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Abstract

Biological self-organisation is a process of spontaneous pattern formation; namely the emergence of
coherent and stable systemic configurations that distinguish themselves from their environment. This
process can occur at various spatial scales: from the microscopic (giving rise to cells) to the macroscopic
(the emergence of organisms). Self-organisation at each level is essential to account for the hierarchical
organisation of living organisms (organelles within cells, within tissues, within organs, etc.). In this paper,
we pursue the idea that Markov blankets — statistical boundaries separating states that are external to a
system from its internal states — emerge at every possible level of the description of the (living) system.
Through simulations, we show that the concept of a Markov blanket is fundamental in defining biological
systems and underwrites the nature and form of interactions between successive levels of hierarchical
structure. We demonstrate the validity of our argument using simulations, based on the normative
principle of variational free energy minimisation. Specifically, we adopt a top-down approach to provide a
proof of concept for the claim that the self-organisation of Markov blankets (and blankets of blankets)
underwrites the self-evidencing, autopoietic behaviour of living systems.
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1. Introduction

This paper is about the essential role played by Markov blankets in (self-organised) living systems. A
Markov blanket is a statistical boundary that separates two sets of states (e.g. a cellular membrane
separating intracellular and extracellular dynamics). The Markov blanket precludes direct interactions
between internal and external states — any interactions are mediated through the states that constitute the
Markov blanket. As we shall see below, this separation is a fundamental property of living systems because
their very existence implies the presence of a boundary that distinguishes inside (i.e. self) from the outside
(i.e. environment). Living systems maintain the integrity of these boundaries, in the face of an ever-
changing environment. This means that life has evolved mechanisms for the generation, maintenance, and
repair of Markov blankets.

A system endowed with such mechanisms connotes an autopoietic organisation; it is capable of
autonomously producing its own components, in particular its boundaries, [1], [2]. This autonomy does not
imply isolation from the environment, which — on a thermodynamic account — is needed to provide a
constant energy supply [3]. Therefore, living organisms are operationally closed, while presenting as
thermodynamically open [4]. The interaction between system and environment is then mediated by the
boundary. Notably, this coupling is non-trivial; in the sense that the organism must actively realise an
‘informational control’ of the environment (i.e., possess a teleology), by filtering, canalising and
categorising signals that carry information about their external causes [4]. At the same time, the (statistical)
boundaries must contain the machinery that allows the system to act on the external world; namely, active
states. In short, definitive borders are essential for living systems, as any dynamics that happens within and
between systems can only take place in virtue of their existence [5].

Living organisms are complex systems, denoted by non-linear interactions between multiple hierarchically
arranged and nested components [6], [7]. As such, characterising how they self-organise requires not only
an understanding of how single components couple to each other, but also of how microscopic and
macroscopic components interact. This requires us to acknowledge the existence of top-down influences
on the low level dynamics [8] and vice versa.

Self-organisation has been addressed extensively in theoretical biology using tools from statistical
thermodynamics and information theory to explain how biological systems resist a natural tendency to
disorder. This holdout is an apparent violation of the second law of thermodynamics, or, more precisely,
the fluctuation theorems for non-equilibrium systems [4], [9]-[12], which states that the probability of their
entropy decreasing itself decreases exponentially with time (and scale). A prominent line of work within
this framework sees living organisms as constantly minimising an upper (free energy) bound on their self-
information (i.e., negative log likelihood of sensed states). This imperative is motivated by the fact that
biological systems have to maintain sensory states within physiological bounds. This means the Shannon
entropy (dispersion) of sensory states is necessarily bounded [13]. In this setting, the Shannon entropy is
the path or time average of self-information; also known as surprisal or surprise. In short, self-organisation
can be regarded as synonymous with systems that place an upper bound on their self-information or
surprise. In current (variational) formulations of self-organisation — that emphasise its sentient or
inferential aspect — living organisms are understood as placing a (free energy) bound on surprise, rather
than reducing surprise directly.

These arguments rest upon mild ergodicity assumptions (implicit in the fact that the sorts of systems we
are interested in have characteristic measures that persist over time). Ergodicity implies that, over a
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sufficiently long period, the time spent in a particular location of state-space is equal to the probability that
the system will be found at that location when sampled at random [5]. If this probability measure is finite, it
means that any system will revisit certain states (or their neighbourhoods) time and time again. It is this
peculiar and special behaviour that underlies self-organisation; namely, the existence of an attracting set of
states that endow living systems with characteristic behaviours that occur repeatedly.

The existence of an attracting set means that one can interpret the long-term average of surprise of
sensory states as the average surprise conditioned on the system over all possible sensations, which is
equal to their entropy. This means that minimising the bound on surprise minimises entropy, or the
dispersion of sensory states [14]. Crucially, because surprise is (negative) Bayesian model evidence,
minimising free energy is the same as maximising a lower bound on the evidence for an implicit model of
the causes of sensations. In other words, the system can be regarded as a model of its environment [15],
and will try to gather evidence for its own existence. This has been called self-evidencing [16]. It follows
that — by minimising free energy — biological systems place an upper bound to the entropy of their
sensations, while inferring their causes; this is also known as active inference [17], and is closely related to
other formulations of the perception-action cycle in other disciplines, like embodied cognition [18], artificial
intelligence [19], and cognitive neuroscience [20]. In short, self-organisation entails the bounding of self-
information that can be cast as self-evidencing.

If a biological system did not minimise (a free energy bound) on surprise it would cease to exist, as the
entropy of its sensory states would increase indefinitely. In other words, it would dissipate, decay, dissolve
or die. Friston [5], demonstrated that (almost) any (ergodic random dynamical) system endowed with
boundaries (Markov blankets) is autopoietic (self-organising). In other words, the system appears to
minimise free energy and engages in active inference and thereby actively maintain its functional and
structural integrity. Both a heuristic proof and proof of principle were provided to support this claim. The
latter comprised a simulation of a primordial ‘soup’ or ensemble of subsystems; each with its own physical
and electrochemical states, coupled through short-range interactions. The equations of motion of the
subsystems were integrated until nonequilibrium steady state. This allowed one to identify a Markov
blanket separating some internal states from their environment — based on statistical dependencies
between subsystems that emerged during the evolution. This work effectively used a bottom-up approach
to show that self-organisation entails the emergence of Markov blankets that can be cast in terms of active
inference or self evidencing.

Here, we provide a proof of concept that complements the work described above. In contrast to the
bottom-up approach, we adopt a top-down view; building upon the free energy formulation of pattern
formation [21]. This means that we start with subsystems whose dynamics possess a Markov blanket as an
attractor. We then integrate the system until it self-organises into a stable configuration. We then consider
hierarchical systems; namely, configurations of configurations (i.e., blankets of blankets) that could, in
principle, be extended indefinitely. We argue that, given local interactions, Markov blankets are an
essential feature of any biological system. More specifically, we test the following hypothesis: if the
maintenance of Markov blankets — that underwrite existential form — can be cast as self-evidencing, then
self-organisation should be an emergent property of subsystems that ‘believe’ they participate in — or are
enclosed by — a Markov blanket. Because Markov blankets are defined by conditional independence; the
requisite ‘beliefs’ can be specified simply in terms of communication or signalling between subsystems. In
other words, it should be possible to prescribe hierarchical self-organisation purely in terms of whether or
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not any element of an ensemble can influence — will be influenced by — another element, depending upon
their role as a Markov blanket or internal state at the next hierarchical level.

In such systems, self-organisation should, in principle, lead to the formation of nested (statistical)
boundaries as we ascend the hierarchy. Here, we associate random dynamical systems with living
organisms. Of course, this is a tremendous simplification, motivated by the fact that the systems under
consideration are complex (i.e., non-linear and hierarchical) and organised independently of any apparent
external gradient: in other words, pattern generation starts as soon as the system exists.

This paper is organised as follows: in section 2 we introduce the concept of Markov blankets and argue that
any biological system has to conform to such an organisation. In section 3, we follow the evolution of a
random dynamical system — endowed with a Markov blanket — via the principle of free energy minimisation
(i.e. self-evidencing through active inference). This illustrates the autopoietic nature of systems that,
through the dynamics of their internal and active states, resist a natural tendency to disorder. In sections 4
and 5, we describe simulations of self-organisation at two hierarchical levels; these furnish a proof of
concept for self-organisation of Markov blankets of Markov blankets. We conclude with a discussion of
future considerations in section 6.

Table 1. Definition of the tuple (12, ¥, S, A4, A, p, q) underlying active inference.

a sample space () or non-empty set from which random fluctuations or outcomes w € (2 are drawn

external states W: W X A X ) - R — states of the world that cause sensory states and depend on action

sensory states S: ¥ X A X ) - R — the agent’s sensations that constitute a probabilistic mapping from
action and external states

action states A: S X A X 2 - R — an agent’s action that depends on its sensory and internal states

internal states A: A X § X ) - R — the states of the agent that cause action and depend on sensory
states

ergodic density P(1, S, A, u/m) — a probability density function over external y € i, sensory s € S,
active a € A and internal states p € A for a system denoted by m

variational density q(y|) — an arbitrary probability density function over external states that is
parameterised by internal states

2. Markov blankets

The notion of Markov blankets was originally proposed in the context of Bayesian networks or graphs [22],
where it refers to the parents of the set of states (that influence it), its children (that are influenced by it),
and the children’s parents. The Markov blanket defines the conditional independencies between a set of
states (the system) and a second set of states (the environment). This concept can be gracefully translated
into a biological setting: for example, the internal milieu of a cell represents the internal states, the
environment external states, and the plasmalemma is the Markov blanket through which communication
between intracellular and extracellular states is mediated [5], [23]. Crucially, the Markov blanket can be
decomposed in sensory and active states, which are and are not children of the external states,
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respectively. Thus, the existence of a Markov blanket S X A induces a partition of statesinx e X =¥ X
§ X A X A; external states act on sensory states, which influence, but are not influenced by internal states.
Internal states couple back through active states, which influence but are not influenced by external states
(Table 1). This circular causality is clearly reminiscent of the perception-action cycle [5].

Why is the presence of a Markov blanket — and the resulting partition of states in four sets — so important?
To understand this, let us consider a system, composed of different components; where long-range (e.g.
electromagnetic) interactions are possible. Each state will interact with all others, irrespective of its spatial
position. In this system, every component will eventually become indistinguishable from the others,
because the fully interconnected nature of the system precludes any statistical separation of one
component from another (Figure 1a). In order to engender statistical structure, coupling has to be limited.
This is possible by introducing short-range interactions, whereby coupling becomes spatially dependent
(Figure 1b). However, in such a system, the existence of two distinct sets of states is only possible if they
are far apart, so that interactions are precluded.

.. O @ o
Jees e®0 00
O ®
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Figure 1 System comprising interacting components. In (a) spatially-independent coupling among
subsystems is mediated by long-range interactions. In the first (left) panel all states influence each other,
and are therefore indistinguishable. In (b) only short-range interactions are allowed; thus coupling among
subsystems is spatially dependent. However, two sets of states exist only because of spatial separation: they
are effectively independent. In (c), internal (red) and external (blue) states can be distinguished in virtue of
the separation operated by a third set; namely, the Markov blanket, composed of sensory (yellow) and
active (orange) states. External states can influence internal states only by acting on sensory states. On the
other hand, internal states couple back to external states through active states.

However, in an interesting system, segregation (i.e., self-organisation) persists in the presence of
communication. In other words, a system segregates from the environment, but remains (statistically or
energetically) coupled to it. Ultimately, we arrive at a third case (Figure 1c). In this case, two sets of states
exist not just because of their spatial separation, but in virtue of the existence of a third set, namely the
Markov blanket. These blanket states comprise sensory and active states, mediating the vicarious coupling
between internal and external states. States of the Markov blanket surround one set of (internal) states,
and isolate it from the second set of (external) states. Now, external states can influence internal states
only through sensory states. At the same time, internal states couple back through active states. In short,
the Markov blanket provides a statistical insulation whereby internal states can be regarded as insular
states. This concludes our description of the minimal conditions necessary for a system as simple as a
bipartite universe to exist.
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Now we take a step back and consider the ensemble of internal states and their Markov blanket as a
unitary (multidimensional) state. In order to form some sort of meaningful separation at this macroscopic
level of description, a new, bigger Markov blanket has to emerge, whose sensory and active states — and
the internal states insulated within — will each be composed of a smaller Markov blankets (and internal
states). Hence, the formation of Markov blankets at any level of the hierarchical organisation (that
underwrites the structure of biological systems) is intimately linked to the maintenance of Markov blankets
‘all the way down’ (Figure 2).

Figure 2 Markov blanket of Markov blankets. We now broaden the perspective, and consider
each Markov blanket (and internal states) as a collective state. Again, given short-range
interactions, the only way for a system to exist at this new level is to be separated from its
environment by a Markov blanket. The hierarchical nature of this system induces Markov
blankets of Markov blankets; the emergence of Markov blankets occurs hierarchically: the big
Markov blanket (and its internal states) is constituted by smaller Markov blankets (and their
internal states).

On this view, it is clear that the self-organisation of living organisms has to feature the emergence of
boundaries that define an internal space, separating it from the environment, while keeping them indirectly
coupled. Furthermore, this self-organisation is a recursive process that spans all levels of hierarchical
organisation. In what follows, we provide a proof of concept for this argument by simulating the
hierarchical self-organisation of Markov blankets.

At this point it is interesting to note that disabling long-range interactions and retaining only local coupling
simplifies the fully interconnected picture of Markov blankets mediating the perception-action cycle above:
sensory and active states do not act directly on internal and external states, respectively. Nonetheless,
internal and external states remain insulated from one another through the Markov blanket; thus, the
conditional independences essential for the existence of the system (i.e., its Markov blanket) are preserved.
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3. Dynamical systems, self-organisation and self-evidencing

We will be dealing with random dynamical systems, whose state equations are described by random
differential equations of the following form:

x=fx)+w ]
fw(‘/):S:a)
_|@sa)] (1)
f“)la@mmu
FACKAN

These equations can be regarded as describing the evolution of states of a system and its local
environment, in terms of the motion of states f(x), subject to random fluctuations w. The distinction
among external, sensory, active and internal states is formalised in the second equation by the
dependencies implied by the Markov blanket. External states can only be accessed by internal states
through the Markov blanket, and are therefore usually called hidden (or latent) states. These states can be
interpreted as the ‘true’ states of the embodied system, comprising both external conditions (i.e. the
environment) and physiological conditions (e.g. body temperature or pressure). In both cases, these
(external) states can be seen by internal states (e.g., a brain or intracellular organelle) only through the
Markov blanket.

Following the formulation of [24], we use the Helmholtz decomposition, such that we can express the flow
of states in terms of a divergence-free component and a curl-free descent on a geometrical space
determined by a scalar Lagrangian L(x) that corresponds to the self-information or surprise associated
with any state.

fe)=(@- F)VL(X)}

L(x) = —Inp(x) )

The diffusion tensor I is half the covariance (amplitude) of the random fluctuations, and Q is an
antisymmetric matrix that satisfies Q(x) = —Q(x)”. Because the system is ergodic, it will converge toward
a set of states, called a pullback or random global attractor, whose associated probability density we will
call an ergodic density [25], [26]. It is straightforward to show that p(x|m) = exp(—L(x)) is the ergodic
solution of the Fokker-Planck equation [27], also known as the Kolmogorov forward equation [28]
describing the density dynamics. This means that we can express the flow in terms of the ergodic density

f=U—=Q) Vinp(xIm) (3)

This equation means that the states of an ergodic system effectively perform a gradient ascent on the
ergodic density. This in quite revealing because it shows that the system’s flow counters the dispersive
effects of random fluctuations — by flowing towards the pullback set of states. This also applies to the
motion of internal and active states
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fu(si a, H) = (F - Q) ' vp. lnp(lpb' s,a, H|m)

These equations are the homologues of (3) for internal and active states. They say that their flow performs
a generalised gradient ascent on the ergodic density that describes the internal states and Markov blanket
of any system. In other words, the system is autopoietic, as its characteristic probability density over states
is maintained by the motion of its own internal and active states.

The flow of the states therefore describes a gradient ascent on the ergodic density. Analogously, in the
setting of the stochastic thermodynamics of non-equilibrium steady states, the system is minimising its free
energy [29]. Although the ergodic density exists, it cannot be computed explicitly by the system, because
this would require access to external states that are hidden to the internal states. However, it is possible to
use an alternative formulation that allows a description of the flow in terms of a gradient descent based on
the variational free energy associated with a generative model of the system in question [21]:

fulsa,w) = (Qu — L)V F
fa(s,a,1) = (Qq — [L)VoF (5)
F(S, a, IJ') = Eq(L(x)> - H(Q(¢)|H>

Here, the flow of internal and active states constitutes a gradient on variational free energy, which is a
function of states that are available to the system. This follows because free energy depends on a
variational density q(y|w)over external states that is parameterised by internal states, and a generative
model p(y, s, a, u|m), which is the system itself [21].

Under this formulation of density dynamics, internal states will appear to infer external states. The third
equality expresses free energy as the self-information (i.e., negative log evidence for the model) expected
under the variational density minus the entropy of the variational density. This means that internal and
active states maximise the joint probability density — expected under the variational density — over states
conditioned on the system or model in question. Moreover, internal states will also reduce free energy by
parameterising a variational density over external states with maximum entropy, in accordance with
Jaynes’ principle of maximum entropy [30]. Although not our focus here, the variational density becomes
the posterior distribution of hidden or external states, given blanket states, when variational free energy is
minimised. In this sense, the internal states encode posterior ‘beliefs’ about external states; despite never
seeing them directly.

The free energy formulation of a system’s dynamics allows us to prescribe the ergodic density in terms of a
generative model. In other words, we could write down some equations of motion and interpret the
resulting ergodic density as the surprise associated with an unknown generative model (the top-down
approach). Alternatively, we can write down a generative model and derive the dynamics according to
Equation (5) as a gradient descent on the free energy equivalent of surprise. In what follows, we will
simulate self-organisation by specifying a model about the causes of the system’s sensory states — and by
specifying the environmental dynamics generating those sensations.

This means we need to write down the generative model p(1, s, a, u|m) of the system in terms of the
dynamics fy,(¥,s,a) and  fs(i,s,a) of the environment and how sensory states are generated.
Interestingly, the generative process and model do not have to be isomorphic: the generative model has
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only to approximate the generative process to minimise free energy. The generative model is usually
expressed in terms of random differential equations and nonlinear functions with a hierarchical form (in
this paper, we will only need to specify nonlinear functions):

s = gD D) + oW
P = gD (p@) 4 @ (6)

Under Gaussian assumptions about random fluctuations w, these nonlinear functions prescribe the
likelihood and priors over external states, from which the Lagrangian is recovered

L(x) = —Inp(¥,s,a, ulm) 1
= —Inp(s,a@ ufyp™®) —Inp(p[yp®)
p(s, 0 u[p®) = N(g@(p®), 1D) } (7)

Inp(p®PY®@) = N(g@(p@),1®) J

Here, IT™ corresponds to the precision or inverse variance of the random fluctuations. In what follows we
integrate Equation (5) using the Matlab routine spm_ADEM.m in the SPM open source academic software.
This generalised filtering or integration scheme uses the Laplace assumption to specify the (Gaussian) form
of the variational density, and can be regarded as a generalised Bayesian filter. This follows because the
variational density g(1|) over external states approximates the posterior density p(¥|s, a, w), as noted
above. See [24] and [13] for details.

In summary, we will use a standard (generalised) Bayesian filtering scheme to simulate self-organisation
within a random dynamical system. Using a Bayesian filtering scheme means that we get the requisite
partition into external, sensory, internal and active states for free. Furthermore, we can specify the form of
the ergodic or nonequilibrium steady-state density in terms of a Lagrangian — by formulating the flow of
internal and active states in terms of variational free energy — that can be specified in terms of a generative
model. The question now is: what sort of model leads to hierarchical self-organisation?

4. Self-organisation of an ensemble

In what follows, we present two sets of simulations. The first considers the self-organisation of ensemble of
cells, where each cell possesses its own Markov blanket. The second simulations consider ensembles of
ensembles to illustrate hierarchical self-organisation; namely, the self-assembly of Markov blankets of
Markov blankets of Markov blankets. Crucial to these simulations is the use of simple generative models,
embodying the prior ‘belief’ that each member plays the role of an internal, active or sensory state within
the ensemble. In other words, Markov blankets at one level of organisation possess prior ‘beliefs’ there is a
Markov blanket partition at the level above. This is easy to specify because each role just depends upon the
influences each member of the ensemble can or cannot exert on the others. Furthermore, the only hidden
state each member needs to infer is which role it plays at the higher level. We will see that this minimal set
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of prior beliefs (and subsequent self-evidencing) results in the formation of Markov blankets within the
ensemble. The ensuing self-similar organisation can, in principle, be extended to any number of hierarchical
levels. We will illustrate this below using 16 cells, each with their own Markov blanket, that organise into a
cellular group or assembly, with its own Markov blanket. We then consider an ensemble of ensembles that
organises itself into a little organ encompassed in another Markov blanket.

The first simulation illustrates the self-organisation of an ensemble or multi-agent system. Each component
(e.g. cell) interacts with other cells; in a process that eventually leads to a stable configuration with a
boundary separating internal cells from their external milieu. This simulation draws on previous work that
simulated morphogenesis [21]. In this setting, self-organisation was simulated by minimising the variational
free energy of each cell until they attained a prescribed morphology. This morphology was achieved
through spatially dependent (e.g. chemical) signalling — so that every cell sensed every other cell in a way
that was consistent with their generative models. The morphology was inscribed in beliefs common to all
cells, about cell identity, sensation and secretion. Each cell was interpreted as a Markov blanket
surrounding internal states: the action (active states) of a cell was the cause (i.e., external states) of the
sensations (i.e., sensory states) of the remaining cells. At the beginning of pattern-formation, cells were
undifferentiated, because they were uncertain about their identity in the target morphology. As self-
organisation unfolded, each sub-system inferred a unique identity, location and what they should sense at
that location. When every cell was in the right place, these inferences were fulfilled; thereby minimising the
free energy (i.e., self information or surprise) of every cell.

In more detail, this inference — in analogy to intracellular cascade signalling and epigenetic mechanisms —
was driven by the minimisation of free energy. By generating identity-dependent predictions (e.g. genetic
and epigenetic expression) about sensations, every cell moved around and generated extracellular signals
until its predictions were confirmed. Predictions about sensations caused by the other (e.g. extracellular
signalling) and its own action (e.g. secretion and position) were dictated by prior beliefs (in the generative
model) about the role of each cell in the target morphology. These prior beliefs were the same for every
cell (c.f., pluripotential or stem cells). In other words, based on its identity, each cell had particular
expectations about its sensory states. Because sensations were caused by other cells, surprise could only be
minimised when every member of the ensemble had inferred a unique role within the ensemble. In short,
priors established a point attractor for the ensemble dynamics, in terms of a free energy minimum.

In the present work, we use the same strategy: we simulate self-organisation of a multi-agent system,
whose components — coupled through spatially decaying (e.g. chemical) signals — minimise variational free
energy, based on a generative model describing how causes generate sensations. Again, as the external
states of each component are the active states of other cells, the system organises in a pattern that enables
each cell to predict signals from its companions as precisely as possible. However, in the current
simulations, the prior beliefs were much simpler: they specify signalling and three possible types of cell, so
that each cell only had to infer what type of cell it was. This means that there are no target positions or
target morphology. The only prior constraints are beliefs about the intracellular and extracellular
sensations for the three cell types. Crucially, these priors conform to the conditional dependencies and
independencies entailed by a Markov blanket: active cells can sense and be sensed by both sensory and
internal states, whereas sensory and internal states that do not interact.

From the perspective of the ensemble as a whole there are no external states, which would interact only
with sensory states. This is an important point, because self-organisation is auto-referential here — as it
does not require coupling with an external environment. The ensuing self organisation leads to a spatial
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pattern, wherein components of the system are organised in a predictable fashion. Such a pattern is
inscribed in the (e.g., genetically encoded) expectations about sensations of the components of the system.
More precisely, priors specify the form of the generative model, which corresponds to the free energy
landscape, thus defining the sets of attracting states towards which the dynamics of the single components
converge [21]. In short, priors of a model dictate how the system self-organises, granted that such a model
leads to prediction error minimisation.

Table 2. Prior beliefs characterising Markovian dependencies and independencies

L a s
1 0 0 .
PY=0 1 o Each state secretes one of the three types of signal.
0 0 1
L1 10 Sensory states can interact with active states; active states can interact with
Pg=a 1 1 1 internal and sensory states; sensory states can interact with active states.
0 1 1
S
Every state communicates with conspecifics.

We now describe our simulation setup. The system comprised sixteen cells, which can become one of three
types of cells that play the role of states at the next hierarchical level; namely, internal, active and sensory
states. Each cell type (believes it will) secrete a unique chemical signal and communicate according to the
conditional independencies required by a Markov blanket (see Table 2). The external states of each cell
comprised its location 1, € R? and the chemical signals Yy, € R3 released. This can be expressed as

y

v=lil=le .

For simplicity, the location and signalling were also taken to be the active states of any given cell. Its
sensory states are the sensed intracellular (produced by itself) and extracellular (produced by other cells)
signals. The latter is a function of distance, as we assume concentrations of secreted chemicals decreased
exponentially over space. This can be expressed as

s=[o]= [a(wf,ywy)] to ©

Here, the sensory noise @ had a high precision of exp(16). The sensed extracellular signals are returned
by the function a(iy, 1), which accounts for the spatial decay of chemicals; where the extracellular
sensations of the /™ cell are given by

si = a;(Yi,y)) = 3 exp(=|wi — i) v (10)
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Here, j indexes all cells other than the i agent. Each cell generates predictions based on the same
generative model, which specifies the mapping from hidden states — namely, the type of the cell ¥; — to
sensations. The type is then the only hidden state that the cells have to infer, which is parameterised by
their internal states p;. Based on beliefs about its type, each cell then generates predictions about
intracellular and extracellular sensations:

g =[] ot

_exp(py)
o) = S ot

(11)

Here, p, and p,, are prior beliefs about secretion and sensation given the type of cell (see Table 2), while
o(l;) is a softmax function that returns the expectations about the cells type. The resulting dynamics of
internal and active states of each cell (suppressing higher order terms for clarity) can be expressed as
follows:

fu(3,a,1) = (Qu — [V, F = Dji — Vgé - TWg — 1D
fa(gJ a—; ﬁ) = (Qa - Fa)VdF = —Vag . 17(1)5
=
(y = Vi, 1%, . (12)
ay = _”3(11)53/
€= [83’] = [Sy Dy 0(”)]
€a Sa — Pa "0 (W) J

Here ¢ = s — g(p) is called a prediction error, and 11 s the precision (with a log precision of minus four)
of a Gaussian prior over internal states that parameterise posterior ‘beliefs’ about external states. The ~
notation denotes generalised motion: see [3]. Equation 12 shows that internal and active states minimise
(variational) free energy. Under the Laplace assumption, this effectively reduces to prediction error
minimisation. Thus, internal and active states perform a descent on prediction error gradients [14]. Under
these equations of motion, cells infer their identity based on sensations, while secreting according to their
role as the ensemble evolves. At the same time, cells move to reach a position where extracellular inputs
can be best predicted.

The results of an exemplar simulation are summarised in Figure 3. Self-organisation leads the ensemble to
assume another cell-like morphology with internal cells in the middle, encircled by active cells, surrounded
in turn by sensory cells. Because there are no prior beliefs either about the location or about the number of
cells per type, this pattern constitutes an emergent property. This is because the prior beliefs define
(statistical) coupling among members of the ensemble, while leaving its topology unspecified. In other
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words, the final morphology of the ensemble is an emergent property of the spatially dependent
interactions among agents and conditional independencies consistent with a Markov blanket. Crucially, the
ensuing self-organisation produces a spatial structure that resembles the most elementary biological unity
—a cell. In short, the cell-like organisation of the ensemble emerges from intracellular signalling in a way
that does not require any morphological priors. These results therefore support the idea that (e.g., genetic)
beliefs entailed by a Markov blanket are sufficient for the emergence of structures with statistical
boundaries that distinguish internal states from the external milieu. In turn, this suggests that priors that
embody Markovian dependencies may play an essential role in the self-organisation of biological systems.

Self-organisation

!
p
b 1 4

Figure 3. Self-organisation at a particular level. This figure illustrates the (final stage of) self-
organisation of an ensemble comprising sixteen ‘cells’, whose internal and active equations of
motion describe a gradient descent on prediction error, relative to sensory states expected by
each member of the ensemble. Every member is endowed with the same prior beliefs about
what they should signal and sense, depending upon their type (which has to be inferred on the
basis of what they sense). These priors ultimately prescribe a point attractor for the dynamics
of the ensemble. Each cell can then assume one identity or type and behave accordingly, while
moving to a location that fulfils its predictions about its extracellular signals. The emergent
morphology of the ensemble has a cell of cells form, with an internal (red) cell in the centre,
surrounded by a membrane of active (green) cells in the middle, and sensory (blue) cells on the
periphery. This is the spatial pattern that best fulfils the prior beliefs of all the constituent cells.

The simulation presented above illustrates the biological importance of Markov blankets in a simple but
plausible world where only local interactions are permitted, in which prior beliefs (e.g., a genetic code)
have learned that, in order to exist, a living system has to self-generate boundaries that separate it from —
and mediate the coupling with — its environment. As in real biological systems, the constituents interact
with each other, leading to signal cascades. The (e.g., epigenetic) signalling rests on inference about the
type or role each cell should play, where action (e.g., chemotactic signalling) realises that role. Cells then
differentiate, based upon their prior beliefs (e.g., genetic code). In essence, the ensemble reaches a steady
state characterised by an internal milieu, which exists — in virtue of assembling its own Markov blanket — as
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integral part of the system. One might imagine that genes specify Markovian affordances to produce
hierarchical structures; such as organs, tissues, organisms and so on. On this view, self-organisation is then
a recursive process that engenders, at every level, the emergence of Markov blankets.

5. Self-organisation: ensemble of ensembles

In the final set of simulations, we simulated hierarchical self-organisation in sixteen ensembles composed
of sixteen cells each. To investigate the autonomous organisation of (256) cells at two levels, every cell is
equipped with the same priors about their local and global identity, that is, they share beliefs about
possible roles at both ensemble (local) and ensemble of ensemble (global) level. Cells then can infer their
identity both at the local and global level, simultaneously. Put simply, each cell now had two sets of hidden
states — and prior beliefs — pertaining to their role at the local and global level. Crucially, these priors are
identical, and are the same as used in the previous simulation; namely, they prescribe conditional
independencies that are mandated by a Markov blanket at each level in the self-similar fashion:

l g
=)= )

Here, the superscripts denote the local (ensemble) and global (ensemble of ensemble) level. The only
additional piece of information required in this simulation is how the two levels couple to each other. For
simplicity and computational expediency, we model the microscopic dynamics (cells within an ensemble) of
only one ensemble of sixteen cells, whereas for the remaining (fifteen) ensembles, we assume that the
average behaviour conforms to the local dynamics of the simulated ensemble. This is a mean field
approximation in the sense that we discount local fluctuations within each ensemble and assume their
average behaviour is ‘seen’ by any single ensemble. This allows us to simulate the coupling of sixteen cells
of the fully simulated ensemble with other fifteen ensemble means (without simulating the other 15
ensembles explicitly). In summary, this simulation illustrates how sixteen cells self-organise in an ensemble
that in turn self-organises with other fifteen identical ensembles, while describing the coupling between
the local and global level.

In particular, for the fully simulated k™ ensemble, the global to local extracellular coupling means that it
only senses the (simulated) average of all other global signals, while the local to global coupling means that
the average over its active states informs the dynamics of the remaining ensembles. Technically, this
means:
9 _
Salz - Sa,k

1 (14)
Syk = Ay = > 27 Ayg

where { = 1:n. The first and second equalities in (14) refer to the extracellular sensing of cells and the
intracellular sensation of the ensemble, respectively. In terms of local to global coupling, as they are part of
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the same ensemble, these predictions will be congruent with each other and cells will therefore act in
concert at the global level:

9\ _ p;; g
a(w)= [p;‘?] 4C (15)

where u? is the expectation about global type for every cell in the ensemble. In summary, sixteen cells

locally self-organise in an ensemble, guided by the local priors, while interacting with the remaining fifteen
ensembles. This induces a hierarchical self-organisation and pattern formation of Markov blankets within
Markov blankets (see Figure 4). Again there are no external states for the ensemble as self-organisation is
autonomous — and leads to the emergence of a pattern where the behaviour of each component conforms
to the expectations of the others. The lower panels of Figure 4 show the evolution of subtype expectations
(i.e., differentiation) at the local (left), and global (middle) level. The lower right panel shows the
expectations of a single ensemble (the sixth) about its role at the global level. Here, the sixth ensemble is an
active state at the global level. Note the differentiation on both a local and global level;, while local
expectations about the cells’ role at the global level converge to the same type.

This simulation exemplifies the absence of a privileged point of view when describing hierarchical self-
organisation. The dynamics at every level plays the role of macroscopic states at the level below, and the
role of microscopic states at the level above. In self-organisation, interactions among microscopic states
inevitably give rise to the macroscopic states that appear to impose constraints on local dynamics. This is
formalised in synergetics, and in particular by the slaving principle, which deals with self-organisation and
pattern formation in the context of open systems far from thermodynamic equilibrium [31]. In such
systems, the fast (stable) dynamics of the microscopic patterns dissipate rapidly as a function of order
parameters, where the order parameters are a measure of the macroscopic states that emerge. The basic
phenomenology is that these order parameters enslave the dynamics at the level below, which results in an
enormous reduction of degrees of freedom. Notably, the emerging macroscopic patterns may sometimes
recapitulate microscopic patterns leading to a fractal organisation. This aspect is nicely exemplified by
ensembles of oscillators that are coupled together by their average. This generally produces macroscopic
dynamics that gives rise to a new oscillator at a larger spatial and slower time scale, while at the same time,
each nested oscillator can be regarded as a macroscopic state enslaving the level below [27]. In the same
fashion, Markov blankets — that are constituted by Markov blankets — self-organise in ensembles that
themselves form Markov blankets at a higher scale.
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Self-organisation and differentiation
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Figure 2. This figure shows the (final) results of self-organisation of an ensemble of cells, where each
constituent of the ensemble is itself a local ensemble. In this example, there are 16 cells at both the global
(higher) and local (lower) level. The upper panel shows the final disposition of the ensemble (of ensembles)
in terms of the location of cells, and their differentiation (shown in colour: internal — red, active — green and
sensory — blue). Note that there are no external states because the external states comprise the Markov
blankets of other ensembles. Here, each cell is coded with two colours. The central colour corresponds to
expectations about the type of cell in question at the local level, while the peripheral circle encodes
expectations at the global level. The key thing to observe here is the emergence of a Markov blanket at both
levels. This reflects a particular independency structure, where internal cells do not influence sensory (i.e.
surface) cells, in virtue of their separation by active cells. This separation induces conditional independence,
because of the limited range of intracellular signals (that fall off with a Gaussian function of Euclidean
distance). The lower panels show the same results in a simpler format; namely, the evolution of subtype
expectations (i.e., differentiation) at the local (left), and global (middle) level. The lower right panel shows
the expectations of a single ensemble (the sixth) about its role at the global level. Here, the sixth ensemble is
an active state. Note the differentiation on both a local and global level; while local expectations about the
cells’ role at the global level converge to the same type. In these simulations, we used a time step of two
units (of arbitrary time) and a second order variational filtering scheme (heuristically, this is a second order
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generalisation of extended Kalman filtering) with hidden states corresponding to unknown identity in terms
of cell type at the local and global level. Please main text for details.

In summary, we used the same generative model at both levels to exploit the self-similar hierarchical
structure that emerges. However, we could have used different generative models at the global and local
levels to simulate the morphogenesis of particular organelles that have a different form from their
constituent cellular ensembles. We will pursue this in future work.

6. Discussion

In this paper, we have considered a variational treatment of self-organisation. Given local interactions,
carefully crafted prior beliefs about conditional dependencies and independencies endow a system with a
point attractor comprising internal states and their Markov blanket. Moreover, applying the same priors at
any hierarchical level leads to the emergence of Markov blankets within bigger Markov blankets. A key
feature of the simulations — used in this paper — is the absence of any explicit target morphology within the
prior (e.g., genetic) beliefs of the system’s constituents. This is indeed an emergent property, which
nonetheless has an apparent top-down causal effect on the blankets below.

Such emergence provides an alternative to the reductionist view established in developmental biology. For
example, morphogenesis and development are widely supposed to be primarily guided by local interactions
among system’s components, and in particular by morphogen gradients that control gene expression; for
example, those established by the Sonic Hedgehog (Shh) protein [32] or by the group of Hox genes [33]. In
both cases, concentration gradients underwrite position-dependent differentiation of tissues in the
vertebrate’s central nervous system. In addition, Hox genes follow a colinearity rule; in that their respective
position in the chromosome parallels the sequence followed by their expression along the anterior-
posterior axis in the body. Therefore, not only can genes encode positional information but they can do so
explicitly — with a one-to-one correspondence.

On the other hand, our simulations point more towards the idea that a spatial pattern might not be
necessarily specified by local interactions and genetic positional information [34]: in the scenario above,
target morphology is a consequence of top-down constraints hence the result of interaction among nested
levels. This sort of top-down causation, whether real or simplistic, offers nonetheless an efficient way to
describe (and manipulate) self-organisation of complex systems.

The second contribution of this work is the extension of self-organising system to potentially higher and
higher hierarchical levels. As mentioned above, biological systems are — by definition — hierarchical in their
organization [6]. However, this type of complexity is not only a trait pertaining to the living domain; self-
organisation (of Markov blankets) can occur at all scales, irrespective of whether it is overtly biological or
not [3]. It is indeed possible to imagine systems in which biological organisms occupy only some levels in
the hierarchy, but Markov blankets can be found at every level; for example, consider our society and
distinct communities within it ??(Kirchhoff et al., submitted)??. Therefore, although the present simulations
are strictly anchored in the living realm — because of the genetic flavour of prior beliefs and in the way we
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have framed them — they speak to an argument that pervades potentially all possible fields of study that
concern complex, non-equilibrium (open) systems.

7. Conclusion

This work suggests that the Markov blanket is a fundamental characteristic of biological systems. Its
presence is necessary for life — as it underwrites an existential separation of the system from its
environment, while preserving its interactions. The hierarchical organisation of complex systems — like
living organisms — implies that the self-similar organisation of Markov blankets may be evident at any level
of biological structure. From the point of view of dynamical systems, Markov blankets are attractors,
attracting fast microscopic dynamics, while enforcing the emergence of macroscopic (order) parameters.
This circular causality nicely captures the self-organisation of biological systems, which evolve
autonomously from the environment in a morphology (Markov blanket) that is necessarily predisposed to a
selective coupling with external states. The natural place — where these attractors might be specified — is
the genetic code. Clearly, this is rather speculative; however, it is possible that the astonishing diversity in
the flora and fauna we witness might reflect the fact that, in a world where signals are spatially dependent,
Markov blankets are synonymous with existence.

Methods

The simulations reported in this paper can be reproduced using the open access academic software SPM
(http://www.fil.ion.ucl.ac.uk/spm/software/). The key routines are DEM_cell.m and DEM_cell_cell.m that

illustrate self-organisation of a single ensemble and ensemble of ensembles respectively.

DEM_cell.m: This demo illustrates self-organisation in an ensemble of (sixteen) cells using the same
principles described in DEM_morphogenesis, using a simpler generative model. Overall, the dynamics of
these simulations show how one can prescribe a point attractor for each constituent of an ensemble that
endows the ensemble with a point attractor to which the ensemble converges. In this example, we consider
the special case where the point attractor is itself a Markov blanket. In other words, cells come to acquire
dependencies, in terms of intracellular signalling, that conform to a simple Markov blanket with intrinsic or
internal cells, surrounded by active cells that are, in turn, surrounded by sensory cells. This organisation
rests upon intracellular signals and active inference using generalised (second-order) variational filtering. In
brief, the hidden causes driving action (migration and signalling) are expectations about cell type. These
expectations are optimised using sensory signals; namely, the signals generated by other cells. By equipping
each cell with prior beliefs about what it would sense if it was a particular cell type (i.e., internal, active or
sensory), the act (i.e., move and signal) so that they behave and infer their role in an ensemble of cells that
itself has a Markov blanket. In a DEM_cell_cell.m, we use this first-order scheme to simulate hierarchical
emergence of Markov blankets; i.e., ensembles of cells that can be one of three types at the local level;
independently of their time at the global level.
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DEM_cell_cell.m: This demo is a hierarchical extension of DEM_cell.m, where we have 16 ensembles
comprising 16 cells. Each cell has a generative model (i.e., prior beliefs) about its local and global cell type
(i.e., internal, active or sensory). Given posterior beliefs about what sort of self it is at the local and global
level, it can then predict the local and global intracellular signals it would expect to receive. The ensemble
of ensembles then converges to a point attractor; where the ensemble has a Markov blanket and each
element of the ensemble comprises a cell that is itself a Markov blanket. The focus of this simulation is how
the local level couples to the global level and vice versa. For simplicity (and computational expediency) we
only model one ensemble at the local level and assume that the remaining ensembles conform to the same
(local) dynamics. This is effectively a mean field approximation where expectations of a cell in the first
ensemble about its global type are coupled to the corresponding expectations and the ensemble level, and
vice versa. The results of this simulation are provided in the form of a movie and graph:s.
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