a common theme in machine and deep learning.[39,40] Despite the 

use of high-throughput design and measurement, one limitation of our methodology is that, 

when design constraints become difficult to satisfy, Eterna players tend to produce additional 

submissions by modifying existing designs. This often results in clusters of sequences that are 

highly similar, differing only by single mutations or base pair swaps. Although these near 

redundancies have the potential to improve sensitivity to small changes and provide useful base 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 1, 2017. ; https://doi.org/10.1101/227611doi: bioRxiv preprint 

https://doi.org/10.1101/227611
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16 

pairing information, they also result in a smaller effective dataset size. Our data augmentation 

approach partially mitigated this effect, but further efforts would benefit from more diverse 

designs as well as development of experimental methods able to probe a much larger variety of 

input RNAs and reporter RNAs. Additional work is necessary to develop computational methods 

to enable us to take full advantage of the specific features of this dataset and to understand why 

the reverse complement augmentation aids accuracy in experimental but not simulated 

datasets. 

 

Through our simulation studies, we also found that the indirect nature of the affinity 

measurements prevented learning of explicit information about base pairing, a feature that is 

fundamental to RNA interactions. Nevertheless, free energy values were sufficient for learning 

low level biophysical information, suggesting high-throughput approaches for making these 

kinds of measurements would open the door for more biophysically realistic models of RNA 

energetics.[41,42] 

 

In addition, the architecture chosen here does not take advantage of existing knowledge about 

RNA folding. Many successful applications of deep learning have taken this approach of 

learning from scratch.[21,23] Although we have demonstrated here that the RNN is able to 

extract base pairing information de novo, it fails to do so from simulated or experimental affinity 

data, which is a more complex function of secondary structure interactions compared to free 

energies. While Ribonet-facilitated design was possible in simulation, it required an order of 

magnitude more data than currently available even with high-throughput experiments. Adding 

constraints to the weights or explicitly encoding additional information may accelerate model 

training or improve test performance.[43,44] Further work is necessary to optimize deep 

learning model architectures for specific biological systems. 
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Machine learning methods such as those described here may form the foundation for 

computational tools for RNA design. Given the ability to quantitatively predict RNA-reporter 

affinities, optimization algorithms could be applied to design RNAs that sense and interact with 

other biomolecules in their environments, as demonstrated by our design tests in 

simulation.[45–47] This level of predictive performance would enable us to precisely design 

interactions in biological systems, including those central to modern biotechnological tools. 

 

Materials and Methods 

Eterna massive open laboratory 

The Eterna online platform (https://www.eternagame.org) enables citizen scientists to design 

RNA molecules with complex, multi-state folding behavior. The game allows for the specification 

of design challenges, or puzzles, with secondary structure constraints in multiple conditions 

defined by the concentrations of various input RNAs. Players can view folds and energies 

predicted by ViennaRNA 1.8.4 [48], Vienna 2.1.9 [49], and NUPACK 3.0.4. [31,47] 

 

RNA array experiments 

Clonal clusters of RNA were generated on an Illumina sequencing flow cell as previously 

described.[17,18] Binding curves were collected for each cluster by incubating with input RNA 

oligos at defined concentrations and progressively higher concentrations (by factors of 2) of 

fluorescently labeled reporter oligo or recombinant SNAP-tag-labeled MS2 coat protein (Tables 

1–3). The starting concentration was between 0.09 and 0.75 nM, depending on the experiment 

and the reporter, and the final concentration was 3000 nM. The fluorescent cluster images were 

aligned to sequencing data and quantified as previously described.[17,18] The fluorescent 

signal for each cluster, F, was fit to a simple binding curve: 
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𝐹( 𝑀𝑆2 ) = 𝐹*+,
[reporter]

reporter + 𝐾6
 

The median Kd and Fmax for each sequence variant was subsequently used and only 

measurements with at least 5 clusters were included in downstream analysis. For subsequent 

analysis, all Kd measurements were converted to ΔG at 1M standard state for the reporter, 

using the expression ∆𝐺 = −𝑘9𝑇 log
=>
?@

. 

 

Simulated data 

Sequences were produced by generating random RNA sequences, introducing the reverse 

complements to the input and reporter RNA strands at random positions, and generating n/5 

additional random mutations, where n is the length of the sequence. The length was chosen to 

be the same as those of the Eterna designs for which measurements were made. For the 

Turner or nearest-neighbor model, predictions were generated using the complexes and 

concentrations executables in NUPACK 3.0.6.[31,47] For the free energy model, the simulated 

free energy values were computed for the design strand along with the relevant input and 

reporter strands. Epistatic effects were computed by finding the difference in ΔΔG between 

double mutants and the sum of the two single mutants: 

𝜀 = ΔΔ𝐺double − ΔΔ𝐺single	1 − ΔΔ𝐺single	2 

 

For the affinity model, complex concentrations were computed for the design strand along with 

the relevant input RNAs and reporter. A concentration of 1 pM was used for the design strand 

and 10 nM for the reporter strand, although the resulting affinity is independent of this choice as 

long as the reporter is in excess. These values were used to calculate the simulated ΔG value: 

∆𝐺 = −𝑘9T ⋅ log
[complexes	with	reporter]

complexes	without	reporter [free	reporter]
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Data were generated for all 15 experimental conditions used in experimental round 9, which 

was used as a test set for analyses of experimental data (Table 1 & 2). 

 

1-nearest neighbor model 

The 1-nearest neighbor model, not to be confused with the classic Turner nearest neighbor 

model for RNA energetics, is a k-nearest neighbors model with k=1.[50] This model predicts the 

energy for a new RNA sequence as the value observed for the closest sequence in the training 

set. The distance metric used was Levenshtein distance between the design sequences. For 

input RNA concentrations not seen in the training data, the closest condition was selected 

based on Euclidean distance. 

 

Model architecture 

Each measurement was identified by a design sequence, the concentrations and sequences of 

zero or more input RNAs, and a reporter RNA sequence. Each base in each sequence was 

represented as a four-element, one-hot vector. Input and design RNA vectors were multiplied by 

the log of their concentrations (in nM) to encode variable concentrations across conditions. For 

design RNA vectors, 10 µM was used as an estimate of their local concentration on the array. 

The input and design sequences, with each strand separated by a zero vector, served as the 

input to the RNN. For “single puzzle” and “single reporter” models, the sequence of the reporter 

was omitted from the input, as it was assumed to be the same across all data. For “all RNA” and 

“all reporter” models, the reporter was included as the last strand passed to the RNN (Figure 

S14). For the “all reporter” models that included measurements with the MS2 protein as a 

reporter, a fifth element was introduced into each one-hot vector to enable representation of the 

MS2 reporter (Figure S14). These inputs were passed through a 2-layer, 1024-unit LSTM RNN. 
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The final state of this RNN was then processed by two fully connected layers to result in a single 

numerical prediction for the ΔG of the interaction between design and reporter strands. 

 

Model training 

Hyperparameters were tuned using data from round 7, split into a training and validation set 

(Table 1). By clustering the sequences based on Levenshtein distance and splitting the resulting 

clusters, we ensured that similar sequences ended up in the same split of the dataset. Random 

search was conducted over learning rates and dropout rates to find the optimal parameter 

values. Various optimizers and batch sizes were also tested. All results shown were trained 

using the Adam optimizer, with a learning rate of 10−3, a dropout rate of 0.5, and a batch size of 

128. All models were trained until training loss converged. With the exception of those for 

learning curve analysis, each model was trained 10 times with different random seeds. 

 

For randomly initialized models, weights were initialized from a truncated normal distribution. 

For pretrained models, weights were initialized using the final model for the 500,000-sequence 

simulated dataset. 

 

 “Single puzzle” models were trained on round 7. “Single reporter” models were trained on 

rounds 2 and 7. “All RNA” models were trained on rounds 2–3 and 7–8. “All reporter models” 

were trained on rounds 1–4, 7, and 8, with rounds 5 and 6 held out as additional MS2 reporter 

test sets. Reported test performance was computed for round 9 unless otherwise stated. See 

Table 1 for details of the data collected in each round.  
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Learning curves 

Due to strong similarity between sequences in our dataset, clustering was used to group 

subsets of data instead of generating random subsets. Single-linkage hierarchical clustering 

was performed on the sequences to group similar designs together. The resulting tree was cut 

to form 10 clusters of variable numbers of sequences. The first model was then trained on only 

sequences in cluster 1, the second on clusters 1–2, and so on. All models were trained for 50 

epochs. The test set remained the same for all models. 

 

Base pairing and concentration extrapolation tests 

Both of these tests of whether models are biophysically realistic representations used a 

randomly generated design with the following sequence: CAAUCGCUCAGAACGUAGU 

GUACGCAGGCAGGAAUGCGGCAGAAAAGGCACUAACCGAGCCGAACCAGGUAGCCCAAA

ACCUCUCC. This sequence was not used in any of the training datasets. For the base pairing 

test, predictions were made for all double mutants of this sequence. For the concentration 

extrapolation test, predictions were made for all concentration combinations of two inputs in the 

range from 1 pM to 1 mM. 

 

Design algorithm 

For each round of sequence design, a random initial sequence was generated as a starting 

sequence. The reverse complements to the input and reporter RNA were introduced into this 

random starting sequence as binding sites. Each move was randomly chosen to be either a 

random mutation or a change in the binding sites, with equal probability. A modification to the 

binding sites was randomly chosen to be either a shift or change in length of the reverse 

complement sequence. The score was computed to be the difference between predicted 

affinities with and without the input RNA. The Metropolis criterion, with temperature 0.1, was 
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applied to determine if a move was accepted or rejected. 20,000 iterations were applied to 

achieve the final designs. To evaluate the resulting designs, affinities were predicted using 

NUPACK as described above. 

 

Data augmentation 

For the reordering augmentation dataset, n! data points were included for each data point in the 

original dataset, where n is the number of inputs in that experimental condition. These represent 

each possible ordering of the n input strands. For cyclic augmentation, one circular permutation 

of each data point was added, with the first and second halves of the design sequence 

swapped. For reverse augmentation, an additional copy of each data point was introduced into 

the augmented dataset with all sequences — inputs and design — read from 3′ to 5′ end 

instead of 5′ to 3′. The order of the sequences is preserved, with inputs first and design 

subsequently. For reverse complement augmentation, all sequences were changed to their 

reverse complement in an additional copy of each data point. For the combined approach, all 

augmentation approaches were applied to each sequence. 

 

Data Availability & Software 

Models were implemented in Python with TensorFlow 1.0.0.[51] Data and code are available at 

https://github.com/wuami/ribonet. 
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Table 1: Summary of data collection rounds. Specific sequences and concentrations for each 
condition are available in Table 2 & 3. The number of measurements is less than the product of 
the number of sequences and the number of conditions due to filtering of low quality 
measurements. 

 
round puzzle type inputs reporter number of  

sequences 
conditions number of 

measurements 
1 logic gates 1 & 2 MS2 protein 9,354 1–4 37,364 
2 switch 1 reporter 1 1,238 1–2 2,470 
3 switch 1 reporter 2 2,119 1–2 4,236 
4 arithmetic 2 & 3 MS2 protein 5,511 1, 3, 5–9 38,521 
5 logic gates 1 & 2 MS2 protein 8,519 1–4 29,396 
6 arithmetic 2 & 3 MS2 protein 6,158 1, 3, 5–9 42,966 
7 arithmetic 4–6 reporter 1 10,046 

(9,957 training, 
89 validation) 

1, 10–20 120,348 

8 arithmetic 7–9 reporter 3 10,519 1, 21–38 197,199 
9 arithmetic 4–6 reporter 1 11,841 1, 10–20, 39–41 168,939 
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Table 2: The specific concentrations of input RNAs for each experimental condition are 
summarized in this table. 

 
condition input RNA concentrations 
1 none 
2 100 nM input 1 
3 100 nM input 2 
4 100 nM input 1, 100 nM input 2 
5 100 nM input 3 
6 5 nM input 3 
7 5 nM input 2, 5 nM input 3 
8 5 nM input 2, 100 nM input 3 
9 100 nM input 2, 100 nM input 3 
10 100 nM input 4 
11 100 nM input 5 
12 100 nM input 6 
13 100 nM input 4, 100nM input 5 
14 100 nM input 4, 100nM input 6 
15 100 nM input 5, 100nM input 6 
16 5 nM input 4, 100 nM input 6 
17 5 nM input 5, 100 nM input 6 
18 50 nM input 4, 50 nM input 5, 100 nM input 6 
19 50 nM input 4, 50 nM input 5, 300 nM input 6 
20 200 nM input 4, 200 nM input 5, 300 nM input 6 
21 100 nM input 7 
22 100 nM input 8 
23 100 nM input 9 
24 100 nM input 7, 100 nM input 8 
25 100 nM input 7, 100 nM input 9 
26 100 nM input 8, 100 nM input 9 
27 5 nM input 7, 5 nM input 8 
28 5 nM input 7, 100 nM input 8 
29 5 nM input 7, 100 nM input 9 
30 5 nM input 8, 100 nM input 9 
31 100 nM input 7, 5 nM input 8 
32 5 nM input 7, 5 nM input 8, 100 nM input 9 
33 25 nM input 7, 100 nM input 8, 100 nM input 9 
34 50 nM input 7, 50 nM input 8, 25 nM input 9 
35 50 nM input 7, 50 nM input 8, 100 nM input 9 
36 50 nM input 7, 50 nM input 8, 300 nM input 9 
37 100 nM input 7, 25 nM input 8, 100 nM input 9 
38 200 nM input 7, 200 nM input 8, 300 nM input 9 
39 5 nM input 4, 5 nM input 5, 100 nM input 6 
40 100 nM input 4, 25 nM input 5, 100 nM input 6 
41 25 nM input 4, 100 nM input 5, 100 nM input 6 
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Table 3: Input and reporter RNA sequences used for all puzzles are shown here. 
 
RNA Sequence 
reporter 1 UAAGUUCUGA 
reporter 2 ACCCCACAAUAAAGAAUAAG 
reporter 3 GACUAAGUUCUGAC 
input 1 CUAAGCAGUUCCCUCAUU 
input 2 ACCCCACAAUAAAGAAUAAG 
input 3 CUGAUCCCAUCUCACUC 
input 4 ACAGCUCAGCACAACAUUCC 
input 5 GUUGGUGCCUUUUGUGCCAC 
input 6 UUUUGGGCUACCUGGUUCGU 
input 7 ACAGAUGCAGGAACAGGCUG 
input 8 CCAUGGUGAUGGAUGGUUUG 
input 9 GUACAUAGAGAGACAGGUGG 
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Table 4: All training and test RMSEs (kcal/mol) for simulated data are summarized in this 
table. 

 
number of 
training 
sequences 

train RMSE test RMSE 

simulated free energy 
100,000 1.98 6.77 
200,000 2.84 5.46 
300,000 3.39 6.08 
400,000 3.94 5.42 
500,000 4.58 5.05 

simulated affinity 
10,000 0.19 1.54 
20,000 0.16 1.40 
50,000 0.26 1.29 

100,000 0.36 1.24 
200,000 0.59 1.24 
300,000 0.97 1.15 
400,000 0.86 1.15 
500,000 0.98 1.10 
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Table 5: All training and test RMSEs (in kcal/mol) for experimental data are summarized in 
this table. All test values are filtered by a Levenshtein distance of 5 from the training data. 

 
replicate 1 2 3 4 5 6 7 8 9 10 
single puzzle, random 
initialization (train) 

0.29 0.12 0.14 0.15 0.15 0.13 0.13 0.15 0.44 0.19 

single puzzle, random 
initialization (test) 

1.01 0.93 1.03 0.97 0.91 0.98 0.97 0.94 1.07 0.97 

single puzzle (train) 0.07 0.07 0.07 0.07 0.06 0.09 0.08 0.07 0.07 0.07 
single puzzle (test) 0.85 0.86 0.85 0.89 0.85 0.87 0.87 0.85 0.87 0.83 
single reporter (train) 0.07 0.08 0.07 0.07 0.08 0.07 0.07 0.08 0.07 0.08 
single reporter (test) 0.87 0.86 0.86 0.87 0.85 0.87 0.86 0.85 0.84 0.89 
all RNA (train) 0.12 0.11 0.10 0.14 0.11 0.11 0.11 0.12 0.11 0.11 
all RNA (test) 0.85 0.88 0.84 0.81 0.88 0.84 0.86 0.92 0.81 0.92 
all reporter (train) 0.13 0.14 0.17 0.14 0.14 0.15 0.14 0.14 0.16 0.14 
all reporter (test) 0.83 0.85 0.90 0.83 0.81 0.83 0.79 0.88 0.87 0.84 
single puzzle, reorder 
augment (train) 

0.06 0.07 0.05 0.05 0.06 0.06 0.05 0.06 0.06 0.05 

single puzzle, reorder 
augment (test) 

0.82 0.86 0.86 0.85 0.86 0.82 0.85 0.84 0.83 0.86 

single puzzle, cycle 
augment (train) 

0.09 0.08 0.08 0.09 0.10 0.08 0.08 0.08 0.09 0.08 

single puzzle, cycle 
augment (test) 

0.84 0.83 0.82 0.87 0.80 0.85 0.84 0.82 0.85 0.85 

single puzzle, reverse 
augment (train) 

0.09 0.09 0.08 0.09 0.09 0.09 0.09 0.10 0.09 0.09 

single puzzle, reverse 
augment (test) 

0.77 0.77 0.81 0.81 0.80 0.77 0.82 0.77 0.77 0.80 

single puzzle, reverse 
complement augment 
(train) 

0.09 0.09 0.09 0.09 0.09 0.10 0.08 0.10 0.09 0.09 

single puzzle, reverse 
complement augment 
(test) 

0.79 0.76 0.80 0.78 0.80 0.76 0.80 0.78 0.77 0.76 

single puzzle, all methods 
augment (train) 

0.12 0.14 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.13 

single puzzle, all methods 
augment (test) 

0.82 0.84 0.81 0.82 0.81 0.79 0.83 0.82 0.79 0.78 
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Figure 1: (A) Parallels can be drawn between the components of an LSTM unit (top) and those 
of a partition function calculation (bottom). The cell state (Ci) can store the partition functions for 
subsequences (Qde), with the outputs (oi) containing the desired prediction value. The weights w 
in the LSTM contain the values that parameterize different motif energies (G). (B) The dynamic 
programming matrix can be computed horizontally rather than diagonally to account for the fact 
that the sequence is read in order, so that the 3′ end of the sequence is not needed at the start 
of the computation. (C) Each base in each sequence is encoded as an n-hot vector where n is 
the log of the RNA concentration. Input RNAs, followed by the design RNA, and, when relevant, 
the reporter RNA are taken in that order, and each strand is separated by a zero-vector. (D) The 
input is fed through a 2-layer LSTM RNN, followed by 2 fully connected layers. 
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Figure 2: (A) The free energy computed is the difference between the folded complex and 
unfolded, dissociated individual strands. (B) For the free energy model, the learning curve for 
varying numbers of simulated sequences reveals that training and test performance converges 
at around 500,000 sequences. (C) For the largest dataset, the model achieves predictions of 
affinity with an RMSE of 5.46 kcal/mol. (D) For the free energy model, predictions were made 
for free energy of folding for a set of double mutants (lower right) and compared to those from 
the Turner model (upper left). To highlight the effects of double mutants, these are shown as 
epistatic effects (e), which is the predicted free energy of the double mutant minus those for the 
two corresponding single mutants. Diagonal signals (inset) suggest that the model detects 
compensatory rescue of base pairs. The secondary structure suggested by the helices is shown 
on the middle right. (E) Extrapolating to predictions outside the training conditions results in an 
irregular, unrealistic pattern (right), notably different from the simulated behavior (left). The 
boxed region highlights the range of concentrations seen in the training data, showing similar 
simulated and predicted behavior. 
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Figure 3: (A) The affinity is computed as the difference in free energy between the complexes 
with and without the reporter (blue). (B) For the simulated affinity data, a learning curve 
demonstrated that 300,000 sequences are necessary for convergence of training and test 
performance, fewer than for the free energy data. (C) For the largest dataset, the model 
achieves an RMSE of 1.15 kcal/mol. (D) The model (right) shows more realistic, smooth 
concentration dependence than the free energy model, even though the observed pattern differs 
greatly from the simulated one (left). The dotted box highlights the concentration range seen in 
the training set. (E) While the simulated affinities for a set of double mutants shows diagonal 
helix signals (upper left), this is not seen in the RNN predictions (lower right). The values shown 
are the predicted energy for the double mutant minus those for the two corresponding single 
mutants. 
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Figure 4: (A) For design, sequences were optimized using a score based on the ratio of 
affinities between the conditions with and without the input molecule. (B) Our design method 
initializes sequences with the reverse complements of the input and reporter sequences. 
Allowed moves include mutations and shifts of the reverse complements. (C) Our design 
method enables optimization of the RNN-predicted score. While most accepted moves are 
shifts (blue), significant jumps in score are often preceded by mutations (red). (D) The 
ground truth fold change between the two states, that predicted by the Turner model, 
increases significantly from initialization (purple) to after optimization (green), reaching a fold 
change as high as 106. Lines connect the start and end sequences from the same design 
run. Predicted and ground truth values correlate well (r2 = 0.63), and a paired one-sided t-
test shows that the optimized fold changes are significantly greater than the initial ones 
(p=2.8x10−7). (E) For the model trained on 10,000 sequences, the improvement is not as 
consistent, not reaching statistical significance (p=0.08), but most runs still yield an 
improvement in nearest-neighbor predicted fold change, our ground truth in these 
simulations.  
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Figure 5: (A) Hierarchical clustering of all sequences designed over 9 rounds of collection show 
many tight clusters of similar sequences. (B) Initializing weights from a model pretrained on 
simulated data allows the loss to converge more quickly and to a lower final train and test 
RMSE than the random initialized model. The pretrained model shown was only trained for an 
additional 50 epochs, and the final loss is extended horizontal for ease of comparison. (C) 
Pretraining the model significantly improves performance (one-sided t-test, p = 6.46x10−6). (D) 
With transfer learning, the model is able to achieve performance of 0.83 kcal/mol. (E) Test 
results are shown for 10 replicate training experiments for each model type. No statistically 
significant differences are seen across models. All RMSEs are for only test set points with 
Levenshtein distance of at least 5 from all sequences in the training set. 
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Figure 6: (A) Four different transformations were evaluated for data augmentation. The 
visualization shows the design sequence in red and two input sequences in green and blue. (B) 
A learning curve for the “single puzzle” reveals that the model is overfit, with test set RMSE 
exceeding train set RMSE, and lies in a high variance regime. (C) Augmentation of the training 
set significantly improves performance for the single puzzle model, with one-sided t-test p-
values of 3.4x10−2 for reorder, 1.2x10−2 for cycle, 1.3x10−7 for reverse, 9.4x10−10 for reverse 
complement (RC) and 2.8x10−6 for all augmentation methods. (D) With reverse complement 
augmentation, the model achieves an RMSE of 0.76 kcal/mol. (E) In concentration extrapolation 
tests, the best model exhibits relatively smooth behavior compared to previous simulated 
models. The dotted box highlights the concentration range seen in training. 
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