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Abstract

Motivation: Protein coding genes can be studied using long-read next generation sequencing. However,
high rates of indel sequencing errors are problematic, corrupting the reading frame. Even the consensus of
multiple independent sequence reads retains indel errors. To solve this problem, we introduce RIFRAF, a
sequence consensus algorithm that takes a set of error-prone reads and a reference sequence and infers an
accurate in-frame consensus. RIFRAF uses a novel structure, analogous to a two-layer hidden Markov model:
the consensus is optimized to maximize alignment scores with both the set of noisy reads and with a reference.
The template-to-reads component of the model encodes the preponderance of indels, and is sensitive to the
per-base quality scores, giving greater weight to more accurate bases. The reference-to-template component of
the model penalizes frame-destroying indels. A local search algorithm proceeds in stages to find the best
consensus sequence for both objectives.
Results: Using Pacific Biosciences SMRT sequences of NL4-3 env, we compare our approach to other
consensus and frame correction methods. RIFRAF consistently finds a consensus sequence that is more
accurate and in-frame, especially with small numbers of reads. It was able to perfectly reconstruct over
80% of consensus sequences from as few as three reads, whereas the best alternative required twice as
many. RIFRAF is able to achieve these results and keep the consensus in-frame even with a distantly related
reference sequence. Moreover, unlike other frame correction methods, RIFRAF can detect and keep true indels
while removing erroneous ones.
Availability: RIFRAF is implemented in Julia, and source code is publicly available at
https://github.com/MurrellGroup/Rifraf.jl.
Contact: bmurrell@ucsd.edu

I. Introduction

The problem of finding the consensus of a set
of sequences is fundamental to bioinformat-
ics, especially in the age of high-throughput
sequencing. This paper addresses the task of re-
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constructing an unknown true sequence from a
set of error-prone reads. Many algorithms that
solve this task focus on de-novo or reference-
guided assembly of short reads [17, 18, 15].
However, with the advent of third-generation
single-molecule sequencing technologies, such
as Pacific Biosciences’ SMRT sequencing proto-
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col [6], it is now possible to perform full-length
sequencing of entire genes or small genomes.
Here we will focus on finding the consensus
of a set of amplicon sequences - where the se-
quences have the same start and end points.
An example application would be targeted se-
quencing of an entire gene from a viral popula-
tion (eg. [11]). We focus just on the consensus
reconstruction problem, assuming that reads
have first been grouped by genetic identity, ei-
ther using primer ID barcodes [7, 22], or some
form of clustering.

Consensus sequences found via multiple se-
quence alignment may be inaccurate when
there are few reads available, or when the reads
contain many errors. SMRT sequencing in par-
ticular is known to contain mostly indel errors,
especially in homopolymer runs. For example,
in [11], we discovered that 80% of the sequenc-
ing errors were indels. If these indels carry
over into the consensus sequence, they cause
frameshift errors which corrupt the reading
frame, and render the amino acid sequence
uninterpretable. If a reference sequence with
a trusted reading frame is available, it can be
exploited to inform the consensus.

Current approaches that attempt to recon-
struct in-frame consensus sequences consider
these problems separately. There are ap-
proaches to infer the consensus of multiple
reads, and there are approaches to correct the
reading frame of an already-inferred consen-
sus sequence. Here, we solve these problems
jointly, simultaneously considering evidence
from the reads and the reference sequence.

One common approach to inferring con-
sensus sequences is from multiple sequence
alignments (MSAs), from which the consen-
sus is calculated by taking the most common
base in each column. A myriad of multiple
alignment algorithms are available [19], any
of which may be used for this task. This pa-
per uses MAFFT [9, 8] as an example of this
strategy when comparing alternatives. A mul-
titude of tools, such as the cons command in
EMBOSS [20], are available for computing the
consensus of these alignments. Another ap-
proach is to use a partial order alignment [13]

representation of the set of sequences, and
find the consensus sequence using dynamic
programming to extract the heaviest bundles
[12]. This paper uses poaV21 for comparison.
Other implementations of this approach in-
clude pbdagcon2, which was released by Pa-
cific Biosciences specifically for raw SMRT
sequence reads, and nanopolish [14], which
wraps poaV2 for Oxford Nanopore reads. Fi-
nally, specialized consensus methods are avail-
able for specific sequencing technologies; these
methods model the specific behavior of their
target protocol, such as read length and error
model. In this domain, Pacific Biosciences de-
veloped the Quiver [4] and Arrow algorithms3

for building circular consensus sequences from
raw ZMW reads.

Existing approaches for reading frame cor-
rection (such as FrameBot, which we use here
as a comparator) exploit frame-aware codon
alignment to a protein reference, followed
by inserting or deleting bases in the target
sequence [24]. Related algorithms include
FALP and LAST [21], Frame-Pro [5], HMMFrame
[25], and others. Another approach is hybrid
sequencing, which supplements long single-
molecule reads with short reads [19]. Methods
such as HGAP [4] use hybrid sequence data to
find and remove indels.

This paper introduces a new method for in-
ferring consensus sequences of such reads: the
Reference-Informed Frame-Resolving multiple-
Alignment Free consensus algorithm (RIFRAF).
RIFRAF considers evidence from both the reads
and the reference simultaneously, allowing
reads to inform the frame correction process,
and is sensitive to the read quality scores to
ensure that high-quality bases are more infor-
mative. These features allow RIFRAF to make
highly accurate predictions, even for a small
number of error-prone reads. Unlike other
frame-correction methods, RIFRAF can detect
true frameshift-causing indels and keep them

1https://sourceforge.net/projects/poamsa/
2https://github.com/PacificBiosciences/

pbdagcon
3https://github.com/PacificBiosciences/

GenomicConsensus
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while removing spurious indels.

II. Methods

RIFRAF addresses the following sequence con-
sensus problem. Let t be an unknown tem-
plate sequence, which is sequenced N times
to generate a set of N pairs of reads and qual-
ity scores R = {(si, pi)}N

i=1. Each read si is a
noisy observation of t, and each pi is a vector
of error probabilities, one for each base in si.
The ith character in read s is denoted si, and
the substring from the ith to the jth character is
denoted si...j. pi is the probability that si is an
error; an error at a base is either a substitution,
an insertion, or a deletion has occurred next to
it. The task is to infer a consensus sequence c
that matches the unknown t. Additionally, we
also consider a reference sequence r and prefer
that c not contain insertions or deletions that
change its reading frame relative to r. This is
especially useful when the template that gen-
erated the reads in R had an intact reading
frame, but the reads themselves have a high
indel rate.

r

t

s1, p1 s2, p2 s3, p3 · · · sN , pN

Figure 1: Structure of the full model. The unknown
template t (grey) has the same reading frame
as known reference r. The sequencing pro-
cess generates error-prone reads s1 . . . sN with
quality scores p1 . . . pN .

The structure of the full RIFRAF model is
shown in Figure 1. It infers the unknown
template by optimizing two objectives: the
quality-aware alignment to the reads, and a
frame-aware alignment to the reference. The
optimization procedure starts with an initial
consensus sequence and proceeds in an itera-
tive greedy manner, mutating the consensus
sequence at every step to improve those objec-

tives. RIFRAF uses a number of techniques to
speed up convergence: filtering mutations, ac-
cepting multiple mutations, forward and back-
ward alignments, banding, batching, increasing
indel penalties, and multi-stage optimization.
RIFRAF is implemented in Julia [1], a high-

level scientific computing language.

i. Objective 1: pairwise alignment to
reads

In order to find the optimal consensus, it is nec-
essary to assign a score to candidates. RIFRAF
scores consensus sequences by a global pair-
wise alignment [23, 16] of each read s with the
current values of c. Let A be the |s|+ 1× |c|+ 1
dynamic programming matrix for aligning c
and s. Each ai,j is the score of aligning prefix
s1...i to prefix c1...j. a0,0 is initialized to 0, and
the last cell a|s|+1,|c|+1 contains the score for the
full alignment. The score function for c and s
is defined as the full alignment score: S(c|s) =
a|s|+1,|c|+1. The overall score of consensus se-
quence c is the sum over the alignment scores
for all reads: S(c|R) = ∑(s,p)∈R S(c|s).

The sequencing process has an error rate ρ,
which by assumption can can be partitioned
into ρ = ρmismatch + ρinsertion + ρdeletion. These
parameters account for the different error pro-
files of different sequencing technologies. For
instance, in SMRT sequencing, indels are more
likely than substitutions. The base move scores
for the alignment are derived from these error
probabilities.

Typical pairwise alignment uses fixed scores
for moves. However, RIFRAF also incorporates
sequence qualities into the move scores to gen-
erate more accurate alignments. The scores for
match, insertion, and deletion moves depend
on the error probabilities p in the following
way. Let q = log10 p (base 10 is used instead
of the usual natural logarithm for compatibil-
ity with quality scores such as Phred scores).
Let qmismatch = log10 ρmismatch, and similarly for
the others. Then move scores are calculated as
follows

• A diagonal move from ai−1,j−1 to ai,j has
score log10(1− pi) if si = cj (ie. a match),
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else qmismatch + qi (ie. a mismatch).
• A vertical move (insertion relative to c)

from ai−1,j to ai,j has score qinsertion + qi.
• A horizontal move (deletion relative to

c) from ai,j−1 to ai,j has score qdeletion +
max(qi + qi+1). If i = 0, the score is just
qdeletion + q1; similarly, i = |s|, the score is
just qdeletion + q|s|.

Intuitively, the penalties for mismatches, in-
sertions, and deletions are more severe when
the consensus does not match higher quality
regions of the reads. PHRED values are capped
at 30 because rarer sources of error that are not
sequencing errors (eg. PCR errors) may have
very confident PHRED scores, and we do not
wish these to be overly informative. This cap
can be adjusted if these sources of error can be
ruled out (for example if PCR was not used to
generate the amplicon library).

The best consensus c∗ under Objective 1
(pairwise alignment to reads) is the one that
maximizes S(c|R).

ii. Objective 2: Frame-aware align-
ment to reference

To perform frame correction, RIFRAF requires
a reference nucleotide sequence r, which is
known to be in-frame. It models the refer-
ence sequence r as having diverged from the
template t, where the differences between r
and t represent evolutionary events, not se-
quencing error as in Objective 1. The score
for the consensus-reference alignment is mod-
ified to reflect this difference. First, two new
moves are allowed during alignment: codon
insertion and codon deletion, each with their
own penalty, as shown in Figure 2. Second,
a new parameter tindel is used as a multiplier
for the non-codon insertion and deletion penal-
ties. Together, these two modifications bias the
alignment to prefer only codon indels, keep-
ing the consensus in-frame. Because it uses
nucleotide alignments, this method works may
be expected to work better with more closely
related reference sequences, where nucleotide
similarity is preserved.

ai,j

ai−1,j−1

ai,j−1

ai−1,j

ai,j−3

ai−3,j

Figure 2: Codon moves in the reference alignment dy-
namic programming matrix. The goal is to
favor a consensus that preserves the reading
frame. Thus, in addition to the usual single
match, insertion, and deletion moves, codon
insertions and deletions are also allowed, with
a lower penalty than single-base indels.

We first let RIFRAF converge to a draft tem-
plate c without the reference sequence. This
draft template is used to approximate the di-
vergence between the true template and the ref-
erence, taking the edit distance normalized by
the max length d(r, c)/max(|r|, |c|) to obtain a
per-base probability of template/reference dis-
agreement (which is used in the same manner
as the per-base quality scores p in Objective
1). Reference (mis)match, indel, and codon er-
ror rates are provided as parameters, and the
scores for each move are computed from error
rate ρ as log10(ρ), as before.

The insertion and deletion scores are mul-
tiplied by a penalty tindel , which controls the
influence of single insertions and deletions in
the reference alignment. If tindel is small, frame-
destroying indels may appear in the consensus,
but if it is large, the consensus will be forced
into the reference reading frame, even if the
unobserved template really did contain indels.
As we show in Section III, this penalty can be
tuned to discard spurious indels while keeping
true ones.
RIFRAF combines both objectives into a sin-

gle score, allowing the reads to inform the
frame correction. The score of the consensus
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to reference alignment is denoted Sr(c|r), and
the full score function is:

S(c|R, r) = S(c|R) + Sr(c|r).

iii. Optimization procedure

An exhaustive search for the optimal consen-
sus c∗ would be intractable, so RIFRAF uses
a variant of the following greedy search algo-
rithm, with some optimizations to speed up
convergence:

1. Start with a guess c0. RIFRAF chooses the
read with the lowest expected number of
errors.

2. For the most recent guess ci, examine a
set of candidate single mutations, such
as insertions, deletions, and substitutions.
Note that these candidates vary at each op-
timization stage. Keep all that improve the
score S(ci|R, r). Call the set of candidate
mutations C.

3. If C is empty, accept ci and terminate. Oth-
erwise, choose some subset of C, apply
them to ci to obtain ci+1, and iterate.

RIFRAF works in two stages, first optimiz-
ing just S(c|R), and then optimizing the full
S(c|R, r).

iii.1 Filtering mutations

When comparing the template to the reads, we
need not consider all possible modifications
to the current consensus. For example, if any
candidate mutation to c does not appear in
any pairwise alignment of c with a read, that
mutation need not be scored. Since it has no
support among any observed sequence, it is
likely to hurt the alignment score. Similarly,
during the frame correction stage, the model
only proposes insertions or deletions that ap-
pear in the pairwise alignment to reference.

iii.2 Multiple mutations

Instead of accepting only the best mutation
in C, RIFRAF accepts all the mutations that

are separated by a certain number of posi-
tions: nseparate (the default value is 15, i.e. five
codons). The candidates are accepted in order
from best to worst score. This policy allows
RIFRAF to converge in many fewer iterations
than if it only accepted one mutation per iter-
ation. nseparate ensures that the changes to the
consensus are relatively independent of each
other, and that the score of one is unlikely to be
affected by the acceptance of another. After ac-
cepting mutations in C, RIFRAF also compares
the new score to the score that would be ob-
tained from accepting only the single best mu-
tation in C, and optionally accepts that single
mutation instead if it results in a better score.

iii.3 Forward and backward alignments

Recomputing the full alignment matrix for
each candidate mutation to c would be pro-
hibitively expensive. For a sequence c from
alphabet {A, C, G, T}, there are 4(|c| + 1) in-
sertions, 3|c| substitutions, and |c| deletions to
consider. Computing the alignment matrix A
for each candidate requires O(cs) operations,
so each iteration of the proposed algorithm
would require O(Nc2s) operations (we omit
| · | in O(·) for clarity). Instead, RIFRAF uses
forward and backward alignments to compute
the new score for any single change to c by
only recomputing a single column of A [4].

To achieve this, in addition to the prefix
alignment matrix A, where ai,j is the score for
aligning prefix s1...i to prefix c1...j, RIFRAF also
computes the suffix alignment matrix B, where
bi,j is the score for aligning suffix si+1...|s| to
suffix cj+1...|c|. Note that a|s|,|c| = b0,0 is the
score for the full alignment. For any j, that
alignment score can also be computed from
columns A·,j and B·,j:

∀j ∈ [0 . . . v] : a|s|,|c| = b0,0 = maxi(ai,j + bi,j)
(1)

Modifying cj leaves unchanged columns
0 . . . j − 1 of A, and also leaves unchanged
columns j . . . v of B. Therefore, for all three
types of mutations, computing the new score
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requires that at most only a single new column
of A must be recalculated.

1. substitution at cj: compute A·,j; new score
is maxi(ai,j + bi,j).

2. insertion after cj: compute A·,j+1; new
score is maxi(ai,j+1 + bi,j).

3. deletion of cj: no new column necessary;
new score is maxi(ai,j−1 + bi,j).

Using the forward and backward alignments,
all possible mutations to the consensus can be
scored in O(Ncs) operations.

During the alignment of the template and
reference, additional columns must be recom-
puted to account for codon insertion and dele-
tion moves.

iii.4 Banding

b

b||s| − |c||

Figure 3: Banded alignment. Alignments must stay
within the banded region of the dynamic pro-
gramming matrix.

Despite the improvements from using for-
ward and backward alignments, each iteration
is still approximately quadratic in the length of
the consensus, assuming |c| ≈ |s|. Alignment
banding [2, 3] further reduces the number of
operations per iteration. For a given band-
width parameter b, the maximum usable col-
umn size in A and B is 2b + ||s| − |c|| � |s|, so
evaluating a possible mutation requires many
fewer operations than recomputing the full col-
umn. Alignment moves are only allowed to
originate inside the band, so alignment paths
must stay within the band boundaries (see Fig-
ure 3). With banding, the time complexity
per iteration becomes O(Nc(

√
s + b)), since

||s| − |c|| grows like
√
|s| under reasonable as-

sumptions.
RIFRAF dynamically increases the band-

width if the number of differences in the
banded alignment is sufficiently larger than
the expected number of differences implied by
the read’s quality scores, under the assumption
that the difference between the template candi-
date c and the true template is much smaller
than the number of sequencing errors in s. Let
r be the observed number of differences be-
tween s and c, and e be the expected number
of errors computed from the quality scores p.
If the value of r is in the upper tail of a Poisson
distribution with mean parameter e, then the
bandwidth is doubled and the alignments are
re-computed. α controls the size of this upper
tail probability, with a default value of 0.1.

iii.5 Batching

RIFRAF uses a variety of batching strategies
to speed up convergence. If the number of
reads is greater than a threshold k (default 5),
the best k reads by error rate are fixed as the
initial batch, and RIFRAF runs to convergence.
This ensures that RIFRAF first converges with-
out considering the many spurious mutations
presumably present in less accurate reads. The
resulting initial guess is further refined at the
refinement stage, this time with a different ran-
dom batch of size nbatch (default 20) for each
iteration. Sequences are chosen for inclusion in
the batch by sampling from a multinomial dis-
tribution of their error rates, parameterized by
parameter ρ between 0 and 1. When ρ = 1, all
the weight is evenly distributed among the top
nbatch sequences. Interpolating from ρ = 1.0
to ρ = 0.5, the probabilities become propor-
tional to the read error rates. Interpolating
from ρ = 0.5 to ρ = 0, the probabilities become
uniform. By default, ρ = 0.9i, where i is the
number of iterations since random batching
activated. Like the fixed batch, this strategy
speeds up convergence by initially avoiding
inaccurate reads, then gradually letting them
contribute to resolve uncertain bases if neces-
sary.

6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/227520doi: bioRxiv preprint 

https://doi.org/10.1101/227520
http://creativecommons.org/licenses/by/4.0/


RIFRAF • Eren and Murrell • November 2017 • bioRxiv preprint

Ideally, nbatch is small enough to make each
iteration fast, but large enough that RIFRAF
converges stably. RIFRAF tries to detect if nbatch
is too small by monitoring the change in score
after each iteration. If the new score is worse
than the old score by more than a certain per-
cent (10% by default), nbatch is increased to
2nbatch, then 3nbatch, etc.

Combining all of the previous optimizations,
a single iteration’s time complexity is reduced
from O(Nc2s) to O(nbatchc(

√
s + b).

iv. Increasing indel penalties

Whenever the algorithm converges to a con-
sensus ci, if single indel moves were used in
computing Sr(·), the single insertion and dele-
tion scores are multiplied by a parameter tindel ,
increasingly encouraging the alignment with
the reference to use only codon indels, thereby
keeping c in-frame. This process repeats up to
m times, so the maximum multiplier is (tindel)

m.
If the penalty is large enough, the consensus
will always be forced into the reference’s read-
ing frame, which is the default behavior. How-
ever, some consensus sequences really are out
of frame relative to the reference. The indel
penalties can be tuned so that RIFRAF correctly
identifies true frameshifts, with a small risk of
allowing some spurious ones.

v. Multi-stage optimization

The full optimization procedure proceeds in
stages, allowing RIFRAF to converge quickly
by focusing on different objectives in different
stages.

1. Initial stage: Do not use the reference. Pro-
pose all mutations to the consensus that
appear in the pairwise alignments. Use
the fixed batch, if available. If no reference
was provided, stop after this step.

2. Frame correction stage: Use the full model,
including the reference and reads. Pro-
pose indel candidate mutations that ap-
pear in the consensus-reference alignment.

Increasingly penalize single indels in align-
ment of r and c. Use the fixed batch, if
available.

3. Refinement stage: Propose only substitu-
tions (no indels) to the consensus that ap-
pear in the pairwise alignments, no longer
considering the reference. Use random
batches, with decreasing ρ.

The initial stage quickly finds a good can-
didate consensus from the reads alone. The
frame correction stage uses a reference to pe-
nalize indels that cause frame shift errors, cor-
recting the reading frame of the template in a
way that is maximally compatible with both the
reads and the reference. Finally, the refinement
stage ensures that the reference influences only
the frame of c, and exerts no bias upon the nu-
cleotides themselves. The final stage also fixes
biases introduced by the fixed batch in the first
two stages.

III. Results

We compared RIFRAF to two other meth-
ods: MAFFT [10] followed by the standard per-
column consensus, and POA [13] with the heav-
iest bundle consensus algorithm [12]. All three
methods were run with and without reference-
guided frame correction. RIFRAF natively per-
forms frame correction, but only if it is given a
reference sequence. To distinguish these mod-
els in this section, we refer to the model with
no reference as RIFRAFnr, and the model with
a reference as RIFRAFref. FrameBot [24] was
used for correcting results from MAFFT and POA;
these are referred to as MAFFT_FB and POA_FB.

A full-length sequencing run of Pacific Bio-
sciences SMRT sequencing on env from HIV-1
subtype B strain NL4-3 was used for the com-
parison [11]. The true sequence of NL4-3 is
known, so results could be compared to the
ground truth. The filtered data (available on
FigShare4) contains 27,600 reads with expected
error rate 1% or better, which were further fil-
tered and processed as follows. To make the

4https://doi.org/10.6084/m9.figshare.5643247
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(a) DNA sequence edit distance for increasingly distant
references.
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(b) Protein sequence edit distance for increasingly distant
references.

Figure 4: Edit distance for increasingly distant references. All methods do better with closely-related reference, but
their rate of performance degradation is important because a related reference may not always be available.
Run with N = 3 full-length reads.

problem more challenging and better reveal dif-
ferences between methods, very high quality
sequences were excluded (expected error rate
< 0.1%). Short fragments and long reads (often
concatemers) were discarded by filtering out
sequences 25 bases shorter or longer than the
median of 2,597. PacBio reads come in random
orientations, so reads were converted to their
reverse complement, if necessary. Extra bases
around the amplicon were removed by align-
ing to NL4-3 env without penalizing terminal
gaps, then trimming terminal insertions. After
preprocessing, 9,473 sequences remained, with
a mean error rate of 0.0015 (the distribution of
errors appears in Figure S1). All experiments
were run for 1,000 trials on randomly sampled
reads.

Choice of reference. A set of reference se-
quences – shown in Figure S2 – were tested to
investigate how frame correction accuracy dete-
riorates for distantly-related references. The re-
sults are shown in Figure 4. Nucleotide results
from MAFFT_FB and POA_FB were both equally
insensitive to the choice of reference, whereas
RIFRAFref’s results did degrade slightly. How-
ever, the reverse is true for the protein se-
quences, with RIFRAFref’s performance de-
grading by half an amino acid on average, and
the others degrading by more than one. This
difference indicates that RIFRAFref not only
keeps the consensus in-frame, but also makes
better choices of inferring which nucleotides
are truly indel errors. Finally, RIFRAFref was

the most accurate, regardless of choice of ref-
erence. As expected, RIFRAFref’s frame correc-
tion strategy works best with a closely related
reference, but these results show that it is ca-
pable of working even with a distant reference.
Except where noted, the most distant reference,
B.BR, was used for the rest of the results.

Number of sequences. Clusters of 2, 3, 4,
5, 6, 8, 10, 15, and 20 reads were randomly
sampled for this experiment. The fraction of
perfectly reconstructed consensus sequences
per 1,000 trials appears in Figure 5a. For fewer
than ten sequences, both versions of RIFRAF
dominate the other corresponding methods.
For instance, RIFRAFref gets over 90% correct
with access to only four reads. POA_FB does
not achieve similar results until N = 8, and
MAFFT_FB does not until between N = 10 and
15. Interestingly, POA’s results actually degrade
significantly for n > 6, but POA_FB continues
to improve, because POA tends to include extra
bases on the ends of the consensus sequence
which are then removed by FrameBot. These
extra bases also affect the average number of
nucleotide errors (Figure 5b): for N = 20, POA
averages one error per sequence, whereas all
the other methods average none.

The average number of protein errors (Fig-
ure 6a) highlights the importance of frame cor-
rection. Frame shifts cause the translated con-
sensus sequences to differ greatly from the true
protein sequence, especially for n < 15. For
N = 2, fully half of each protein sequence is
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(a) Fraction of correct sequences versus number of se-
quences.
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(b) DNA edit distance versus number of sequences.

Figure 5: DNA results. Fraction of correct sequences (left) and mean edit distance between the consensus and the
template (right) for increasing N.
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(a) Protein edit distance versus number of sequences; all
methods.
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(b) Protein edit distance versus number of sequences; frame
correction only

Figure 6: Same results as Fig. 5, but for the translated protein sequences. The fraction of correct sequences is not
reproduced, since those figures are identical. The left figure show results for all methods. The right figure
show the same data, zoomed to show the frame-corrected results. Note Y axis scale.

wrong on average, regardless of method. Even
for N = 20, sequences from RIFRAFnr and POA
contain about 100 errors. On the other hand,
the corrected sequences (shown in Figure 6b
for clarity) contain nearly no errors for n > 10.
RIFRAFref again performs best here, approach-
ing zero errors even for N = 3.

Interestingly, frame correction of MAFFT and
POA often made the nucleotide sequences less
accurate, whereas it improves RIFRAFref. This
result supports the idea that RIFRAF’s method
of integrating frame correction into the consen-
sus algorithm makes it more accurate by allow-
ing all reads to inform the correction process.
FrameBot, which only has access to a single
consensus sequence, cannot use the extra in-
formation in the reads, and therefore cannot
achieve the same accuracy.

Execution times appear in Figure 7. With-
out frame correction, all three methods are
comparable for small numbers of sequences,
but RIFRAFnr scales better, due to its batch-
ing scheme. Frame correction adds a constant
factor to all three methods’ execution times.
RIFRAFref’s constant factor is larger, but, be-
cause it scales better, it overtakes the others
between N = 10 and N = 15.

Sequence length. Figure 7 also shows exe-
cution time for varying sequence lengths. For
more details on this experimental setup, see
SI section 2. RIFRAFref scales less well than
the other methods, taking about twice as long
as MAFFT_FB and POA_FB for the full-length se-
quences. However, it is comparable with the
others at ` = 900, and faster than the others
for ` < 600. This difference in speed is due
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(b) Mean execution time versus template length.

Figure 7: Mean execution time, varying both number of sequences (left) and sequence length (right). Note that intervals
on the x-axis are not linear.

to RIFRAF’s iterative approach, which requires
recomputing parts of each pairwise alignment
after every iteration.

Detecting true frameshifts. In the other
experiments, strict frameshift penalties were
used to ensure the consensus stays in-frame.
However, sometimes frameshifts are biologi-
cally plausible, such as in integrated (but non-
functional) proviral Env sequences, or in the
cytoplasmic tail of Env leading to a truncation,
but preserving infectivity. If true frameshifts
may occur in the template sequence, it may
be preferable to relax this frameshift penalty.
RIFRAFref can be tuned to accept frameshift
indels with enough support in the reads, with
only a small increase in the frequency of
spurious frameshift indels. To demonstrate
this, single base insertions and deletions were
added to NL4-3 in both homopolymer and non-
homopolymer regions (details in SI section 3).
tindel was set to 1.05, and the max frameshift
indel penalty multiplier m varied from 0 to 12.
We call an in-frame sequence a “positive”, so
increasing m increases the false positive rate by
forcing sequences with real frameshifts incor-
rectly into frame. To get the true positive rate,
RIFRAFref was also run on the unmodified se-
quences. Note that while we introduce only a
single true indel into our “negative” cases, the
analysis is always at the whole-sequence level.
We are not just detecting the presence or ab-
sence of the specific indel we introduce. Thus
to achieve a high true positive and low false
positive rate, RIFRAFref must successfully ig-
nore spurious indels at any position in the “pos-

itive” cases, while successfully identifying the
real indel we introduce in each “negative” case.
The resulting ROC curves, which appear in Fig-
ure 8 for N ∈ 3, 5, 10, show that RIFRAFref can
find true indels while controlling the false posi-
tive rate, using either a closely related reference
or a distant one. A useful trade-off occurs for
m = 6, which scores close to the maximum true
positive rate while keeping the false positive
rate close to zero.

In agreement with the accuracy results, a
more closely related reference (HXB2) im-
proved inference for N = 3 for this task. As ex-
pected, real homopolymer indels in homopoly-
mer regions are harder to discriminate than
non-homopolymer indels (See SI section 3 for
more detailed results).

IV. Conclusion

RIFRAF uses quality scores and a reference se-
quence to infer accurate frame-corrected con-
sensus sequences. It can often find the cor-
rect consensus, even from small numbers of
reads or with a distant reference, as shown in
our experimental results. RIFRAF with frame
correction can be slower than taking a con-
sensus from a multiple sequence alignment,
but in experiments with real SMRT sequences
it finds consensus sequences that are signifi-
cantly more accurate. The benefits of using
a reference to reduce frameshift errors are
especially apparent when comparing trans-
lated amino acid sequences, where a single
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(c) N = 10

Figure 8: ROC curves for true indel experiments, with max indel penalty multiplier m varying from 0 to 12. The
orange point denotes results from RIFRAFnr, while the remainder of the curve was generated by RIFRAFref.
The green point corresponds to a max indel penalty multiplier m = 6. Both a related reference (HXB2, blue)
and distant reference (B.BR, red) were used.

frameshift causes the entire downstream se-
quence to be incorrect. Finally, RIFRAF can
detect and retain true frameshifts during frame
correction, and, to our knowledge, is the only
method capable of this.

While RIFRAF performs well with distantly
related reference sequences, performance is im-
proved when using closely related references.
However, when sequencing diverse popula-
tions, we note that it is always possible to first
infer a set of autologous sequences from clus-
ters or primer ID bundles that have a large
number of reads, and so should be accurate.
These can then be used as references to cor-
rect the reading frame of the less-represented
members of the population, providing an im-
proved accuracy over just using a more dis-
tantly related reference. We recommend using
this strategy whenever possible.

RIFRAF can improve the ability to resolve mi-
nority variants in sequenced populations. Its
ability to find results comparable to MAFFT with
three times fewer reads will be essential for
identifying minority variants in the population
with greater precision. More generally, RIFRAF
will be useful whenever an accurate consensus
sequence must be inferred from a small num-
ber of full-length sequences, especially when

quality scores and a reference sequence are
available.

When sequencing any population, it is often
advisable to sequence a clonal representative of
that population first (NL4-3 env here), to inves-
tigate the sequencing performance for that case.
We recommend using such sequence datasets
to investigate the behavior of RIFRAF on new
genes, especially if the user seeks to detect real
frameshifts. To this end, we provide a Jupyter
notebook that allows one to replicate the accu-
racy and ROC analyses from this manuscript
on any clonal amplicon dataset.

RIFRAF will continue to be developed along
multiple lines. First, the current approach for
performing frame correction needs to be faster,
to keep pace with the increasing volume of
available sequence data. Further work needs to
be done to speed it up via optimization or algo-
rithmic advances. Possible approaches include:
re-using partial alignments, speeding up align-
ments with k-mer seeding, and only correcting
the frame of obviously problematic regions.
Another improvement would include amino
acid matching penalties in the reference-to-
template alignment, which would allow even
more distantly related reference sequences to
be used, where the nucleotide homology has
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been completely obliterated. Another useful
feature would be to infer calibrated quality
scores for the consensus sequence, in order
to communicate uncertain regions to the user.
Finally, RIFRAF is extensible to other systems
and sequencing technologies. In particular, we
plan to investigate its behavior and tune its
error model for Oxford Nanopore data, and to
extend the method to support amplicons con-
taining both non-coding and coding regions,
which may contain different (potentially over-
lapping) reading frames.

The RIFRAF source code is available at https:
//github.com/MurrellGroup/Rifraf.jl.
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