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ABSTRACT 
Objective: Major Depressive Disorder (MDD) is one of the most common mental illnesses and a leading 
cause of disability worldwide.  Electronic Health Records (EHR) allow researchers to conduct 
unprecedented large-scale observational studies investigating MDD, its disease development and its 
interaction with other health outcomes.  While there exist methods to classify patients as clear cases or 
controls given specific data requirements, there are presently no simple, generalizable, and validated 
methods to classify an entire patient population into varying groups of depression likelihood and severity.   
Materials and Methods: We propose an electronic phenotype algorithm that classifies patients into one 
of five mutually exclusive, ordinal groups, varying in depression phenotype.  Using data from an 
integrated health system on 278,026 patients from a 10-year study period we demonstrate the convergent 
validity of these phenotype constructs by presenting multiple lines of evidence associated with 
depression.  
Results: Convergent validity is derived from expected patterns in health care utilization, psychiatric 
prescriptions, indicators of suicidality, diagnoses of serious comorbidity, mortality, symptom severity, 
and finally, polygenic risk scores. 
Discussion: The algorithm is generalizable to most EHR data sets because it requires only International 
Classification of Diseases (ICD) diagnostic codes and medication orders and can be used for stratification 
of an entire patient population. 
Conclusion: Careful consideration must be given to the definitions of patient cohorts when utilizing EHR 
data, particularly when classifying subjects with heterogenous disorders such as MDD.  This algorithm 
may prove useful to others that wish to study depression in entire patient populations with EHR data. 
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BACKGROUND 
Depression is a highly prevalent mental illness that accounts for $43 billion in medical costs 
annually and is a leading cause of disability[1].  Depression has been linked to worse outcomes 
and increased healthcare utilization for numerous common medical disorders[2–6].  However, 
depression is a heterogeneous disorder, and its etiologies remain poorly understood [7].  There is 
an urgent need to better understand the causes and course of depression in order to develop more 
effective treatment and prevention strategies.  Electronic Health Records (EHR) from large 
integrated health systems now offer the opportunity for researchers to conduct unprecedented, 
large scale studies of patients in real-world settings[8–13]. Critical to these pursuits are 
phenotypic algorithms that correctly distinguish  who has the disorder within the patient 
population[14, 15].  Depression is a particularly difficult phenotype to define and studies often 
use heterogeneous criteria when utilizing EHR data to identify patients with depression[16–21].  
As with any phenotypic algorithm, the challenge is to validly define depression with high 
sensitivity and specificity, limiting both false positive and false negative classification of patients 
[22].  An additional complexity is the fact that depression may not be a binary phenomenon, but 
rather it may exist on a continuum with a range of severity in a population.   
 
There are at least four potential sources of information from the EHR for defining depression: a) 
International Classification of Diseases (ICD) diagnosis codes; b) depression screening 
measures; c) medication orders; and d) clinical notes.   While some studies use only ICD 
diagnosis codes to identify patients[21, 23], others have demonstrated that using these alone has 
inferior sensitivity and precision when compared with combinatorial models that use multiple 
sources of information [24].  National recommendations that adults be screened for depression 
annually has increased the availability and use of symptom questionnaires[16–18, 25] such as the 
Patient Health Questionnaire (PHQ-9)[26]. However, implementation of such screening 
measures has been fairly recent, is not standardized, and shows limited agreement with ICD 
codes for depression [19, 20].  Phenotyping algorithms may also use information from 
medication treatment codes [27–29].  Unfortunately, there may be a long delay between when 
patients with depression first experience the onset of symptoms and ultimately receive care, 
including with medication[30–33].  Additionally, antidepressants may be prescribed for a variety 
of comorbid mental [34] and non-mental health indications[35], such as tobacco use 
cessation[36] or chronic pain[37], which complicates its use for reliably identifying depression 
[38].  Lastly, the use of natural language processing (NLP) on clinical notes has great promise 
for classifying  psychiatric disorders[24, 39–42].  However, the generalizability of these methods 
may be limited due to data sets that do not have the number or types of notes required or contain 
only deidentified data.  Finally, most methods involve the exclusion of a sizeable number of 
patients with uncertain status, which prevents clinically relevant population-wide studies that 
include and classify all patients in the population.   
 
OBJECTIVE 
This study examines a novel phenotyping algorithm for defining depression along a continuum 
using EHR data and evaluates their construct validity with other indicators of health that should 
correlate with depression.  We focus on definitions based on ICD diagnosis codes and 
medication order data because these sources of data are more readily available than depression 
screening data and/or clinical notes and thus the resulting definitions are more widely 
generalizable.   
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MATERIALS AND METHODS 
Study data and analysis.   This study included de-identified Electronic Health Records (EHR) 
data obtained from January 1st, 2005 to September 30th, 2015 (10.75 years) for patients seen in 
the Geisinger Health System, an integrated health care system located in central Pennsylvania. 
The Geisinger system has a stable patient population whose EHRs have been collected in a 
central data warehouse and are available for clinical and research purposes [43–46].  The end 
date of the study period was chosen based on the transition from ICD-9 codes to ICD-10 codes in 
this hospital system.  Adult patients 18 years or older at the beginning of the study, 90 years or 
younger at the end of the study, who had a Geisinger Primary Care Physician (PCP) at any point 
during the study period, and had at least one outpatient visit within the system during the study 
period were included in the study cohort (n=278,026)  Demographic information, medication 
order histories, and details of all outpatient, Emergency Department (ED), and inpatient 
encounters were obtained on these patients.  The study was approved by the Geisinger Internal 
Review Board as non-human subjects research.   
 
We used domain knowledge of depression clinical care to implement an algorithm for 
partitioning all patients into one of five ordinal phenotype groups reflecting 
decreasing/increasing likelihood and/or severity of depression based on the available ICD-9 
diagnosis codes and medication orders,   Then, to evaluate the convergent/divergent validity of 
these phenotype groups, we examined how they related to other health care related 
characteristics thought to be associated with depression.  These other characteristics included 
measures of health care utilization, medical history, depressive symptoms, and polygenic risk for 
depression.  All analyses and visualizations described in further detail below were conducted in 
R (2017, R Core Team, Vienna, Austria) and GraphPad Prism 6 (La Jolla, CA). 
 
Depression phenotype algorithm.  To implement the phenotype algorithm (Figure 1), patients 
were first grouped into “Major Depressive Disorder” (MDD) if they received a diagnosis of 
Major Depressive Disorder (ICD-9 codes: 296.20, 296.21, 296.22, 296.23, 296.24, 296.25, 
296.26, 296.30, 296.31, 296.32, 296.33, 296.34, 296.35, 296.36, 296.82) one or more times as an 
ED or inpatient discharge diagnosis or on their problem list, or two or more times within a 2-year 
period as an outpatient discharge diagnosis.  Second, the remaining patients who did not meet 
previous criteria were then grouped into “Other Depression” (OthDep) if they received a 
diagnosis of a depressive disorder not elsewhere classified (ICD9 code: 311) one or more times 
as an ED or inpatient discharge diagnosis or on their problem list, or two or more times within a 
2-year period as an outpatient discharge diagnosis.  Third, the remaining patients who did not 
meet any of these previous criteria were then grouped into “Multiple Antidepressants No 
Depression” (MultiRx) if they received two or more antidepressant medication orders (RxNorm 
classification “Antidepressant”) during the study period that were not prescribed for common 
indicatons unelated to depression, including tobacco use disorder (305.1) and hereditary and 
idiopathic neuropathy (356).  Fourth, the remaining patients who did not meet any of these 
previous criteria were then grouped into “Miscellaneous Antidepressants NoDepression” 
(MiscRx) if they received any other antidepressant medication orders not captured in the 
previous grouping.  Finally, all other remaining patients were grouped into “No Depression” 
(NoDep).  
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Healthcare utilization.  Depression is associated with increased healthcare utilization[47–49].  
As a measure of healthcare utilization, we calculated the average number of visits annually 
across different health care settings and compared these across the groups.  To calculate the 
average number of visits in each healthcare setting per patient per year, we tallied the number of 
total visits in the outpatient, ED, non-psychiatric inpatient, and psychiatric inpatient settings 
during the entire study period for each group and divided this by the total number of patients in 
that group and the length of the study period (10.75 years), resulting in the average yearly visit 
frequency. 
 
Medical features.  We then evaluated several medical features that are known to be associated 
with depression, including medications, comorbidities and mortality.  Depressed patients are 
often prescribed antipsychotics to augment their antidepressant medication[50], and antianxiety 
agents to treat anxiety, which is a well-known comorbid condition with depression[51].  We 
determined the percent of patients in each group that had ever received at least one order for 
these medications as classified in RxNorm (“Antipsychotic” and “Antianxiety Agent”, 
respectively).  Depressed patients are known to have higher rates of suicidality[52, 53] and 
mortality[54, 55] than non-depressed patients.  We used the discharge diagnosis codes from 
encounter records to determine the percent of patients with ICD-9 codes for suicide and self-
inflicted injury (E950 - E958).  We used the date of death to determine the percent mortality of 
each group during the study period.  Substance abuse was captured using discharge diagnosis 
codes from encounter records to determine the percent of patients in each group that had ICD-9 
codes for alcohol and drug abuse or dependence (303, 304, and 305, excluding tobacco use 
disorder 305.1).   Finally,  as depressed patients have greater overall burden of medical 
comorbidities than non-depressed patients[56], we calculated the Charlson Comorbidity Index 
(CCI) score for each patient.  The CCI contains 19 categories of serious comorbidities that 
predicts the 10-year mortality of patients[57]. 
 
Depression symptoms.  In 2012, Geisinger Health System began implementing universal 
screening for depression with the Patient Health Questionnaire 2 (PHQ-2).  If patients endorse 
either of the two screener questions, they are then asked the additional 7 questions (PHQ-9).  The 
PHQ-9 is a validated instrument for assessing current depression symptom severity and has a 
tiered rating scale based on total score (0: no depression, 1-9: mild, 10-14: moderate, 15-19: 
moderately severe, 20+: severe)[58, 59].  For all patients that had one or more PHQ-2/9result in 
their EHR (n=170,618; 61.4%), we identified their maximum score and determined the percent 
of patients in each group with maximum scores in the different PHQ-2/9 scoring categories.   
 
Polygenic risk scores.  Geisinger Health System has recruited over 90,000 patients to participate 
in a genetics study called MyCode[43].  A subset of the study population described above have 
participated in this study, allowing us to calculate polygenic risk scores (PRS) for comparison 
across depression groups.  Using publicly available summary results from a recently published 
genome-wide association study (GWAS) of MDD [60], we calculated PRS for each patient in 
our data set that had genetic data available (n=52,775; 19%).  Polygenic risk scores for MDD 
were calculated using PRSice-2[61] at eight predetermined p-value thresholds: 1, 0.5, 0.1, 0.05, 
0.01, 0.001, 0.0001, 0.000001.  As results were similar across all p-value thresholds 
(Supplementary Table 1), we only report results for the nominal threshold of p=0.05.   
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RESULTS 
We developed and implemented an algorithm for grouping patients based on ICD9 codes and 
medication orders into one of five ordinal groups, varying in likelihood and severity of 
depression, which we named from most to least likely/severe: “MDD”, “OthDep”, “MultiRx”, 
“MiscRx”, and “NoDep” (Figure 1).  Of the total patient population, each group accounts for 
3.2%, 17.4%, 11.1%, 10.8%, and 57.5%, respectively.  Summary statistics on sex, race, marital 
status, age at beginning of the study and length between first and last encounters are shown for 
the total patient population and all five groups in Table 1.  The sample is 54.0% female, 95.7% 
white, 60.9% married, median age 45, and median length between first and last encounter is just 
over 7 years.  As expected, depression occurs more commonly in females, reflected by an 
increased Female to Male ratio in each “affected” group.  Patients in the MDD and OthDep 
groups are less likely to be “Married” compared with those in the NoDep, MultiRx, and MiscRx 
groups.  Age at the beginning of the study does not differ substantially between groups (median: 
45, third quartile: 57 years), although it is slightly less for those in the MDD group (median: 44, 
third quartile: 55 years).  The length between first and last encounter varied across groups, with a 
much higher percentage of patients in one of the four “affected” groups having at least 7 years of 
observation than those in the NoDep group.  It is also of note that the vast majority of patients in 
the MDD and OthDep groups received at least one antidepressant medication order, 97.2% and 
93.0%, respectively.   
 
Healthcare utilization.  The average number of outpatient visits/year decreased monotonically 
across the five phenotype groups from a high of over 5.5 visits/year for MDD patients to a low of 
fewer than 2 visits/year for NoDep patients (Fig 2A).  The pattern was similar albeit with lower 
overall averages for ED visits (ranging from 0.24 to 0.06 visits/year, respectively) and non-
psychiatric inpatient visits (ranging from 0.11 to 0.03 visits/year, respectively) (Figures 2B and 
2C).   The most striking difference across the five phenotype groups was observed for psychiatric 
inpatient visits (Figure 2D).  MDD patients had an average of 0.03 such visits/year, which was 
10 times greater than that for OthDep patients, the next highest group, while the rates were 
negligible for the remaining MultiRx, MiscRx and NoDep groups. 
 
Medication orders and comorbidities.  Similar to the utilization patterns, the percent of 
patients that received antipsychotic (Figure 3A) or antianxiety agents (Figure 3B), decreased 
monotonically across the five groups from a high for MDD to a low for NoDep.  Approximately 
44% of MDD compared to 5% of NoDep patients were prescribed antipsychotic medications, 
while 31% of MDD compared to 5% of NoDep patients were prescribed antianxiety medications.  
A similar pattern was observed across the five phenotype groups for the percent of patients with 
substance use and abuse (Figure 3C) and mean Charlson Comorbidity Index scores (Figure 3D).  
The pattern differed, however, for suicide related diagnosis codes and overall mortality.  Almost 
all suicide related diagnosis codes were noted in MDD and OthDep patients, while the percent of 
patients with such codes were negligible in the MultiRx, MiscRx, and NoDep groups (Figure 
3E).  As for overall mortality, interestingly, the highest rates were observed for patients in the 
OthDep group. (Figure 3F).   
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Table 1.  Characteristics of the total sample and five depression phenotype groups  
Total 

(n=278,026) 
MDD 

(n=8,747) 
OthDep 

(n=48,361) 
MultiRx 

(n=30,984) 
MiscRx 

(n=29,972) 
NoDep 

(n=159,962) 

    n % n   % n   % n   % n   % n   % 

Sex 
Male 127919 46.0 2592   29.6 15354 31.7 11022 35.6 12434 41.5 86517 54.1

Female 150107 54.0 6155   70.4 33007 68.3 19962 64.4 17538 58.5 73445 45.9

Race 

White 266043 95.7 8589   98.2 47183 97.6 30329 97.9 29080 97.0 150862 94.3

Black 7168 2.6 107   1.2 859 1.8 425 1.4 597 2.0 5180 3.2

Asian 2281 0.8 22 0.3 117 0.2 92 0.3 119 0.4 1931 1.2

Native 1384 0.5 19 0.2 121 0.2 91 0.3 106 0.4 1047 0.7

Other 1150 0.4 10 0.1 81 0.2 47 0.2 70 0.2 942 0.6

Marital 
Status 

Married 169259 60.9 4481 51.2 25559 52.8 19328 62.4 17752 59.2 102139 63.9

Single 57848 20.8 1735 19.8 9618 19.9 5480 17.7 6175 20.6 34840 21.8

Widowed 21002 7.6 773 8.9 5023 10.4 2591 8.4 2323 7.8 10292 6.4

Divorced 24480 8.8 1398 16.0 6570 13.6 2978 9.6 3052 10.2 10482 6.6

Other 5437 2.0 360 4.1 1591 3.3 607 2.0 670 2.2 2209 1.4

Age at 
Beginning 
of Study 

18-30 60093 21.6 1805 20.6 9657 20.0 6640 21.4 6425 21.4 35566 22.2

31-45 85036 30.6 2891 33.1 15177 31.4 9950 32.1 9756 32.6 47262 29.5

46-65 98727 35.5 3251 37.2 17760 36.7 10424 33.6 10196 34.0 57096 35.7

66+ 34170 12.3 800 9.1 5767 11.9 3970 12.8 3595 12.0 20038 12.5

Length 
between 
first and 
last 
encounters 

1 year or less 36523 13.1 330 3.8 2930 6.1 771 2.5 3080 10.3 29412 18.4

1-4 years 60817 21.9 1091 12.5 8504 17.5 5471 17.7 5513 18.4 40238 25.2

4-7 years 41172 14.8 1140 13.0 7108 14.7 4764 15.4 4349 14.5 23811 14.9

7-10.75 years 139514 50.2 6186 70.7 29819 61.7 19978 64.5 17030 56.8 66501 41.6
 
Medication orders and comorbidities.  Similar to the utilization patterns, the percent of 
patients that received antipsychotic (Figure 3A) or antianxiety agents (Figure 3B), decreased 
monotonically across the five groups from a high for MDD to a low for NoDep.  Approximately 
44% of MDD compared to 5% of NoDep patients were prescribed antipsychotic medications, 
while 31% of MDD compared to 5% of NoDep patients were prescribed antianxiety medications.  
A similar pattern was observed across the five phenotype groups for the percent of patients with 
substance use and abuse (Figure 3C) and mean Charlson Comorbidity Index scores (Figure 3D).  
The pattern differed, however, for suicide related diagnosis codes and overall mortality.  Almost 
all suicide related diagnosis codes were noted in MDD and OthDep patients, while the percent of 
patients with such codes were negligible in the MultiRx, MiscRx, and NoDep groups (Figure 
3E).  As for overall mortality, interestingly, the highest rates were observed for patients in the 
OthDep group. (Figure 3F).   
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Fig. 1 Methodological design with five mutually exclusive constructs including multiple depression phenotypes and 
one control group with no evidence of depression. “according to rules” refer to details of the Depression Phenotype 
Algorithm described in the Methods section.  “311 codes” refer to the ICD-9 code for Depressive disorder, not 
elsewhere classified.  “TUD” stands for tobacco use disorder.   
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Fig. 2 Healthcare utilization patterns for the five depression phenotype groups.  (A) Outpatient visit frequency; (B) 
Emergency Department (ED) visit frequency; (C) Non-psychiatric inpatient visit frequency; (D) Psychiatric 
inpatient frequency.   
 
Depression symptoms.  A subset of the study population was screened at least once with the 
Patient Health Questionnaire (PHQ), a well validated depression measure (Figure 4).  Patients in 
the MDD group were the most likely to have been screened (73.4%, n=6421), followed by those 
in the OthDep (68.7%; n=33,229), MultiRx (69.1%; n=21,419), MiscRx (62.9%; n=18,865), and 
finally NoDep (56.7%; n=90,684).  The majority of those in the NoDep group scored a 
maximum of 0, indicating no depression, and only 2.6% scored 10 or higher, indicating 
moderate, or more severe depression.  Those in the MiscRx and MultiRx groups were 
remarkably similar to one another at all possible scores.  This contrasts with the more severely 
“affected” groups MDD and OthDep. Over a third of the MDD group and nearly a quarter of the 
OthDep group had a maximum score of 10 or higher.   
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2018. ; https://doi.org/10.1101/227561doi: bioRxiv preprint 

https://doi.org/10.1101/227561
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

 
Fig. 3 Medical features across the five depression phenotype groups.  (A) Antipsychotic and (B) antianxiety 
medication prescriptions, (C) substance use disorder or dependence codes, (D) mean Charlson Comorbidity Index 
scores, (E) suicide codes, and (F) mortality. 
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Fig. 4 Depression symptoms across the five depression phenotype groups.  Percentage of patients per group whose 
maximum score on the Patient Health Questionnaire 2 or 9 (PHQ-9/2) fell in the categories shown.   
 
Polygenic risk scores.  As depression has a prominent heritable component [62], we used 
polygenic risk scores (PRS) derived from an external GWAS [60] to further validate our 
phenotype groups for those patients in this study who had available genome-wide genotype data.  
As shown in Figure 5, we found a gradient of increased PRSs across the five phenotype groups, 
with the highest PRSs seen in the MDD group and the greatest difference seen between the MDD 
and NoDep groups (P < 2.2 -16, R2 =0.8%).  
 
DISCUSSION 
Here we present a novel electronic phenotype algorithm using ICD codes and medication orders 
in EHR data, resulting in five mutually exclusive and ordinal groups for categorizing patients 
with depression across an entire population.  These phenotype groups demonstrate convergent 
validity as assessed by significant differences between them in a range of clinically relevant 
characteristics that are expected to correlate with depression [63, 64], including healthcare 
utilization [47], medical features (such as treatments [65], comorbidities [66, 67], and mortality), 
depression screening results, and polygenic risk scores.  Interestingly, these clinically relevant 
characteristics tended to vary in a “dose-response” like fashion across the phenotype groups 
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consistent with the fact that the groups defined by increasingly more stringent criteria identified 
patients with increasing likelihood and/or severity of depression.  These findings demonstrate 
that it is possible to use diagnostic codes and medications orders in EHR data to validly 
categorize patients with respect to depression across the entire population. 
 

 
Fig. 5 Scaled Polygenic Risk Scores for Major Depressive Disorder correlate with and distinguish between 
depression constructs when compared with NoDep group.  P-value threshold 0.05, includes 20,962 SNPs.  
Comparing NoDep to both MDD groups combined results in R2=0.008.  Welch two sample t-test between each 
group and NoDep results in statistically significantly differences in each comparison.  Median values displayed in 
bold at center of boxplots overlaid on jittered dot plots.  
 
With the wide spread adoption of EHRs, there is growing interest in identifying patients with 
depression for subsequent research using data available from the EHRs.  As a result, a number of 
previous studies have attempted to do this employing a variety of methods that use in isolation or 
combination ICD9 diagnosis codes, antidepressant prescription orders, and NLP of progress 
notes.  Many of these studies have not validated their algorithms [18–21, 23].  There are a few 
studies, however, that have attempted to validate their algorithms by comparing identified cases 
and controls against a putative gold-standard diagnosis established by expert review of 50 or 100 
medical charts per group [17, 24, 39].  Our approach differs from these previous efforts in that 
we sought to establish convergent rather than criterion validation of our algorithm, which 
allowed us to characterize and compare the full range of depression in the entire sample rather 
than a small sub-sample of putative cases and controls which presumably represent the extremes 
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of the phenotype in the population.  In addition, other than one study which used genetic data to 
try and validate an algorithm for defining a bipolar disorder phenotype [40], our study is the only 
one as far as we know to use genetic data to validate an algorithm for defining depression.   
 
This study has several limitations that warrant discussion.  First, with regard to our examination 
of healthcare utilization patterns and medical features, we assumed that patients contributed 
follow-up over the entire study period.  We did this to simplify our estimates, though it is 
possible that a number of patients entered or left the Geisinger service area during the study 
period.  Second, with regard to our algorithm, we categorized patients based on the most severe 
criteria met over the study period and assumed they belonged to that group for the entire period.  
This ever/never approach does not allow for change over time and does not take full advantage 
of this rich longitudinal data, which may be interesting to study using longitudinal data analysis 
methods in the future.  Our algorithm was also based on ICD-9 codes, as opposed to ICD-10 
codes which are the current version in use for diagnosis and healthcare billing.  Fortunately there 
are many resources available for mapping between ICD-9 and ICD-10 codes that can be 
leveraged to create an equivalent list of ICD-10 codes to the list and codes used here [68, 69].  
Third, with regard to the sample under study, it consisted of predominantly white patients from 
rural communities in central Pennsylvania.  As a result, there may be questions about the 
generalizability of our approach to other more diverse and urban populations.  In addition, there 
are other healthcare systems in the service area and thus the data we used to categorize patients 
may not have completely captured all medical utilization.  Claims data may provide an additional 
source of information about healthcare utilization that would be useful in future studies.     
 
This study also benefits from several significant strengths.  One of the major strengths of this 
study is the large longitudinal data from a stable patient population in an integrated health care 
system.  With extended and extensive data available from multiple health care settings (primary, 
emergency, and hospital care), we were able to validate our simple phenotype algorithm by 
comparison with a range of different measures.  Additionally, our algorithm allows for 
classification of all patients in a given population across a spectrum of depression severity, as 
opposed to other approaches which often  seek to classify only the extremes of the population to 
the exclusion of patients with uncertain binary case versus control status [39].  Finally, our 
algorithm uses only diagnosis codes and medication data to validly classify patients with regard 
to depression and therefore may be more generalizable to other systems that don’t have ready 
access to data on screening measures or from natural language processing of clinician notes. 
 
CONCLUSION 
The electronic phenotype algorithm presented here provides a simple and valid model for 
defining patients with varying severities of depression and may be useful for researchers who 
wish to examine the effects of depression in entire patient populations.  The five mutually 
exclusive, ordinal groups demonstrate differences that are expected to correlate with depression.  
We found correlations with utilization patterns, treatments, comorbidities, mortality, depression 
screening instruments for symptom severity, and polygenic risk scores.  These constructs are 
generalizable to any data set that has both diagnosis codes and medication orders and at least two 
years of data.  Ultimately, the definition of depression phenotypes will depend upon the goal of 
the research, and we present one possible method that demonstrates convergent validity, 
generalizability, and inclusivity.     
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