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Abstract  

Biological self-organisation is a process of spontaneous pattern formation; namely the emergence of 

coherent and stable systemic configurations that distinguish themselves from their environment. This 

process can occur at various spatial scales: from the microscopic (giving rise to cells) to the macroscopic 

(the emergence of organisms). Self-organisation at each level is essential to account for the hierarchical 

organisation of living organisms (organelles within cells, within tissues, within organs, etc.). In this paper, 

we pursue the idea that Markov blankets –  statistical boundaries separating states that are external to a 

system from its internal states – emerge at every possible level of the description of the (living) system. 

Through simulations, we show that the concept of a Markov blanket is fundamental in defining biological 

systems and underwrites the nature and form of interactions between successive levels of hierarchical 

structure. We demonstrate the validity of our argument using simulations, based on the normative 

principle of variational free energy minimisation. Specifically, we adopt a top-down approach to provide a 

proof of concept for the claim that the self-organisation of Markov blankets (and blankets of blankets) 

underwrites the self-evidencing, autopoietic behaviour of living systems.  
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1. Introduction 

This paper is about the essential role played by Markov blankets in (self-organised) living systems.  A 

Markov blanket is a statistical boundary that separates two sets of states (e.g. a cellular membrane 

separating intracellular and extracellular dynamics). The Markov blanket precludes direct interactions 

between internal and external states – any interactions are mediated through the states that constitute the 

Markov blanket. As we shall see below, this separation is a fundamental property of living systems because 

their very existence implies the presence of a boundary that distinguishes inside (i.e. self) from the outside 

(i.e. environment). Living systems maintain the integrity of these boundaries, in the face of an ever-

changing environment. This means that life has evolved mechanisms for the generation, maintenance, and 

repair of Markov blankets.  

A system endowed with such mechanisms connotes an autopoietic organisation; it is capable of 

autonomously producing its own components, in particular its boundaries, [1], [2]. This autonomy does not 

imply isolation from the environment, which – on a thermodynamic account – is  needed to provide a 

constant energy supply [3]. Therefore, living organisms are operationally closed, while presenting as 

thermodynamically open [4]. The interaction between system and environment is then mediated by the 

boundary. Notably, this coupling is non-trivial; in the sense that the organism must actively realise an 

‘informational control’ of the environment (i.e., possess a teleology), by filtering, canalising and 

categorising signals that carry information about their external causes [4]. At the same time, the (statistical) 

boundaries must contain the machinery that allows the system to act on the external world; namely, active 

states. In short, definitive borders are essential for living systems, as any dynamics that happens within and 

between systems can only take place in virtue of their existence [5].  

Living organisms are complex systems, denoted by non-linear interactions between multiple hierarchically 

arranged and nested components [6], [7]. As such, characterising how they self-organise requires not only 

an understanding of how single components couple to each other, but also of how microscopic and 

macroscopic components interact. This requires us to acknowledge the  existence of top-down influences 

on the low level dynamics [8] and vice versa.  

Self-organisation has been addressed extensively in theoretical biology using tools from statistical 

thermodynamics and information theory to explain how biological systems resist a natural tendency to 

disorder. This holdout is an apparent violation of the second law of thermodynamics, or, more precisely, 

the fluctuation theorems for non-equilibrium systems [4], [9]–[12], which states that the probability of their 

entropy decreasing itself decreases exponentially with time (and scale). A prominent line of work within 

this framework sees living organisms as constantly minimising an upper (free energy) bound on their self-

information (i.e., negative log likelihood of sensed states). This imperative is motivated by the fact that 

biological systems have to maintain sensory states within physiological bounds. This means the Shannon 

entropy (dispersion) of sensory states is necessarily bounded [13]. In this setting, the Shannon entropy is 

the path or time average of self-information; also known as surprisal or surprise. In short, self-organisation 

can be regarded as synonymous with systems that place an upper bound on their self-information or 

surprise. In current (variational) formulations of self-organisation – that emphasise its sentient or 

inferential aspect – living organisms are understood as placing a (free energy) bound on surprise, rather 

than reducing surprise directly.  

These arguments rest upon mild ergodicity assumptions (implicit in the fact that the sorts of systems we 

are interested in have characteristic measures that persist over time). Ergodicity implies that, over a 
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sufficiently long period, the time spent in a particular location of state-space is equal to the probability that 

the system will be found at that location when sampled at random [5]. If this probability measure is finite, it 

means that any system will revisit certain states (or their neighbourhoods) time and time again. It is this 

peculiar and special behaviour that underlies self-organisation; namely, the existence of an attracting set of 

states that endow living systems with characteristic behaviours that occur repeatedly. 

The existence of an attracting set means that one can interpret the long-term average of surprise of 

sensory states as the average surprise conditioned on the system over all possible sensations, which is 

equal to their entropy. This means that minimising the bound on surprise minimises entropy, or the 

dispersion of sensory states [14]. Crucially, because surprise is (negative) Bayesian model evidence, 

minimising free energy is the same as maximising a lower bound on the evidence for an implicit model of 

the causes of sensations. In other words, the system can be regarded as a model of its environment [15], 

and will try to gather evidence for its own existence. This has been called self-evidencing [16]. It follows 

that – by minimising free energy – biological systems place an upper bound to the entropy of their 

sensations, while inferring their causes; this is also known as active inference [17], and is closely related to 

other formulations of the perception-action cycle in other disciplines, like embodied cognition [18], artificial 

intelligence [19], and cognitive neuroscience [20]. In short, self-organisation entails the bounding of self-

information that can be cast as self-evidencing. 

 

If a biological system did not minimise (a free energy bound) on surprise it would cease to exist, as the 

entropy of its sensory states would increase indefinitely. In other words, it would dissipate, decay, dissolve 

or die. Friston [5], demonstrated that (almost) any (ergodic random dynamical) system endowed with 

boundaries (Markov blankets) is autopoietic (self-organising). In other words, the system appears to 

minimise free energy and engages in active inference and thereby actively maintain its functional and 

structural integrity. Both a heuristic proof and proof of principle were provided to support this claim. The 

latter comprised a simulation of a primordial ‘soup’ or ensemble of subsystems; each with its own physical 

and electrochemical states, coupled through short-range interactions. The equations of motion of the 

subsystems were integrated until nonequilibrium steady state. This allowed one to identify a Markov 

blanket separating some internal states from their environment – based on statistical dependencies 

between subsystems that emerged during the evolution. This work effectively used a bottom-up approach 

to show that self-organisation entails the emergence of Markov blankets that can be cast in terms of active 

inference or self evidencing. 

Here, we provide a proof of concept that complements the work described above. In contrast to the 

bottom-up approach, we adopt a top-down view; building upon the free energy formulation of pattern 

formation [21]. This means that we start with subsystems whose dynamics possess a Markov blanket as an 

attractor. We then integrate the system until it self-organises into a stable configuration. We then consider 

hierarchical systems; namely, configurations of configurations (i.e., blankets of blankets) that could, in 

principle, be extended indefinitely. We argue that, given local interactions, Markov blankets are an 

essential feature of any biological system. More specifically, we test the following hypothesis: if the 

maintenance of Markov blankets – that underwrite existential form – can be cast as self-evidencing, then 

self-organisation should be an emergent property of subsystems that ‘believe’ they participate in – or are 

enclosed by – a Markov blanket. Because Markov blankets are defined by conditional independence; the 

requisite ‘beliefs’ can be specified simply in terms of communication or signalling between subsystems. In 

other words, it should be possible to prescribe hierarchical self-organisation purely in terms of whether or 
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not any element of an ensemble can influence – will be influenced by – another element, depending upon 

their role as a Markov blanket or internal state at the next hierarchical level. 

In such systems, self-organisation should, in principle, lead to the formation of nested (statistical) 

boundaries as we ascend the hierarchy. Here, we associate random dynamical systems with living 

organisms. Of course, this is a tremendous simplification, motivated by the fact that the systems under 

consideration are complex (i.e., non-linear and hierarchical) and organised independently of any apparent 

external gradient: in other words, pattern generation starts as soon as the system exists. 

This paper is organised as follows: in section 2 we introduce the concept of Markov blankets and argue that 

any biological system has to conform to such an organisation. In section 3, we follow the evolution of a 

random dynamical system – endowed with a Markov blanket – via the principle of free energy minimisation 

(i.e. self-evidencing through active inference). This illustrates the autopoietic nature of systems that, 

through the dynamics of their internal and active states, resist a natural tendency to disorder. In sections 4 

and 5, we describe simulations of self-organisation at two hierarchical levels; these furnish a proof of 

concept for self-organisation of Markov blankets of Markov blankets. We conclude with a discussion of 

future considerations in section 6. 

 

Table 1. Definition of the tuple (𝛺,𝛹, 𝑆, 𝐴, Ʌ, 𝑝, 𝑞) underlying active inference. 

 

a sample space 𝛺 or non-empty set from which random fluctuations or outcomes 𝜔 ∈ 𝛺 are drawn 

 

external states 𝛹:𝛹 × 𝐴 × 𝛺 → ℝ — states of the world that cause sensory states and depend on action 

sensory states 𝑆:𝛹 × 𝐴 × 𝛺 → ℝ — the agent’s sensations that constitute a probabilistic mapping from 

action and external states 

action states 𝐴: 𝑆 × Ʌ × 𝛺 → ℝ — an agent’s action that depends on its sensory and internal states 

internal states Ʌ: Ʌ × 𝑆 × 𝛺 → ℝ — the states of the agent that cause action and depend on sensory 

states 

ergodic density 𝑃(𝜓, 𝑆, 𝐴, µ|𝑚) — a probability density function over external 𝜓 ∈ 𝜓, sensory 𝑠 ∈ 𝑆, 

active 𝑎 ∈ 𝐴 and internal states µ ∈ Ʌ for a system denoted by 𝑚 

variational density 𝑞(𝜓|µ) — an arbitrary probability density function over external states that is 

parameterised by internal states 

 

 

2. Markov blankets 

The notion of Markov blankets was originally proposed in the context of Bayesian networks or graphs [22], 

where it refers to the parents of the set of states (that influence it), its children (that are influenced by it), 

and the children’s parents. The Markov blanket defines the conditional independencies between a set of 

states (the system) and a second set of states (the environment). This concept can be gracefully translated 

into a biological setting: for example, the internal milieu of a cell represents the internal states, the 

environment external states, and the plasmalemma is the Markov blanket through which communication 

between intracellular and extracellular states is mediated [5], [23]. Crucially, the Markov blanket can be 

decomposed in sensory and active states, which are and are not children of the external states, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2017. ; https://doi.org/10.1101/227181doi: bioRxiv preprint 

https://doi.org/10.1101/227181
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

respectively. Thus, the existence of a Markov blanket 𝑆 × 𝐴 induces a partition of states in 𝑥 ∈ 𝑋 = 𝛹 ×

𝑆 × 𝐴 × Ʌ; external states act on sensory states, which influence, but are not influenced by internal states. 

Internal states couple back through active states, which influence but are not influenced by external states 

(Table 1). This circular causality is clearly reminiscent of the perception-action cycle [5]. 

Why is the presence of a Markov blanket – and the resulting partition of states in four sets – so important? 

To understand this, let us consider a system, composed of different components; where long-range (e.g. 

electromagnetic) interactions are possible. Each state will interact with all others, irrespective of its spatial 

position. In this system, every component will eventually become indistinguishable from the others, 

because the fully interconnected nature of the system precludes any statistical separation of one 

component from another (Figure 1a). In order to engender statistical structure, coupling has to be limited. 

This is possible by introducing short-range interactions, whereby coupling becomes spatially dependent 

(Figure 1b). However, in such a system, the existence of two distinct sets of states is only possible if they 

are far apart, so that interactions are precluded.  

 

 

Figure 1 System comprising interacting components. In (a) spatially-independent coupling among 
subsystems is mediated by long-range interactions. In the first (left) panel all states influence each other, 
and are therefore indistinguishable. In (b) only short-range interactions are allowed; thus coupling among 
subsystems is spatially dependent. However, two sets of states exist only because of spatial separation: they 
are effectively independent. In (c), internal (red) and external (blue) states can be distinguished in virtue of 
the separation operated by a third set; namely, the Markov blanket, composed of sensory (yellow) and 
active (orange) states. External states can influence internal states only by acting on sensory states. On the 
other hand, internal states couple back to external states through active states. 

 

 

However, in an interesting system, segregation (i.e., self-organisation) persists in the presence of 

communication. In other words, a system segregates from the environment, but remains (statistically or 

energetically) coupled to it. Ultimately, we arrive at a third case (Figure 1c). In this case, two sets of states 

exist not just because of their spatial separation, but in virtue of the existence of a third set, namely the 

Markov blanket. These blanket states comprise sensory and active states, mediating the vicarious coupling 

between internal and external states. States of the Markov blanket surround one set of (internal) states, 

and isolate it from the second set of (external) states. Now, external states can influence internal states 

only through sensory states. At the same time, internal states couple back through active states. In short, 

the Markov blanket provides a statistical insulation whereby internal states can be regarded as insular 

states. This concludes our description of the minimal conditions necessary for a system as simple as a 

bipartite universe to exist. 
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Now we take a step back and consider the ensemble of internal states and their Markov blanket as a 

unitary (multidimensional) state. In order to form some sort of meaningful separation at this macroscopic 

level of description, a new, bigger Markov blanket has to emerge, whose sensory and active states – and 

the internal states insulated within – will each be composed of a smaller Markov blankets (and internal 

states). Hence, the formation of Markov blankets at any level of the hierarchical organisation (that 

underwrites the structure of biological systems) is intimately linked to the maintenance of Markov blankets 

‘all the way down’ (Figure 2). 

 

 

Figure 2 Markov blanket of Markov blankets. We now broaden the perspective, and consider 

each Markov blanket (and internal states) as a collective state. Again, given short-range 

interactions, the only way for a system to exist at this new level is to be separated from its 

environment by a Markov blanket. The hierarchical nature of this system induces Markov 

blankets of Markov blankets; the emergence of Markov blankets occurs hierarchically: the big 

Markov blanket (and its internal states) is constituted by smaller Markov blankets (and their 

internal states).  
 

On this view, it is clear that the self-organisation of living organisms has to feature the emergence of 

boundaries that define an internal space, separating it from the environment, while keeping them indirectly 

coupled. Furthermore, this self-organisation is a recursive process that spans all levels of hierarchical 

organisation. In what follows, we provide a proof of concept for this argument by simulating the 

hierarchical self-organisation of Markov blankets. 

At this point it is interesting to note that disabling long-range interactions and retaining only local coupling 

simplifies the fully interconnected picture of Markov blankets mediating the perception-action cycle above: 

sensory and active states do not act directly on internal and external states, respectively. Nonetheless, 

internal and external states remain insulated from one another through the Markov blanket; thus, the 

conditional independences essential for the existence of the system (i.e., its Markov blanket) are preserved.   
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3. Dynamical systems, self-organisation and self-evidencing 

We will be dealing with random dynamical systems, whose state equations are described by random 

differential equations of the following form:  

�̇� = 𝑓(𝑥) + 𝜔

𝑓(𝑥) =

[
 
 
 
 
𝑓𝜓(𝜓, 𝑠, 𝑎)

𝑓𝑠(𝜓, 𝑠, 𝑎)

𝑓𝑎(𝑠, 𝑎, µ)

𝑓µ(𝑠, 𝑎, µ) ]
 
 
 
 

}
 
 

 
 

          (1) 

      

These equations can be regarded as describing the evolution of states of a system and its local 

environment, in terms of the motion of states 𝑓(𝑥), subject to random fluctuations 𝜔. The distinction 

among external, sensory, active and internal states is formalised in the second equation by the 

dependencies implied by the Markov blanket. External states can only be accessed by internal states 

through the Markov blanket, and are therefore usually called hidden (or latent) states. These states can be 

interpreted as the ‘true’ states of the embodied system, comprising both external conditions (i.e. the 

environment) and physiological conditions (e.g. body temperature or pressure). In both cases, these 

(external) states can be seen by internal states (e.g., a brain or intracellular organelle) only through the 

Markov blanket. 

 

Following the formulation of [24], we use the Helmholtz decomposition, such that we can express the flow 

of states in terms of a divergence-free component and a curl-free descent on a geometrical space 

determined by a scalar Lagrangian 𝐿(𝑥) that corresponds to the self-information or surprise associated 

with any state. 

𝑓(𝑥) = (𝑄 − 𝛤)∇L(x)

𝐿(𝑥) = − ln 𝑝(𝑥)
}           (2) 

          

The diffusion tensor Γ is half the covariance (amplitude) of the random fluctuations, and 𝑄  is an 

antisymmetric matrix that satisfies 𝑄(𝑥) = −𝑄(𝑥)𝑇. Because the system is ergodic, it will converge toward 

a set of states, called a pullback or random global attractor, whose associated probability density we will 

call an ergodic density [25], [26]. It is straightforward to show that 𝑝(𝑥|𝑚) = exp(−𝐿(𝑥)) is the ergodic 

solution of the Fokker-Planck equation [27], also known as the Kolmogorov forward equation [28] 

describing the density dynamics. This means that we can express the flow in terms of the ergodic density 

𝑓 = (𝛤 − 𝑄) ∙ ∇ ln 𝑝(𝑥|𝑚)         (3) 

          

This equation means that the states of an ergodic system effectively perform a gradient ascent on the 

ergodic density. This in quite revealing because it shows that the system’s flow counters the dispersive 

effects of random fluctuations – by flowing towards the pullback set of states. This also applies to the 

motion of internal and active states 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2017. ; https://doi.org/10.1101/227181doi: bioRxiv preprint 

https://doi.org/10.1101/227181
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

𝑓𝑎(𝑠, 𝑎, µ) = (𝛤 − 𝑄) ∙ ∇𝑎 ln 𝑝(𝜓, 𝑠, 𝑎, µ|𝑚)

𝑓µ(𝑠, 𝑎, µ) = (𝛤 − 𝑄) ∙ ∇µ ln 𝑝(𝜓, 𝑠, 𝑎, µ|𝑚)
}       (4) 

      

These equations are the homologues of (3) for internal and active states. They say that their flow performs 

a generalised gradient ascent on the ergodic density that describes the internal states and Markov blanket 

of any system. In other words, the system is autopoietic, as its characteristic probability density over states 

is maintained by the motion of its own internal and active states.  

The flow of the states therefore describes a gradient ascent on the ergodic density. Analogously, in the 

setting of the stochastic thermodynamics of non-equilibrium steady states, the system is minimising its free 

energy [29]. Although the ergodic density exists, it cannot be computed explicitly by the system, because 

this would require access to external states that are hidden to the internal states. However, it is possible to 

use an alternative formulation that allows a description of the flow in terms of a gradient descent based on 

the variational free energy associated with a generative model of the system in question [21]: 

𝑓µ(𝑠, 𝑎, µ) = (𝑄µ − 𝛤µ)∇µ𝐹

𝑓𝑎(𝑠, 𝑎, µ) = (𝑄𝑎 − 𝛤𝑎)∇𝑎𝐹


𝐹(𝑠, 𝑎, µ) = 𝐸𝑞〈𝐿(𝑥)〉 − 𝐻⟨𝑞(𝜓)|µ⟩

}        (5) 

       

Here, the flow of internal and active states constitutes a gradient on variational free energy, which is a 

function of states that are available to the system. This follows because free energy depends on a 

variational density 𝑞(𝜓|µ)over external states that is parameterised by internal states, and a generative 

model 𝑝(𝜓, 𝑠, 𝑎, µ|𝑚), which is the system itself [21].  

Under this formulation of density dynamics, internal states will appear to infer external states. The third 

equality expresses free energy as the self-information (i.e., negative log evidence for the model) expected 

under the variational density minus the entropy of the variational density. This means that internal and 

active states maximise the joint probability density – expected under the variational density – over states 

conditioned on the system or model in question. Moreover, internal states will also reduce free energy by 

parameterising a variational density over external states with maximum entropy, in accordance with 

Jaynes’ principle of maximum entropy [30]. Although not our focus here, the variational density becomes 

the posterior distribution of hidden or external states, given blanket states, when variational free energy is 

minimised. In this sense, the internal states encode posterior ‘beliefs’ about external states; despite never 

seeing them directly. 

The free energy formulation of a system’s dynamics allows us to prescribe the ergodic density in terms of a 

generative model. In other words, we could write down some equations of motion and interpret the 

resulting ergodic density as the surprise associated with an unknown generative model (the top-down 

approach). Alternatively, we can write down a generative model and derive the dynamics according to 

Equation (5) as a gradient descent on the free energy equivalent of surprise. In what follows, we will 

simulate self-organisation by specifying a model about the causes of the system’s sensory states – and by 

specifying the environmental dynamics generating those sensations.  

This means we need to write down the generative model 𝑝(𝜓, 𝑠, 𝑎, µ|𝑚) of the system in terms of the 

dynamics 𝑓𝜓(𝜓, 𝑠, 𝑎) and  𝑓𝑠(𝜓, 𝑠, 𝑎)of the environment and how sensory states are generated. 

Interestingly, the generative process and model do not have to be isomorphic: the generative model has 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2017. ; https://doi.org/10.1101/227181doi: bioRxiv preprint 

https://doi.org/10.1101/227181
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

only to approximate the generative process to minimise free energy. The generative model is usually 

expressed in terms of random differential equations and nonlinear functions with a hierarchical form (in 

this paper, we will only need to specify nonlinear functions): 

𝑠 = 𝑔(1)(𝜓(1)) + 𝜔(1)

𝜓(1) = 𝑔(2)(𝜓(2)) + 𝜔(2)

⋮

}         (6) 

          

Under Gaussian assumptions about random fluctuations ω, these nonlinear functions prescribe the 

likelihood and priors over external states, from which the Lagrangian is recovered 

𝐿(𝑥) = − ln 𝑝(𝜓, 𝑠, 𝑎, µ|𝑚)

= − ln 𝑝(𝑠, 𝑎, µ|𝜓(1)) − ln 𝑝(𝜓(1)|𝜓(2))

𝑝(𝑠, 𝑎, µ|𝜓(1)) = 𝑁(𝑔(1)(𝜓(1)),𝛱(1))

ln 𝑝(𝜓(1)|𝜓(2)) = 𝑁(𝑔(2)(𝜓(2)), 𝛱(2)) }
 
 

 
 

        (7) 

  

      

Here, 𝛱(𝑖) corresponds to the precision or inverse variance of the random fluctuations. In what follows we 

integrate Equation (5) using the Matlab routine spm_ADEM.m in the SPM open source academic software. 

This generalised filtering or integration scheme uses the Laplace assumption to specify the (Gaussian) form 

of the variational density, and can be regarded as a generalised Bayesian filter. This follows because the 

variational density 𝑞(𝜓|µ) over external states approximates the posterior density 𝑝(𝜓|𝑠, 𝑎, µ), as noted 

above. See [24] and [13] for details. 

In summary, we will use a standard (generalised) Bayesian filtering scheme to simulate self-organisation 

within a random dynamical system. Using a Bayesian filtering scheme means that we get the requisite 

partition into external, sensory, internal and active states for free. Furthermore, we can specify the form of 

the ergodic or nonequilibrium steady-state density in terms of a Lagrangian – by formulating the flow of 

internal and active states in terms of variational free energy – that can be specified in terms of a generative 

model. The question now is: what sort of model leads to hierarchical self-organisation? 

  

 

4. Self-organisation of an ensemble 

In what follows, we present two sets of simulations. The first considers the self-organisation of ensemble of 

cells, where each cell possesses its own Markov blanket. The second simulations consider ensembles of 

ensembles to illustrate hierarchical self-organisation; namely, the self-assembly of Markov blankets of 

Markov blankets of Markov blankets. Crucial to these simulations is the use of simple generative models, 

embodying the prior ‘belief’ that each member plays the role of an internal, active or sensory state within 

the ensemble. In other words, Markov blankets at one level of organisation possess prior ‘beliefs’ there is a 

Markov blanket partition at the level above. This is easy to specify because each role just depends upon the 

influences each member of the ensemble can or cannot exert on the others. Furthermore, the only hidden 

state each member needs to infer is which role it plays at the higher level. We will see that this minimal set 
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of prior beliefs (and subsequent self-evidencing) results in the formation of Markov blankets within the 

ensemble. The ensuing self-similar organisation can, in principle, be extended to any number of hierarchical 

levels. We will illustrate this below using 16 cells, each with their own Markov blanket, that organise into a 

cellular group or assembly, with its own Markov blanket. We then consider an ensemble of ensembles that 

organises itself into a little organ encompassed in another Markov blanket. 

The first simulation illustrates the self-organisation of an ensemble or multi-agent system. Each component 

(e.g. cell) interacts with other cells; in a process that eventually leads to a stable configuration with a 

boundary separating internal cells from their external milieu. This simulation draws on previous work that 

simulated morphogenesis [21]. In this setting, self-organisation was simulated by minimising the variational 

free energy of each cell until they attained a prescribed morphology. This morphology was achieved 

through spatially dependent (e.g. chemical) signalling – so that every cell sensed every other cell in a way 

that was consistent with their generative models. The morphology was inscribed in beliefs common to all 

cells, about cell identity, sensation and secretion. Each cell was interpreted as a Markov blanket 

surrounding internal states: the action (active states) of a cell was the cause (i.e., external states) of the 

sensations (i.e., sensory states) of the remaining cells. At the beginning of pattern-formation, cells were 

undifferentiated, because they were uncertain about their identity in the target morphology. As self-

organisation unfolded, each sub-system inferred a unique identity, location and what they should sense at 

that location. When every cell was in the right place, these inferences were fulfilled; thereby minimising the 

free energy (i.e., self information or surprise) of every cell. 

 In more detail, this inference – in analogy to intracellular cascade signalling and epigenetic mechanisms – 

was driven by the minimisation of free energy. By generating identity-dependent predictions (e.g. genetic 

and epigenetic expression) about sensations, every cell moved around and generated extracellular signals 

until its predictions were confirmed. Predictions about sensations caused by the other (e.g. extracellular 

signalling) and its own action (e.g. secretion and position) were dictated by prior beliefs (in the generative 

model) about the role of each cell in the target morphology. These prior beliefs were the same for every 

cell (c.f., pluripotential or stem cells). In other words, based on its identity, each cell had particular 

expectations about its sensory states. Because sensations were caused by other cells, surprise could only be 

minimised when every member of the ensemble had inferred a unique role within the ensemble. In short, 

priors established a point attractor for the ensemble dynamics, in terms of a free energy minimum. 

In the present work, we use the same strategy: we simulate self-organisation of a multi-agent system, 

whose components – coupled through spatially decaying (e.g. chemical) signals – minimise variational free 

energy, based on a generative model describing how causes generate sensations. Again, as the external 

states of each component are the active states of other cells, the system organises in a pattern that enables 

each cell to predict signals from its companions as precisely as possible. However, in the current 

simulations, the prior beliefs were much simpler: they specify signalling and three possible types of cell, so 

that each cell only had to infer what type of cell it was. This means that there are no target positions or 

target morphology. The only prior constraints are beliefs about the intracellular and extracellular 

sensations for the three cell types. Crucially, these priors conform to the conditional dependencies and 

independencies entailed by a Markov blanket: active cells can sense and be sensed by both sensory and 

internal states, whereas sensory and internal states that do not interact.  

From the perspective of the ensemble as a whole there are no external states, which would interact only 

with sensory states. This is an important point, because self-organisation is auto-referential here – as it 

does not require coupling with an external environment. The ensuing self organisation leads to a spatial 
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pattern, wherein components of the system are organised in a predictable fashion. Such a pattern is 

inscribed in the (e.g., genetically encoded) expectations about sensations of the components of the system. 

More precisely, priors specify the form of the generative model, which corresponds to the free energy 

landscape, thus defining the sets of attracting states towards which the dynamics of the single components 

converge [21]. In short, priors of a model dictate how the system self-organises, granted that such a model 

leads to prediction error minimisation.  

 

We now describe our simulation setup. The system comprised sixteen cells, which can become one of three 

types of cells that play the role of states at the next hierarchical level; namely, internal, active and sensory 

states. Each cell type (believes it will) secrete a unique chemical signal and communicate according to the 

conditional independencies required by a Markov blanket (see Table 2). The external states of each cell 

comprised its location 𝜓𝑥 ∈ ℝ
2 and the chemical signals 𝜓𝑦 ∈ ℝ

3 released. This can be expressed as 

𝜓 = [
𝜓𝑥
𝜓𝑦
] = [

𝑎𝑥
𝑎𝑦
]           (8) 

           

For simplicity, the location and signalling were also taken to be the active states of any given cell. Its 

sensory states are the sensed intracellular (produced by itself) and extracellular (produced by other cells) 

signals. The latter is a function of distance, as we assume concentrations of secreted chemicals decreased 

exponentially over space. This can be expressed as 

𝑠 = [
𝑠𝑦
𝑠𝛼
] = [

𝜓𝑦
𝛼(𝜓𝑥 , 𝜓𝑦)

] + 𝜔          (9) 

          

Here, the sensory noise   had a high precision of exp(16). The sensed extracellular signals are returned 

by the function 𝛼(𝜓𝑥 , 𝜓𝑦), which accounts for the spatial decay of chemicals; where the extracellular 

sensations of the ith cell are given by 

𝑠𝑖 = 𝛼𝑖(𝜓
𝑖, 𝜓𝑗) = ∑ exp(−|𝜓𝑥

𝑖 − 𝜓𝑥
𝑗
|) ∙ 𝜓𝑦

𝑗
𝑗        (10) 

Table 2. Prior beliefs characterising Markovian dependencies and independencies 

 

𝑝𝑦 =

µ 𝑎 𝑠
1 0 0
0 1 0
0 0 1

 

 

 

 

Each state secretes one of the three types of signal. 

 

 

𝑝𝛼 =
µ
𝑎
𝑠

1 1 0
1 1 1
0 1 1

 

 

 

 

Sensory states can interact with active states; active states can interact with 

internal and sensory states; sensory states can interact with active states. 

Every state communicates with conspecifics. 
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Here, j indexes all cells other than the ith agent. Each cell generates predictions based on the same 

generative model, which specifies the mapping from hidden states – namely, the type of the cell 𝜓𝑖 – to 

sensations. The type is then the only hidden state that the cells have to infer, which is parameterised by 

their internal states µ𝑖. Based on beliefs about its type, each cell then generates predictions about 

intracellular and extracellular sensations:  

𝑔(µ𝑖) = [
𝑝𝑦
𝑝𝛼
] ∙ 𝜎(µ𝑖)

𝜎(µ𝑖) =
exp(µ𝑖)

∑ exp(µ𝑖)𝑖

}          (11) 

           

Here, 𝑝𝛼  and 𝑝𝑦 are prior beliefs about secretion and sensation given the type of cell (see Table 2), while 

𝜎(µ𝑖) is a softmax function that returns the expectations about the cells type. The resulting dynamics of 

internal and active states of each cell (suppressing higher order terms for clarity) can be expressed as 

follows: 

 

𝑓µ(�̃�, �̃�, µ̃) = (𝑄µ − 𝛤µ)∇µ𝐹 = 𝐷µ̃ − ∇µ̃𝜀̃ ∙ 𝛱
(1)𝜀̃ − 𝛱(2)µ̃

𝑓𝑎(�̃�, �̃�, µ̃) = (𝑄𝑎 − 𝛤𝑎)∇�̃�𝐹 = −∇�̃��̃� ∙ 𝛱
(1)𝜀̃

⇒

�̇�𝑥 = −∇𝑥�̃�𝛼 ∙ 𝛱𝛼
(1)
𝜀�̃�

�̇�𝑦 = −𝛱𝑦
(1)
𝜀�̃�

𝜀 = [
𝜀𝑦
𝜀𝛼
] = [

𝑠𝑦 − 𝑝𝑦 ∙ 𝜎(µ)

𝑠𝛼 − 𝑝𝛼 ∙ 𝜎(µ)
]

}
 
 
 
 

 
 
 
 

     (12) 

 

      

 

 

Here 𝜀 = 𝑠 − 𝑔(µ) is called a prediction error, and 𝛱(2) is the precision (with a log precision of minus four) 

of a Gaussian prior over internal states that parameterise posterior ‘beliefs’ about external states. The ~ 

notation denotes generalised motion: see [3]. Equation 12 shows that internal and active states minimise 

(variational) free energy. Under the Laplace assumption, this effectively reduces to prediction error 

minimisation. Thus, internal and active states perform  a descent on prediction error gradients [14]. Under 

these equations of motion, cells infer their identity based on sensations, while secreting according to their 

role as the ensemble evolves. At the same time, cells move to reach a position where extracellular inputs 

can be best predicted.  

The results of an exemplar simulation are summarised in Figure 3. Self-organisation leads the ensemble to 

assume another cell-like morphology with internal cells in the middle, encircled by active cells, surrounded 

in turn by sensory cells. Because there are no prior beliefs either about the location or about the number of 

cells per type, this pattern constitutes an emergent property. This is because the prior beliefs define 

(statistical) coupling among members of the ensemble, while leaving its topology unspecified. In other 
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words, the final morphology of the ensemble is an emergent property of the spatially dependent 

interactions among agents and conditional independencies consistent with a Markov blanket. Crucially, the 

ensuing self-organisation produces a spatial structure that resembles the most elementary biological unity 

– a cell. In short, the cell-like organisation of the ensemble emerges from intracellular signalling in a way 

that does not require any morphological priors. These results therefore support the idea that (e.g., genetic) 

beliefs entailed by a Markov blanket are sufficient for the emergence of structures with statistical 

boundaries that distinguish internal states from the external milieu. In turn, this suggests that priors that 

embody Markovian dependencies may play an essential role in the self-organisation of biological systems.  

 

Figure 3. Self-organisation at a particular level. This figure illustrates the (final stage of) self-

organisation of an ensemble comprising sixteen ’cells’, whose internal and active equations of 

motion describe a gradient descent on prediction error, relative to sensory states expected by 

each member of the ensemble. Every member is endowed with the same prior beliefs about 

what they should signal and sense, depending upon their type (which has to be inferred on the 

basis of what they sense). These priors ultimately prescribe a point attractor for the dynamics 

of the ensemble. Each cell can then assume one identity or type and behave accordingly, while 

moving to a location that fulfils its predictions about its extracellular signals. The emergent 

morphology of the ensemble has a cell of cells form, with an internal (red) cell in the centre, 

surrounded by a membrane of active (green) cells in the middle, and sensory (blue) cells on the 

periphery. This is the spatial pattern that best fulfils the prior beliefs of all the constituent cells. 

 

The simulation presented above illustrates the biological importance of Markov blankets in a simple but 

plausible world where only local interactions are permitted, in which prior beliefs (e.g., a genetic code) 

have learned that, in order to exist, a living system has to self-generate boundaries that separate it from – 

and mediate the coupling with – its environment. As in real biological systems, the constituents interact 

with each other, leading to signal cascades. The (e.g., epigenetic) signalling rests on inference about the 

type or role each cell should play, where action (e.g., chemotactic signalling) realises that role. Cells then 

differentiate, based upon their prior beliefs (e.g., genetic code). In essence, the ensemble reaches a steady 

state characterised by an internal milieu, which exists – in virtue of assembling its own Markov blanket – as 
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integral part of the system. One might imagine that genes specify Markovian affordances to produce 

hierarchical structures; such as organs, tissues, organisms and so on. On this view, self-organisation is then 

a recursive process that engenders, at every level, the emergence of Markov blankets. 

 

 

5. Self-organisation: ensemble of ensembles 

In the final set of simulations, we simulated hierarchical self-organisation in sixteen ensembles composed 

of sixteen cells each. To investigate the autonomous organisation of (256) cells at two levels, every cell is 

equipped with the same priors about their local and global identity, that is, they share beliefs about 

possible roles at both ensemble (local) and ensemble of ensemble (global) level. Cells then can infer their 

identity both at the local and global level, simultaneously. Put simply, each cell now had two sets of hidden 

states – and prior beliefs – pertaining to their role at the local and global level. Crucially, these priors are 

identical, and are the same as used in the previous simulation; namely, they prescribe conditional 

independencies that are mandated by a Markov blanket at each level in the self-similar fashion: 

[
𝑝𝑦
𝑝𝛼
] = [

𝑝𝑦
𝑙

𝑝𝛼
𝑙
] = [

𝑝𝑦
𝑔

𝑝𝛼
𝑔]          (13) 

           

Here, the superscripts denote the local (ensemble) and global (ensemble of ensemble) level. The only 

additional piece of information required in this simulation is how the two levels couple to each other. For 

simplicity and computational expediency, we model the microscopic dynamics (cells within an ensemble) of 

only one ensemble of sixteen cells, whereas for the remaining (fifteen) ensembles, we assume that the 

average behaviour conforms to the local dynamics of the simulated ensemble. This is a mean field 

approximation in the sense that we discount local fluctuations within each ensemble and assume their 

average behaviour is ‘seen’ by any single ensemble. This allows us to simulate the coupling of sixteen cells 

of the fully simulated ensemble with other fifteen ensemble means (without simulating the other 15 

ensembles explicitly). In summary, this simulation illustrates how sixteen cells self-organise in an ensemble 

that in turn self-organises with other fifteen identical ensembles, while describing the coupling between 

the local and global level. 

In particular, for the fully simulated thk  ensemble, the global to local extracellular coupling means that it 

only senses the (simulated) average of all other global signals, while the local to global coupling means that 

the average over its active states informs the dynamics of the remaining ensembles. Technically, this 

means: 

𝑠𝛼,𝜁
𝑔
= 𝑠𝑎,𝑘

𝑠𝑦,𝑘 = 𝑎𝑦,𝑘 =
1

𝑛
∑ 𝑎𝑦,𝜁

𝑙
𝜁

}         (14) 

 

           

where 𝜁 = 1: 𝑛. The first and second equalities in (14) refer to the extracellular sensing of cells and the 

intracellular sensation of the ensemble, respectively. In terms of local to global coupling, as they are part of 
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the same ensemble, these predictions will be congruent with each other and cells will therefore act in 

concert at the global level: 

𝑔 (µ𝜁
𝑔
) = [

𝑝𝑦
𝑔

𝑝𝛼
𝑔] ∙ 𝜎(µ𝜁

𝑔
)           (15) 

           

where µ𝜁
𝑔

 is the expectation about global type for every cell in the ensemble. In summary, sixteen cells 

locally self-organise in an ensemble, guided by the local priors, while interacting with the remaining fifteen 

ensembles. This induces a hierarchical self-organisation and pattern formation of Markov blankets within 

Markov blankets (see Figure 4). Again there are no external states for the ensemble as self-organisation is 

autonomous – and leads to the emergence of a pattern where the behaviour of each component conforms 

to the expectations of the others. The lower panels of Figure 4 show the evolution of subtype expectations 

(i.e., differentiation) at the local (left), and global (middle) level. The lower right panel shows the 

expectations of a single ensemble (the sixth) about its role at the global level. Here, the sixth ensemble is an 

active state at the global level. Note the differentiation on both a local and global level; while local 

expectations about the cells’ role at the global level converge to the same type. 

 

This simulation exemplifies the absence of a privileged point of view when describing hierarchical self-

organisation. The dynamics at every level plays the role of macroscopic states at the level below, and the 

role of microscopic states at the level above. In self-organisation, interactions among microscopic states 

inevitably give rise to the macroscopic states that appear to impose constraints on local dynamics. This is 

formalised in synergetics, and in particular by the slaving principle, which deals with self-organisation and 

pattern formation in the context of open systems far from thermodynamic equilibrium [31]. In such 

systems, the fast (stable) dynamics of the microscopic patterns dissipate rapidly as a function of order 

parameters, where the order parameters are a measure of the macroscopic states that emerge. The basic 

phenomenology is that these order parameters enslave the dynamics at the level below, which results in an 

enormous reduction of degrees of freedom. Notably, the emerging macroscopic patterns may sometimes 

recapitulate microscopic patterns leading to a fractal organisation. This aspect is nicely exemplified by 

ensembles of oscillators that are coupled together by their average. This generally produces macroscopic 

dynamics that gives rise to a new oscillator at a larger spatial and slower time scale, while at the same time, 

each nested oscillator can be regarded as a macroscopic state enslaving the level below [27]. In the same 

fashion, Markov blankets – that are constituted by Markov blankets – self-organise in ensembles that 

themselves form Markov blankets at a higher scale. 
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Figure 2. This figure shows the (final) results of self-organisation of an ensemble of cells, where each 
constituent of the ensemble is itself a local ensemble. In this example, there are 16 cells at both the global 
(higher) and local (lower) level. The upper panel shows the final disposition of the ensemble (of ensembles) 
in terms of the location of cells, and their differentiation (shown in colour: internal – red, active – green and 
sensory – blue). Note that there are no external states because the external states comprise the Markov 
blankets of other ensembles. Here, each cell is coded with two colours. The central colour corresponds to 
expectations about the type of cell in question at the local level, while the peripheral circle encodes 
expectations at the global level. The key thing to observe here is the emergence of a Markov blanket at both 
levels. This reflects a particular independency structure, where internal cells do not influence sensory (i.e. 
surface) cells, in virtue of their separation by active cells. This separation induces conditional independence, 
because of the limited range of intracellular signals (that fall off with a Gaussian function of Euclidean 
distance). The lower panels show the same results in a simpler format; namely, the evolution of subtype 
expectations (i.e., differentiation) at the local (left), and global (middle) level. The lower right panel shows 
the expectations of a single ensemble (the sixth) about its role at the global level. Here, the sixth ensemble is 
an active state. Note the differentiation on both a local and global level; while local expectations about the 
cells’ role at the global level converge to the same type. In these simulations, we used a time step of two 
units (of arbitrary time) and a second order variational filtering scheme (heuristically, this is a second order 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2017. ; https://doi.org/10.1101/227181doi: bioRxiv preprint 

https://doi.org/10.1101/227181
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

generalisation of extended Kalman filtering) with hidden states corresponding to unknown identity in terms 
of cell type at the local and global level. Please main text for details. 

 

In summary, we used the same generative model at both levels to exploit the self-similar hierarchical 

structure that emerges. However, we could have used different generative models at the global and local 

levels to simulate the morphogenesis of particular organelles that have a different form from their 

constituent cellular ensembles. We will pursue this in future work. 

 

 

6. Discussion 

In this paper, we have considered a variational treatment of self-organisation. Given local interactions, 

carefully crafted prior beliefs about conditional dependencies and independencies endow a system with a 

point attractor comprising internal states and their Markov blanket. Moreover, applying the same priors at 

any hierarchical level leads to the emergence of Markov blankets within bigger Markov blankets. A key 

feature of the simulations – used in this paper – is the absence of any explicit target morphology within the 

prior (e.g., genetic) beliefs of the system’s constituents. This is indeed an emergent property, which 

nonetheless has an apparent top-down causal effect on the blankets below.  

Such emergence provides an alternative to the reductionist view established in developmental biology. For 

example, morphogenesis and development are widely supposed to be primarily guided by local interactions 

among system’s components, and in particular by morphogen gradients that control gene expression; for 

example, those established by the Sonic Hedgehog (Shh) protein [32] or by the group of Hox genes [33]. In 

both cases, concentration gradients underwrite position-dependent differentiation of tissues in the 

vertebrate’s central nervous system. In addition, Hox genes follow a colinearity rule; in that their respective 

position in the chromosome parallels the sequence followed by their expression along the anterior-

posterior axis in the body. Therefore, not only can genes encode positional information but they can do so 

explicitly – with a one-to-one correspondence. 

On the other hand, our simulations point more towards the idea that a spatial pattern might not be 

necessarily specified by local interactions and genetic positional information [34]: in the scenario above, 

target morphology is a consequence of top-down constraints hence the result of interaction among nested 

levels. This sort of top-down causation, whether real or simplistic, offers nonetheless an efficient way to 

describe (and manipulate) self-organisation of complex systems.  

The second contribution of this work is the extension of self-organising system to potentially higher and 

higher hierarchical levels. As mentioned above, biological systems are – by definition – hierarchical in their 

organization [6]. However, this type of complexity is not only a trait pertaining to the living domain; self-

organisation (of Markov blankets) can occur at all scales, irrespective of whether it is overtly biological or 

not [3]. It is indeed possible to imagine systems in which biological organisms occupy only some levels in 

the hierarchy, but Markov blankets can be found at every level; for example, consider our society and 

distinct communities within it ??(Kirchhoff et al., submitted)??. Therefore, although the present simulations 

are strictly anchored in the living realm – because of the genetic flavour of prior beliefs and in the way we 
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have framed them – they speak to an argument that pervades potentially all possible fields of study that 

concern complex, non-equilibrium (open) systems. 

 

 

7. Conclusion 

This work suggests that the Markov blanket is a fundamental characteristic of biological systems. Its 

presence is necessary for life – as it underwrites an existential separation of the system from its 

environment, while preserving its interactions. The hierarchical organisation of complex systems – like 

living organisms – implies that the self-similar organisation of Markov blankets may be evident at any level 

of biological structure. From the point of view of dynamical systems, Markov blankets are attractors, 

attracting fast microscopic dynamics, while enforcing the emergence of macroscopic (order) parameters. 

This circular causality nicely captures the self-organisation of biological systems, which evolve 

autonomously from the environment in a morphology (Markov blanket) that is necessarily predisposed to a 

selective coupling with external states. The natural place – where these attractors might be specified – is 

the genetic code. Clearly, this is rather speculative; however, it is possible that the astonishing diversity in 

the flora and fauna we witness might reflect the fact that, in a world where signals are spatially dependent, 

Markov blankets are synonymous with existence. 

 

 

Methods 

The simulations reported in this paper can be reproduced using the open access academic software SPM 

(http://www.fil.ion.ucl.ac.uk/spm/software/). The key routines are DEM_cell.m and DEM_cell_cell.m that 

illustrate self-organisation of a single ensemble and ensemble of ensembles respectively. 

DEM_cell.m: This demo illustrates self-organisation in an ensemble of (sixteen) cells using the same 

principles described in DEM_morphogenesis, using a simpler generative model. Overall, the dynamics of 

these simulations show how one can prescribe a point attractor for each constituent of an ensemble that 

endows the ensemble with a point attractor to which the ensemble converges. In this example, we consider 

the special case where the point attractor is itself a Markov blanket. In other words, cells come to acquire 

dependencies, in terms of intracellular signalling, that conform to a simple Markov blanket with intrinsic or 

internal cells, surrounded by active cells that are, in turn, surrounded by sensory cells. This organisation 

rests upon intracellular signals and active inference using generalised (second-order) variational filtering. In 

brief, the hidden causes driving action (migration and signalling) are expectations about cell type. These 

expectations are optimised using sensory signals; namely, the signals generated by other cells. By equipping 

each cell with prior beliefs about what it would sense if it was a particular cell type (i.e., internal, active or 

sensory), the act (i.e., move and signal) so that they behave and infer their role in an ensemble of cells that 

itself has a Markov blanket. In a DEM_cell_cell.m, we use this first-order scheme to simulate hierarchical 

emergence of Markov blankets; i.e., ensembles of cells that can be one of three types at the local level; 

independently of their time at the global level. 
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DEM_cell_cell.m: This demo is a hierarchical extension of DEM_cell.m, where we have 16 ensembles 

comprising 16 cells. Each cell has a generative model (i.e., prior beliefs) about its local and global cell type 

(i.e., internal, active or sensory). Given posterior beliefs about what sort of self it is at the local and global 

level, it can then predict the local and global intracellular signals it would expect to receive. The ensemble 

of ensembles then converges to a point attractor; where the ensemble has a Markov blanket and each 

element of the ensemble comprises a cell that is itself a Markov blanket. The focus of this simulation is how 

the local level couples to the global level and vice versa. For simplicity (and computational expediency) we 

only model one ensemble at the local level and assume that the remaining ensembles conform to the same 

(local) dynamics. This is effectively a mean field approximation where expectations of a cell in the first 

ensemble about its global type are coupled to the corresponding expectations and the ensemble level, and 

vice versa. The results of this simulation are provided in the form of a movie and graphs. 
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