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Abstract 

Background: The evolution and spread of antimicrobial resistance is a major global public health threat. In some 

cases the evolution of resistance to one antimicrobial seemingly results in enhanced sensitivity to another (known 

as ‘collateral sensitivity’). This largely underexplored phenomenon represents a fascinating evolutionary 

paradigm that opens new therapeutic possibilities for patients infected with pathogens unresponsive to classical 

treatments. Intrinsic resistance to β-lactams in Mycobacterium tuberculosis (Mtb, the causative agent of 

tuberculosis) has traditionally curtailed the use of these low-cost and easy-to-administer drugs for tuberculosis 

treatment. Recently, β-lactam sensitivity has been reported in strains resistant to classical tuberculosis drug 

therapy, leading to a resurgence of interest in using β-lactams in the clinic. Unfortunately though, there remains a 

limited understanding of the mechanisms driving β-lactam sensitivity. 

 

Methods: We used a novel combination of systems biology and computational approaches to characterize the 

molecular underpinnings of β-lactam sensitivity in Mtb. We performed differential gene expression and co-

expression analyses of genes previously associated with β-lactam sensitivity and genes associated with 

resistance to classical tuberculosis drugs. Protein-protein interaction and gene regulatory network analyses were 

used to validate regulatory interactions between these genes, and random walks through the networks identified 

key mediators of these interactions. Further validation was obtained using functional in silico knockout of gene 

pairs. 

 

Results: Our results reveal up regulation of the key regulatory inhibitor of β-lactamase production, blaI, following 

treatment with classical drugs. Co-expression and network analyses showed direct co-regulation between genes 

associated with β-lactam sensitivity and those associated with resistance to classical tuberculosis treatment. blaI 

and its downstream genes (sigC and atpH) were found to be key mediators of these interactions.  

 

Conclusions: Our results support the hypothesis that Mtb β-lactam sensitivity is a collateral consequence of the 

evolution of resistance to classical tuberculosis drugs, mediated through changes to transcriptional regulation. 

These findings support continued exploration of β-lactams for the treatment of tuberculosis, particularly for 

patients infected with strains resistant to classical therapies that are otherwise difficult to treat. Importantly, this 

work also highlights the potential of systems-level and network biology approaches to improve our understanding 

of collateral drug sensitivity. 
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Background 

Collateral antimicrobial sensitivity occurs when the evolution of resistance to one or more antimicrobials directly 

or indirectly causes increased sensitivity to unrelated antimicrobials [1]. There are now numerous examples of 

this phenomenon in the literature [2, 3], and while direct mechanisms are sometimes evident based on our 

understanding of individual genes or pathways [4], there is a lack of knowledge to explain collateral sensitivity 

between drugs of unrelated function. An improved understanding of such mechanisms can inform novel treatment 

strategies that limit or delay the development of resistance [1]. 

 

Tuberculosis (TB) remains a significant cause of global mortality, causing an estimated 1.5 million deaths 

annually (WHO 2014 Global Tuberculosis Report). It can be successfully treated through combination 

antimicrobial therapy targeting the causal pathogen, Mycobacterium tuberculosis (Mtb). However, successful 

treatment is hampered by the emergence of antimicrobial resistant Mtb, particularly strains resistant to multiple 

drugs (WHO 2014 Global Tuberculosis Report).  

 

Mycobacterium tuberculosis is generally considered intrinsically resistant to the β-lactams due to its production of 

the BlaC β-lactamase and the inclusion of non-classical peptidoglycan linkages in its cell wall [5, 6]. However, 

recent studies have reported increased β-lactam sensitivity among some clinical isolates, largely comprising 

multi- or extensively-drug resistant strains [7, 8], plus isolates experimentally evolved to be resistant to 

aminoglycosides [9]. (Multi- and extensive- drug resistance is defined by the World Health Organization as 

resistance to isoniazid and rifampicin, with or without resistance to other first-line drugs; and resistance to 

isoniazid and rifampicin, plus any fluoroquinolone, and any of the three second-line injectable drugs (amikacin, 

capreomycin, and kanamycin), respectively.)  These findings suggest that the evolution of resistance to classical 

TB drugs may lead to collateral β-lactam sensitivity. The potential application of clinical regimens including β-

lactams is of particular interest, due to the comparative low-cost, ease of treatment and accessibility of these 

drugs [10]. Although β-lactam plus β-lactamase inhibitor treatments have shown potent activity against Mtb in the 

laboratory [6], patient treatment trials have been less promising [11, 12]. Therefore, a better understanding of how 

resistance to the classical drugs may result in heightened β-lactam sensitivity is required to identify those patients 

that may benefit from β-lactam treatment. 

 

Recent technological and algorithmic advances have facilitated the high throughput measurement of gene 

expression, as well as the inference and analysis of large-scale protein-protein interaction and DNA-protein 

interaction networks for Mtb, which can facilitate systems-level investigations into the transcriptional and 

regulatory mechanisms behind phenomena such as collateral sensitivity. However, to date there has been limited 

integration of network and transcriptomic analyses to understand clinically relevant system-level mechanisms in 
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bacteria; instead such studies have focused on the identification of new genes or the associations between drugs 

and resistance genes (e.g. [13, 14]). 

 

Here we describe a novel systems-level approach for the exploration of collateral β-lactam sensitivity in Mtb. We 

combine gene expression analyses with protein-protein interaction and gene regulatory network data and 

functional in silico growth simulations. Our analyses indicate that collateral β-lactam sensitivity is the result of 

direct transcriptional regulation between genes associated with β-lactam sensitivity and those mediating 

resistance to classical TB drugs. This wiring promotes the inhibition of β-lactamases as a response to drug 

treatment, with genes of the BlaI operon, blaI, sigC and atpH, playing key roles. This work is the first to 

demonstrate the potential of integrative computational and systems biology approaches in the understanding of 

the mechanisms of collateral sensitivity. 
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Methods  

1. Genes associated with β-lactam sensitivity 

A list of 111 genes associated with β-lactam sensitivity (hereafter termed β-lactamS genes) in Mtb, and two 

closely related species, Mycobacterium smegmatis and Mycobacterium bovis, was obtained from multiple 

sources [7, 15]. A full list of genes used in this study can be found in Supp. Table S1. 

 

2. Genes implicated in resistance to classical TB drugs  

We compiled a list of 40 genes implicated in classical TB drug resistance (hereafter termed DR genes) from The 

Tuberculosis Drug Resistance Mutation Database (https://tbdreamdb.ki.se/CMS/Download.aspx) (Supp. Table 

S2). These included genes associated with resistance to rifampicin (RIF, n = 2), isoniazid (INH, n = 22), 

aminoglycosides (AMI,  kanamycin/captromycin/amikacin/viomycin, n = 2), streptomycin (SM, n = 3), 

fluoroquinolones (FLQ, n = 2), ethambutol (EMB, n = 13), ethionamide (ETH, n = 3), para-aminosalisylic acid 

(PAS, n = 1) and pyrazinamide (PZA, n = 1).  

 

3. Expression data 

Mtb microarray gene expression data were obtained from sample series GSE1642 [16] from the NCBI GEO 

database. Data were available for Mtb exposed to 437 treatments, including the following in vitro treatment 

conditions: classical TB drugs as single agents (isoniazid, rifampicin, amikacin, streptomycin, levofloxacin, 

ofloxacin, ethambutol, ethionamide, pyrazinamide) and control conditions (7H9-based growth medium without 

drug treatment).  

 

We assessed the impact of classical trug treatment by comparing the variance of expression of β-lactams genes 

to that across all genes. Significance testing was performed by comparison to the null distribution generated by 

random subsampling of Mtb genes (n = 111 genes with 10,000 replicates), and counting the number of times we 

obtained a variance equal or greater than the observed value. Differential expression analysis was performed 

using limma [17], where differential expression was considered significant if the q-value (i.e. a p-value that has 

been adjusted for the False Discovery Rate (FDR) taking into account multiple testing) < 0.05 and |fold change| > 

2.  

 

To compare the strength of correlation of expression of DR genes with β-lactams genes, we exhaustively 

calculated Spearman ρ between the expression of each of the individual genes, generating (1) a distribution of 

correlation of each individual DR gene with all β-lactams genes, and (2) a distribution of DR genes with all other 

genes. We then used the upper quantile of the correlation magnitude (absolute value of the correlation of 

expression) of each of these distributions to summarise the differences in the distribution of the strength of 
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correlation magnitude, therefore comparing the most strongly correlated DR-genes - β-lactamS genes with the 

most strongly correlated DR -genes - non-β-lactamS genes. 

 

4. Mtb networks 

We integrated molecular interaction networks from two sources: protein-protein interactions (PPIs) (22,308 

interactions) from the STRING database [18], and transcription factor-target interactions experimentally obtained 

using chromatin immunoprecipitations [19] as a gene regulatory (GR) network (15,054 interactions). Note that 

although the STRING database has been traditionally considered to be solely composed of PPIs, there are a 

number of regulatory interactions supported by gene co-expression analysis [18]. Genes/proteins were 

represented as nodes and interactions were represented as edges. Only high confidence edges were analysed: 

PPIs with a weight greater than 700 (the cutoff suggested by STRING as being of high confidence) and 

statistically significant transcription factor-target gene interactions (as defined by [19]) were considered. The 

power-law distribution of the combined network PPI and GR was verified using igraph [20], to ensure its biological 

plausibility. Network visualizations were obtained using Cytoscape v3.4.0 [21]. 

 

5. Significance of interactions between β-lactamS and DR nodes (genes/proteins) in the molecular 

interaction network 

We assessed the significance of the interactions between gene sets (β-lactamS and DR genes) using BinoX [22] 

a method for estimating the distribution of crosstalk expected under a random model of a given network. In this 

study, distribution parameters are estimated under two different permutation procedures: permutation of the node 

labels or edges (denoted ‘node swap’ and ‘link swap’ respectively). Once the crosstalk distribution for the given 

gene set(s) has been estimated, the significance of an observed degree of crosstalk can be computed. In this 

study, 1000 permutations were used for both methods, and significance was corrected using Benjamini-Hochberg 

(and hence is reported as q-values).  

 

6. Random network walks to identify β-lactamS nodes influenced by DR nodes 

We performed random walks between all pairs of nodes in the PPI and the GR networks separately to determine 

the access times as an indicator for the influence of one node over another. Random walks correspond to the 

possible paths taken by a random walker on a network between a pair of nodes. Access times represent the ease 

with which information (e.g. signal transduction, gene regulation) flows from one node to another, as it is 

proportional to the number of connections and available paths between nodes. Simulating the random walk was 

unnecessary as the access time on a finite graph has an analytical solution [23] computed via eigenvalue 

decomposition of the edge matrices of the networks. 
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To assess the similarity of the access times obtained with the PPI [18] and the GR networks [19], we investigated 

the stability using a multivariate extension of Spearman’s ρ [24, 25]. This allows us to assess the similarity of the 

top-k access times and determine if there is a set of stable edges with low access time.  

 

We selected pairs of nodes comprising one β-lactamS node and one DR node, and narrowed down sets of pairs 

with small access times in either the PPI or GR network. Given the non-symmetry of access times obtained with 

random walks (the access time from A->B is not equal to that from B->A), we considered the results obtained in 

both directions independently. Cutoffs were determined from the empirical distribution: 1054.74 for the PPI in the 

DR genes -> β-lactamS direction, 1336.58 for the β-lactamS -> DR genes direction, and 1713.37 for the GR 

network in the DR genes -> β-lactamS direction and 2741.49 in the β-lactamS -> DR genes direction. 

 

7. Simulating the effect on bacterial growth of double knockout β-lactamS plus DR gene mutants 

To identify pairs of β-lactamS and DR genes whose knockout would have the largest effect on the growth of Mtb, 

we performed simulations using the iSM810 model of Mtb with the PROM framework [26] and the COBRA 

toolbox [27], which incorporate both gene-regulatory and metabolic processes to predict growth rates after double 

knock-down simulations. As input we used the GR network [19] and expression data described above [16].  
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Results 

1. Treatment with classical TB drugs induces the expression of β-lactamase inhibitors 

If β-lactam sensitivity in Mtb is truly a consequence of classical drug resistance (i.e. truly collateral), we expect 

that genes/proteins implicated in β-lactam sensitivity should have close biochemical and/or regulatory 

connections to those that are implicated in classical drug resistance. We hypothesised that such connectivity may 

be detected as differential expression of β-lactams genes in response to classical drug treatment. Therefore, we 

investigated the differential expression of 111 genes with reported involvement in β-lactam sensitivity in Mtb or 

the closely related species M. segmantis or M. bovis (β-lactams genes, see Supp. Table S1) in response to 

incubation of Mtb with classical TB drugs (EMB, ETH, two FLQ (levofloxacin and ofloxacin), AMI, SM, INH, PZA 

and RIF) data [16]. Since we aimed to find commonalities between drug treatments, gene expression across 

single agent drug treatments were pooled. 

 

We found that β-lactams genes showed a greater variability of expression than non-β-lactams genes 

(Kolmogorov–Smirnov (KS) test p-value 0.0034, Wilcoxon test p-value 0.00047, see Fig. 1A), indicating that 

classical drug treatment disproportionately affects the activity of these genes. We further validated this result by 

assessing the variability of randomly selected subsets of non-β-lactams genes matching the number of β-lactams 

genes (10,000 permutations, p=0.0023).  

 

We next performed differential expression analysis using limma [17], revealing 804 differentially expressed genes 

after drug treatment (q-value < 0.05, |fold change (FC)| > 2) (Supp. Table S3). We found that 31.46% of these 

were β-lactams genes (28/89, p = 0.0010 by Fisher exact test), of which 21 (75.0%) were upregulated (Fig. 1B). 

To check that the activation of β-lactams genes was not simply due to a general stress response, we also 

calculated the differential expression after incubation in an acidic stress environment (pH 4.8 to 5.6), which has 

been shown to restrict the growth of Mtb [28]. We found that only 5.41% of differentially expressed genes under 

acidic stress were β-lactams genes (29/536), indicating that drug treatment may be more likely to lead to 

differences in expression of β-lactams genes than other conditions that restrict cell growth.  

 

Interestingly, blaI (Rv1846c), the major repressor of the blaC β-lactamase, as well as atpH (Rv1307) and sigC 

(Rv2069), members of the BlaI regulon (Sala et al., 2009), were all upregulated after classical drug treatment 

(logFC = 1.509, q-value = 0.0095; logFC = 1.173, q-value = 0.03; logFC= 1.432, q-value = 0.0004, respectively). 

These data indicate that classical TB drug treatment may inhibit the main β-lactamase responsible for Mtb’s 

intrinsic β-lactam resistance. Among the upregulated genes we also found Rv1884c (rpfC) (logFC = 1.734, q-

value = 0.0324), which has also been associated with β-lactam sensitivity [29]. Overall, treatment of Mtb with 

classical anti-TB drugs used in the clinic promoted the upregulation of key inhibitors of β-lactam resistance. 
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2. Strong co-regulation between β-lactamS and DR genes  

The findings from our gene expression analyses suggested that β-lactams genes may be co-regulated with those 

encoding the classical drug targets. Therefore, we searched for co-expression associations between the β-

lactams and DR genes, the latter of which includes those that encode the classical drug target proteins.  

 

First, we investigated module co-membership of β-lactams genes with DR genes among previously defined co-

expression modules derived from 437 perturbation experiments with different drugs and growth-inhibitory 

conditions ([16], Supp. Table S2). We found that 47.37% of co-expression clusters containing DR genes also 

included at least one β-lactamS gene, suggesting that these genes are controlled by similar regulatory networks.  

 

Next, we compared the strength of correlation of expression of DR genes with β-lactams genes in these 

perturbation experiments (see Methods). We found that the majority of DR genes (27/37, 72.97%) had a stronger 

correlation with the genes of the β-lactams cluster than with all other genes (genes located above the diagonal 

line, see Fig. 2). These DR genes were disproportionately associated with INH resistance (10 genes) or to 

resistance to multiple drugs (7 genes), suggesting that these DR genes likely exert a strong regulatory influence 

on genes associated with β-lactam sensitivity.  

 

Overall, DR and β-lactams genes were found to be highly co-expressed in the transcriptional network of TB, 

supporting our hypothesis of a co-regulatory association of these genes in Mtb.  

 

3.  β-lactamS and DR nodes (genes/proteins) are highly linked in the molecular network of Mtb  

To determine whether the co-expression associations between β-lactams and DR genes were the result of direct 

co-regulation between these genes as opposed to indirect associations, we investigated their localization and 

interaction in the Mtb protein-protein and gene regulatory networks. We integrated the STRING database [18] 

and transcription factor-target gene data published in [19], excluding duplicated edges and self-loops. The 

resulting network contained 4181 nodes (genes/proteins) and 37,313 edges, including experimentally validated 

physical and transcription factor – target associations between genes or proteins. There was no evidence to 

suggest that the combined PPI and GR network was not drawn from a power-law distribution (p = 0.065, i.e. 

indicating that we cannot reject the null hypothesis that the degree distribution follows a power-law distribution), 

supporting the view that the network structure is consistent with a true biological network [30]).  

 

We found that the majority of β-lactamS nodes (47 of 57) were localized in a highly specific network region 

(shown in Fig. 3). Network analysis using link and node permutation in BinoX revealed that β-lactamS nodes are 
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more likely to interact with each other than expected by chance (q-value < 1x10-30  using link and node 

permutation of the PPI network and q-value = 2.82x10-5 and q-value = 1 using link and node permutation, 

respectively). Interestingly within this subnetwork, β-lactams nodes were clustered based on the gene/protein 

functional role (Fig. 3), with well-defined clusters of nodes representing genes/proteins involved in metabolism, 

cell cycle and peptidoglycan biosynthesis, consistent with previous findings that gene function is related with 

network localization [31, 32]. However, the broader clustering of β-lactams nodes suggests a high degree of 

association between these genes even when these are functionally highly varied (Supp. Table S1), suggesting 

involvement in similar protein complexes or enzymatic reactions. 

 

Next, we investigated the interactions between β-lactamS nodes and DR nodes (Fig. 4, Supp. Table 4). We noted 

that the β-lactamS nodes were located near the core or centre of the subnetwork, with DR nodes organized in 

clusters at the periphery grouped by drug type. Using BinoX, we found a significant crosstalk in the GR network 

between EMB resistance and β-lactamS genes (q-value = 0.014 for link permutation and q-value = 0.065 for node 

permutation), and in the PPI network between INH and β-lactamS genes (q-value = 0.009 for link permutation and 

q-value = 0.01 for node permutation). These results, together with the strong co-expression association between 

β-lactamS and DR genes, supports our hypothesis of a direct co-regulation between β-lactams genes/proteins 

and the genes/proteins implicated in resistance to at least two of the first-line treatments used to treat TB in the 

clinic.  

 

4. atpH and sigC are key mediators of the interactions between DR and β-lactamS genes  

To identify the key genes linking β-lactamS and DR genes/proteins, which likely mediate collateral β-lactam 

sensitivity, we performed random walks between the β-lactamS and DR nodes in the PPI and GR networks. We 

calculated the access times between DR and β-lactamS nodes in the GR and PPI networks, which represent the 

degree of influence between pairs of nodes (ie. a measure of ease of information flow between nodes, where 

lower scores suggest that biological information such as signalling or regulation is more likely to transfer from one 

gene/protein to another). 

 

Since the importance of a node highly depends on the underlying network structure, we first determined how the 

structural differences between the PPI and GR networks would affect the random walks. We considered both 

directions of information flow, from DR nodes to β-lactamS nodes and vice versa.  We ranked the access times 

between all pairs of nodes in each database separately, and used bivariate Spearman's ρ to calculate the 

similarity of stability scores [24, 25] (Supp. Fig. S1). We found that only the top 6.76% (272/4,019) of access time 

ranks in the DR to β-lactamS node direction and 29.87% (1,146/3,836) in the β-lactamS to DR node direction were 

consistent between networks. This result is consistent with the notion that PPI networks and GR networks 
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represent different types of associations between genes and proteins. Therefore, we used PPI and GR networks 

separately for subsequent random walk analyses.  

 

Ranking pairs of β-lactamS and DR nodes by their access times revealed discrete sets of node pairs with similar 

influence (Fig. 5A-D), consistent with the modular organization of the PPI and GR networks [33]. We selected the 

set of node pairs with the smallest access times (red lines define threshold for each case); 30 and 35 pairs 

derived from the PPI and GR networks respectively in the DR to β-lactamS direction; 160 and 103 pairs, 

respectively in the opposite direction (Supp. Table S5). These sets represent pairs of β-lactams and DR 

genes/proteins that are likely to modulate or influence each other’s activity. 

 

To ensure that the set of gene pairs with smallest access times was biologically meaningful, we compared the co-

expression of pairs of DR-β-lactamS genes with the smallest access times to pairs of DR-β-lactamS genes with 

higher access times (Fig. 5E). Of note, the distributions were significantly different (Kolmogorov–Smirnov test p = 

0.0024 in the PPI network, p-0.0024 in the GR network), with the distribution of co-expression of DR-β-lactamS 

genes with the smallest access times being wider than the reference distribution, indicating an enrichment of 

stronger magnitudes of co-expression between these pairs.  

 

By examination of DR-β-lactamS gene pairs with the smallest access times we identified two key nodes in the 

paths of information flow: All low access time pairs derived from the PPI network were centred around AtpH 

(encoded by atpH, Rv1307), and those derived from the GR network were centred around sigC (Rv2069). Both 

atpH and sigC are transcriptionally regulated by BlaI [34], which is an important inhibitor of the blaC β-lactamase 

gene. This result once more implicates blaI and its transcriptional network in Mtb β-lactam collateral sensitivity.  

 

5. In silico functional validation of a dependence mechanism between β-lactams and DR gene pairs 

Finally, we sought to validate the functional association between β-lactams and DR genes/proteins by exploring 

their role in cell growth. We simulated the growth effects of β-lactams and DR gene pair knockouts using an in 

silico regulatory model, that incorporates both transcriptional data and metabolic modelling [26]. We found that 

simultaneous knockout of DR and β-lactams gene pairs caused a marked reduction of growth rate (growth rate < 

0.010) or resulted in cell death more often than expected by chance (83.1% of DR-β-lactams pairs vs. 39% other 

pairs, Fisher exact test p = 3.25e-05, Fig. 6A, B), suggesting synthetic lethality and functional dependency 

between these genes. Of note, we found synthetic lethality between each of the sigC, atpH and blaI genes with 

the key DR genes embB, katG and furA (Fig. 6C). 
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Discussion  

Here we demonstrate a novel systems biology approach to the investigation of Mtb β-lactam collateral sensitivity. 

We combined gene expression and network analyses and show that the inhibitor of intrinsic β-lactam resistance, 

blaI, is activated after treatment with classical anti-TB drugs (e.g. isoniazid, rifampicin, amikacin, streptomycin, 

levofloxacin, ofloxacin, ethambutol, ethionamide, pyrazinamide). Two genes transcriptionally regulated by blaI, 

atpH and sigC [34], as well as Rv1884c (rpfC), whose knockout mutants suffer increased sensitivity to β-lactams 

[29], were also upregulated. These findings support a model whereby classical anti-TB treatment drives cells 

towards a loss of β-lactam resistance, consistent with previous reports that drug-resistant Mtb were more likely to 

be susceptible to β-lactam treatment [7, 8]. 

 

Our co-expression analysis indicated a tight co-regulatory association between DR and β-lactams genes. 

Subsequent analysis of Mtb molecular networks supported these findings and identified a number of direct 

linkages. Together with evidence of strong gene co-expression associations, this finding suggests direct co-

regulation as opposed to indirect associations (as discussed in [35]).  

 

Previous works have demonstrated the utility of random walks across networks to identify putative treatment co-

targets for Mtb [13]. Here we applied random walks to identify key mediators of the communication between DR 

and β-lactams genes, and identified atpH and sigC as key regulators. In addition, in silico growth models revealed 

synthetic lethality after simultaneous knockout of any of blaI, atpH and sigC in combination with the genes 

conferring resistance to isoniazid, ethambutol or rifampicin, further supporting a functional association between 

these gene classes.  

 

Our results point towards a model of collateral β-lactam sensitivity in classical drug resistant Mtb, involving a 

concerted effect of multiple genes. Others have also recently found that collateral sensitivity to β-lactams, mainly 

penicillins, develops in Mtb strains evolved in vitro to be resistant to the classical drug class aminoglycosides [9]. 

Our results suggest that blaI, together with its downstream targets, atpH and sigC, is a key regulator of collateral 

sensitivity resulting from classical drug resistance, although we were not able to detect a direct effect on 

transcription of the blaC β -lactamase gene in these data. Nevertheless, our evidence supporting a strong 

transcriptional wiring between β-lactams genes and DR genes suggests a tight co-evolutionary relationship, likely 

due in part to functional similarities between the genes, many of which are implicated in resistance to drugs that 

target Mtb cell wall biosynthesis e.g. ethambutol and isoniazid [36]. Thus, collateral sensitivity to β-lactams may 

represent a functional evolutionary trade-off to classical drug resistance.  

 

The development of bacterial drug resistance is often accompanied by a fitness cost [37], which in some cases 
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can be overcome by compensatory mechanisms. We speculate that β-lactam sensitivity arises in Mtb as a 

compensatory mechanism to regain fitness after disruption of the molecular network of TB due to the evolution of 

classical drug resistance. Indeed, genes associated with sensitivity to β-lactams (e.g. murE, ponA1, murD, 

Rv2752c, Rv1218c) have been identified as being under convergent evolution in resistant Mtb or harbouring 

compensatory mutations [38-40]. Although most studies have associated compensatory mechanisms with 

mutations [38-40], our results suggest that transcriptional changes might also be playing a role i.e upregulation of 

blaI. This assertion is consistent with a recent report showing that gene expression changes was associated with 

an increased fitness in Mtb that had developed resistance to rifampicin, isoniazid, streptomycin, fluoroquinolone, 

ethionamide and amikacin during a single patient infection [41]. 

 

Taken together, our findings implicate a potential role for β-lactam therapy in patients with classical drug-resistant 

TB, or the cyclic use of β-lactams with classical treatments to delay and/or prevent the development of 

resistance. Previous in vitro studies have demonstrated anti-TB activity for certain β-lactams plus β-lactamase 

inhibitor combinations [6] and other drugs [42]. However, mixed success in the clinic [11, 12, 43] suggests that 

treatment effectiveness might be dependent on other factors, such as the genetic background of the strain. 

Consequently, it will be essential to continue to develop our understanding of this phenomenon such that we can 

readily identify strains and therefore patients for whom β-lactam therapy may be appropriate, e.g. through 

processes akin to precision medicine in cancer treatment [44]. Our results suggest that subsets of patients with 

drug-resistant tuberculosis are more likely to benefit from β-lactam treatment.  

 

Conclusions 

By integrating network analysis and gene expression data in a novel, systems-biology context we show that 

collateral β-lactam sensitivity in Mtb is driven through transcriptional regulation mediated through a small number 

of key interactions. In addition, our findings lend further support for exploration of combination anti-TB treatments 

that include β-lactams, particularly for patients infected with classical drug resistant TB. 

 

 

List of Abbreviations 

TB: tuberculosis; Mtb: Mycobacterium tuberculosis; DR: drug resistance; β-lactams: β-lactam sensitivity genes; 

GR: Gene regulatory; PPI: Protein-protein interaction; RIF: rifampicin; INH: isoniazid; AMI: aminoglycosides; SM: 

streptomycin; FLQ: fluoroquinolones; EMB: ethambutol; ETH: ethionamide; PAS: para-aminosalisylic acid; PZA: 

pyrazinamide; KS: Kolmogorov–Smirnov; FC: fold change. 
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FIGURE LEGENDS 

Fig 1. The expression of β-lactams genes is affected by treatment with classical TB drugs. A. β-lactams 

genes tend to be more variable than the rest of genes, suggesting these genes are affected by drug treatment 

(KS test p-value 0.00338). B. Log fold change (logFC) of β-lactams genes and all other non- β-lactams genes 

after classical drug treatment. β-lactams genes tend to have a more positive logFC than other genes, suggesting 

preferential activation.  

 

Fig 2. Upperquantile of expression correlation of DR genes with β-lactams genes (y-axis) and non-β-

lactams genes (x-axis). Genes over the diagonal line are more strongly co-expressed with β-lactams genes than 

with other genes, and vice versa. The genes with the strongest positive correlation of expression (well above the 

diagonal line), especially Rv2846c, Rv2243, Rv2245, Rv2247, Rv0129c, are implicated in INH resistance. 

 

Fig 3. Network of interactions between genes/proteins associated with β-lactam sensitivity. β-lactamS 

genes form a single interconnected network, with a few exceptions (lower left), indicating a high degree of 

localization in the global Mtb network. Nodes are coloured by predicted functional categories. The network shown 

is a combination of the PPI and the GR networks. 

 

Fig 4. Network of interactions between β-lactamS and DR genes/proteins. β-lactamS genes/proteins tend to 

be located towards the core of the network, connecting distinct subgroups of DR genes. The network shown is a 

combination of the PPI and the GR networks. 

 

Fig 5. Highly influential pairs of β-lactams and DR nodes identified by random walks in the networks. A-D. 

Access times for gene pairs in the PPI (A, B) and GR (C, D) networks in the DR-β-lacams direction (A, C) and β-

lactams -> DR direction (B,D). Due to a modular network structure, discrete clusters of highly influential pairs are 

identified. The set of genes with smallest access times (high influence between each other) to the left of the 

vertical red lines were used in subsequent analysis. (E) Strength of co-expression between DR-β-lactams node 

pairs. DR-β-lactams node pairs with lowest access times are more strongly correlated than pairs of genes with 

higher access times (wider distribution) in both the GR (KS test p=0.01) and PPI (KS test p = 0.0024) networks.  

 

Fig. 6. In silico double knockout of DR and β-lactams gene pairs reduce Mtb growth rate. Effect on the 

growth of Mtb after in silico knockout of all gene pairs (A) or DR-β-lactams gene pairs (B). DR-β-lactams gene 

pairs are enriched in those that lead to lethality (growth rate < 0.01) after knockout (Fisher test p =3.1×10-9). 

Knockouts resulting in cells with a growth rate < 0.010 were considered as lethal (blue), and above this cutoff, 

non-lethal (red). C. Growth rate of pairs of β-lactams and DR genes after double knockouts. The knockout of blaI, 
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atpH and sigC in combination with DR-genes implicated in the resistance to commonly used drugs (e.g. EMB and 

INH) leads to cell death. Gene pairs identified by random walk network analyses as being highly influential pairs 

are indicated with an asterisk. 
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