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Summary 9 

For stable perception of odor intensity, there must exist a neural correlate that is invariant across 10 

other parameters, such as the highly variable sniff cycle. Previous hypotheses suggest that variance 11 

in inhalation dynamics alters odor concentration profiles in the naris despite a constant 12 

environmental concentration. Using whole cell recordings in the olfactory bulb of awake mice, we 13 

directly demonstrate that rapid sniffing mimics the effect of odor concentration increase at the level 14 

of both mitral and tufted cell (MTC) firing rate responses and temporal responses. In contrast, we 15 

find that mice are capable of discriminating concentrations within short timescales despite highly 16 

variable sniffing behavior. We reason that the only way the olfactory system can differentiate 17 

between a change in sniffing and a change in concentration is to receive information about the 18 

inhalation parameters in parallel with information about the odor. While conceivably this could be 19 

achieved via corollary discharge from respiration control centres, we find that the sniff-driven 20 

activity of MTCs without odor input is informative of the kind of inhalation that just occurred, 21 

allowing rapid detection of a change in inhalation. Thus, a possible reason for sniff modulation of 22 

the early olfactory system may be to inform downstream centres of nasal flow dynamics, so that an 23 

inference can be made about environmental concentration independent of sniff variance. 24 
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For consistency of perception, sensory systems must be able to stably encode the same perceptual 25 

features across a wide range of situations. An example of this is the encoding of object size 26 

independent of object distance in the visual system (Helmholtz, 1867) – we do not perceive a giant 27 

apple when viewed at close range, and similarly we do not misperceive buildings as tiny objects when 28 

viewed from great distance. In the olfactory system, studies have looked at how odor identity may be 29 

encoded independent of odor concentration (Cleland et al., 2012; Uchida and Mainen, 2008; 30 

Wachowiak et al., 2002; Wilson et al., 2017) and sniff cycle variance (Cury and Uchida, 2010). An 31 

olfactory problem that has received less attention, however, is stable encoding of odor intensity – the 32 

perceptual correlate of odor concentration (Wojcik and Sirotin, 2014). Increasing concentration is 33 

known to affect neural activity in many ways (Mainland et al., 2014). At the level of glomerular input 34 

from olfactory sensory neurons (OSNs), increasing concentration enhances the activity of already 35 

responsive glomeruli and incorporates new glomeruli into the activity profile, overall resulting in a 36 

broadening of the spatial ‘map’ of activity (Rubin and Katz, 1999; Spors and Grinvald, 2002). Changes 37 

in spike rate are also seen at the level of the olfactory bulb output cells, mitral and tufted cells (MTCs), 38 

though this can be a more complex mixture of inhibitory and excitatory effects (Bathellier et al., 2008; 39 

Cury and Uchida, 2010; Fukunaga et al., 2012; Meredith, 1986), and is thought to be constrained via 40 

inhibitory circuits (Kato et al., 2013; Miyamichi et al., 2013; Roland et al., 2016). The perhaps more 41 

ubiquitous correlates of concentration increase, however, are temporal response changes, notably 42 

with early excitation undergoing a latency reduction in OSNs (Ghatpande and Reisert, 2011; Rospars 43 

et al., 2000), MTCs (Cang and Isaacson, 2003; Fukunaga et al., 2012; Sirotin et al., 2015), as well as in 44 

the piriform cortex (Bolding and Franks, 2017). This is thought to arise since OSNs will depolarise to 45 

threshold more quickly when the concentration profile in the naris is steeper.  46 

In awake mice, sniffing behaviour is in continual flux (Kepecs et al., 2007; Welker, 1964; Wesson et al., 47 

2008a, 2009; Youngentob et al., 1987). This might present a problem for concentration coding: firstly, 48 

changing flow will affect the number of odor molecules entering the nasal passage, altering the 49 

concentration profile in the naris despite a stable environmental concentration (Mainland and Sobel, 50 
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2006; Shusterman et al., 2017; Teghtsoonian et al., 1978). Secondly, altering the velocity of air in the 51 

naris will alter the time at which odorised air reaches the olfactory epithelium, which may disrupt the 52 

reliability of temporal coding of concentration (Shusterman et al., 2017). Despite this, previous work 53 

suggests that humans can perceive odor intensity independent of the inhalation flow rate 54 

(Teghtsoonian et al., 1978). Here, using whole cell patch recordings in awake mice, we show that faster 55 

sniffs evoke response changes identical to those caused by increasing concentration. Surprisingly 56 

however, we show that variance in sniffing has little effect on the performance of mice trained to 57 

make fine concentration discriminations. Finally, we propose that the olfactory system can make an 58 

inference about whether a response change was caused by concentration change or sniff change by 59 

encoding the parameters of sniffing on fast timescales in mitral and tufted cells, which respond to 60 

inhalation change in cell-type specific ways, allowing rapid detection of a change in sniffing. 61 

Results 62 

Changes in sniffing can mimic the effect of increased concentration on firing rate response 63 

We first wanted to determine whether the effect of sniff changes on MTC odor response could 64 

qualitatively mimic concentration changes at the level of FR change. To do this, we used whole cell 65 

recordings from identified MTCs in awake passive mice, as this allows unbiased sampling from the 66 

MTC population in terms of baseline firing rate (FR), and reliable identification of cell type based on 67 

electrophysiology (Kollo et al., 2014; Margrie et al., 2002). On each trial, mice were presented 68 

randomly with 2 s long odor stimuli calibrated to either 1% (low concentration) or 2.5% (high 69 

concentration) square pulses. On a small percentage of low concentration trials, mice also received a 70 

gentle air puff to the flank, evoking fast sniffing behavior characterised by high frequency sniffs and 71 

short inhalation duration (Fig. 1A and Supplementary Fig. 1). For all analyses in the manuscript, ‘odor 72 

onset’ (t=0) is defined as the first inhalation onset during the odor stimulus. Note that several 73 

parameters of sniffing co-vary with inhalation duration, including the sniff duration, the previous sniff 74 
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duration and the slope of the inhalation (Supplementary Fig. 2). Thus wherever we refer to ‘fast’ or 75 

‘slow’ sniffing, this will necessarily refer to variance in these multiple parameters.  76 

During recordings, it was apparent that some cells displayed overt changes in FR with the increase in 77 

concentration, and the most salient of these were increases in excitatory FR response (Fig. 1B, cell a 78 

and cell b). When comparing changes in FR evoked by concentration increase to those taking place as 79 

a result of increased sniff frequency, it was apparent that very similar changes took place (Fig. 1B).  80 

Altogether we recorded from 20 MTC pairs in such a manner, with a range of FR responses to the low 81 

concentration odorant (Fig. 1C). Comparing heat maps of the changes in FR due to increased 82 

concentration and due to increased sniff frequency revealed a very similar set of changes across the 83 

dataset (Fig. 1D), which were significantly correlated compared to shuffle controls (R = 0.63, p = 84 

5x10-19; Fig. 1E; see methods).  When taking a broad measure of the change in firing rate across the 85 

first second of the stimulus, changes in FR were significantly correlated between those resulting from 86 

concentration increase and those resulting from faster sniffing (R2 = 0.62, p = 5x10-5, n = 20; Fig. 1F).  87 

While in the output of MTCs the effect of sniffing and concentration increase were very similar, 88 

differences were seen in the subthreshold response changes, suggesting that changes in input in the 89 

two cases were not identical: increases in inhibition were generally larger for concentration increase 90 

than for faster sniffing (Supplementary Fig. 3). We suggest this could be the result of inhibitory 91 

networks which act to normalise olfactory bulb output (within limits) in the face of increased input 92 

(Kato et al., 2013; Miyamichi et al., 2013; Roland et al., 2016).  93 

Thus, while increased concentration causes greater increases in subthreshold inhibition than 94 

increased sniff frequency, the latter results in changes in the olfactory bulb output that apparently 95 

mimic those resulting from increases in concentration. 96 
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Figure 1. Sniff change and concentration change have similar effects on FR responses of MTCs  

(A) Stimulation paradigm during whole cell recordings. PID traces show response of photoionisation 

detector (magnitude proportional to odor concentration), while nasal flow traces show example sniffing 

recorded using external flow sensor for the three types of trial. Black bar and grey box shows where odor 

is on, aligned to first inhalation onset. (B) Example odor responses recorded in each stimulus condition. Vm 

traces show example responses for cell a, while PSTHs below show averaged FR responses in 250 ms time 

bins for 5 trials in each case. Bottom-most PSTHs are calculated for a different example, cell b. Error bars 

show standard deviation. All are aligned to first inhalation onset. (C) Heatmap of average FR respones for 

all cell odor pairs in the low concentration slow sniff frequency condition (LS), ordered by mean FR 

response. (D) Heatmap of FR response differences (difference between PSTHs): Concentration increase = 

HS-LS, sniff frequency increase = LF-LS. Asterisks indicate cell a and cell b examples. (E) Top: R values for 

correlation across all odor time bins as shown in D, between FR change due to concentration change and 

those due to sniff frequency change. Histogram shows R values for shuffle controls, ‘actual’ shows R value 

for real data. Bottom: as for above, but histogram showing p-values for the correlations (-log10) (F) 

Correlation between mean FR response change for concentration change (HS-LS) and sniff frequency 

change (LF-LS) across first second of odor stimulus. N = 20 cell-odor pairs. Grey lines show correlations 

calculated for 100 shuffle controls, blue line shows real correlation. 
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Faster inhalation causes temporal shifts similar to those reported for concentration 97 

increase 98 

It has been reported that increased concentration causes changes in response on finer temporal 99 

timescales, in particular the advance of excitatory bursts (Cang and Isaacson, 2003; Fukunaga et al., 100 

2012; Sirotin et al., 2015). Does a faster sniff similarly cause such temporal shifts on early timescales? 101 

To determine this, we first analysed 13 cell-odor pairs with early excitatory responses recorded in 102 

passive mice where only a single concentration stimulus (1% saturated vapour pressure) was 103 

presented to the animal across trials. Comparing the FR response over the first 250 ms for ‘fast’ sniff 104 

trials (>70th percentile peak inhalation slopes), and ‘slow’ sniff trials (<30th percentile), it was apparent 105 

that faster inhalation could cause a latency advance of the excitatory burst (Fig. 2A-B). Across all cell-106 

odor pairs, faster inhalation caused a significant latency reduction in mean response onset (latency 107 

change (fast-slow) = -16 ± 14 ms, p = 0.002 paired t-test between onsets for slow and fast inhalations; 108 

Fig. 2C). Onset latencies displayed a significant relationship with the peak firing rate during the 109 

response (R2 = 0.61, p = 0.002, n = 13; Fig. 2E), suggesting that the most strongly activated cells respond 110 

earlier. The extent of the latency reduction for fast sniffing was significantly correlated with the onset 111 

time during slow inhalation: if the response was of longer latency during slow sniffing, the latency 112 

reduction was greater (R2 = 0.46, p = 0.01, n = 13; Fig. 2D). This indicates that those cell-odor pairs 113 

showing a stable latency are likely already responding at the earliest timescale – i.e. there is a lower 114 

limit on the latency of odor response.  115 

It was previously shown in anaesthetized mice that mitral cells (MCs) undergo robust reductions in 116 

latency of excitation for concentration increase, while tufted cells (TCs) – which already respond 117 

earlier - do not (Fukunaga et al., 2012). We used sniff cycle phase preference boundaries to determine 118 

putative MC (pMC) and TC (pTC) phenotype using subthreshold activity as previously described 119 

(Fukunaga et al., 2012; Jordan et al., 2017). Examples could be found where both pMCs and pTCs 120 

underwent reductions in latency of excitation when the sniff was fast (Fig. 2A), however in general, 121 
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Figure 2. Faster inhalation causes temporal shifts similar to those reported for concentration increase 

(A) Example Vm traces, spike rasters and mean spike counts for early excitatory responses for slow inhalation 

(black) and fast inhalation (pink), for two different cell-odor pairs. The top example is from a putative mitral 

cell (pMC) and bottom example is from a putative tufted cell (pTC). Rasters are ordered (top to bottom) by 

slowest to fastest inhalation. Black bar and dotted line indicate odor onset aligned to the first inhalation 

onset. (B) Heatmaps of mean spike count for 13 cell-odor pairs showing early excitation in response to slow 

inhalation (top) and fast inhalation (middle). White dashed line indicates odor onset aligned to the first 

inhalation onset. Cell odor pairs are sorted from short to long onset latency (during slow inhalation). Bottom 

heatmap shows the difference between the two above (fast-slow). White solid and dotted line indicates 

onset latency of each cell-odor pair for slow inhalation. Blue line indicates onset latency for fast inhalation. 

(C) Histogram of onset latency changes (fast-slow) for all 13 cell-odor pairs. (D) Scatter plot to show 

relationship between onset latency for slow inhalation, and the onset change between fast and slow 

inhalation. (E) Correlation between response onset latency and peak spike count for early excitatory odor 

responses evoked by a slow sniff. Blue data comes from pTCs and red data comes from pMCs. Boxplots 

compare the two parameters for pTCs and pMCs. (F) Comparison of response onset latencies for excitatory 

responses evoked by fast and slow sniffs for pMCs and pTCs. (G) Comparison of response onset latency 

change (fast-slow sniff) for pMCs and pTCs. 
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reductions for pMCs were greater than reductions for pTCs (pMCs: latency change = -30 ± 7 ms, p = 123 

7x10-4, paired t-test, n = 5 cell-odor pairs; pTCs: latency change = -8±10 ms, p = 0.08, paired t-test, n = 124 

8 cell odor pairs; pMCs vs pTCs: p = 0.001, unpaired t-test; Fig. 2F-G), and this was largely because 125 

pTCs already tended to respond with shorter latency during slow sniffs than pMCs  (pTC onset median 126 

= 75 ms, IQR = 55-90 ms; pMC onset median = 110 ms, IQR = 80-113 ms, p = 0.13, Ranksum; Fig. 2E).  127 

Thus, the temporal shifts and cell-type specificity in the effect of faster sniffing matches that previously 128 

described for concentration increases in anaesthetized mice (Fukunaga et al., 2012). 129 

Faster inhalation mimics effect of concentration increase on latency response in the 130 

timescale of a single sniff 131 

Could the effect of sniffing on latency directly mimic concentration effects at this timescale? When 132 

comparing high and low concentration stimuli over the first 250 ms in MTC recordings from passive 133 

mice (dataset as in Fig. 1), the only salient changes in response to increased concentration were 134 

latency advances of excitatory burst stimuli (Fig. 3A and B). When correlating changes in spike count 135 

as before (Fig. 1E) between those occurring for sniff change and those occurring for concentration 136 

change, there was a highly significant positive correlation between the two (R = 0.71, p = 4x10-72, n = 137 

525 time bins; Fig. 3C). Latency reductions for concentration increase were similar in magnitude to 138 

those seen due to sniff change (Fig. 3D, mean onset advance = -18±10ms, p = 0.04, n = 4 paired t-test 139 

between onsets for low and high concentration), and similar to those previously reported (Sirotin et 140 

al., 2015). This latency change contributed to the entirety of the discriminability of the two different 141 

concentrations on this timescale, with the Euclidean distance between the two dropping to baseline 142 

if the excitatory bursts were manually shifted forward for the low concentration (Fig. 3E, ‘slow sniff’ 143 

vs ‘slow sniff adv.’, see methods). Faster inhalations during low concentration trials mimicked the 144 

latency shifts caused by concentration increase, rendering the high and low concentration stimuli 145 

indistinguishable (Fig. 3E, ‘slow sniff’ vs ‘fast sniff). Registering spikes to sniff cycle phase revealed 146 
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147 

a potential increase in the ability to detect changes in concentration despite changes in sniffing 148 

(Supplementary Fig. 4; supplementary information), suggesting that the OB may require information 149 

 

Figure 3. Inhalation change and concentration change cause similar temporal effects on early responses.  

(A) Example traces and mean spike counts for early excitatory responses. Black shows response at low 

concentration evoked by slow inhalation, pink shows response at low concentration evoked by fast 

inhalation, and green shows response for high concentration evoked by slow inhalation. (B) Left: Heatmap 

to show early spike counts of all 20 cell-odor pairs recorded for low concentration and slow inhalation. Cell-

odor pairs are sorted by the mean spike count during odor, from low to high. Middle: Heatmap to show 

difference in spike counts between high concentration and low concentration (evoked by slow inhalation). 

Left: heatmap to show difference in spike count between fast inhalation and slow inhalation (low 

concentration stimulus). (C) Top: R values for correlation across all odor time bins as shown in B, between 

spike count change due to concentration increase and due to faster inhalation. Histogram shows R values 

for shuffle controls, red bars show R value for real data. Bottom: as for above, but histogram showing p-

values for the correlations (-log10). (D) Histogram to show response onset changes due to concentration 

increase. Errorbar in green shows mean and SD of this data, and in pink shows the distribution of changes as 

in panel C for comparison. (E) Euclidean distance between population spike count response vectors for high 

and low concentration (where data came from slow inhalation trials; ‘slow sniff’, solid cyan), for high 

concentration and time-shifted low concentration (‘slow sniff adv.’; where excitatory latency changes due 

to concentration change were undone via time shifting of the data; dotted cyan), and for high concentration 

and low concentration where low concentration data came from fast inhalation trials (‘fast sniff’; solid 

purple). 
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about sniff parameters in order to determine the concentration. Thus, even on short timescales, a 150 

more rapid inhalation mimics concentration increases at the level of the olfactory bulb output. 151 

Mice can successfully discriminate concentrations on rapid timescales 152 

Rodents have previously demonstrated the ability to discriminate odor concentrations (Abraham et 153 

al., 2004; Parthasarathy and Bhalla, 2013; Slotnick and Ptak, 1977; Wojcik and Sirotin, 2014). Given 154 

the physiology (Fig. 1-3), and that sniff parameters are constantly varying in awake mice (Wachowiak, 155 

2011), we next sought to determine the capabilities of mice to distinguish odor concentrations in a 156 

simple head-fixed go/no-go paradigm (Fig. 4A-C), despite variance in sniffing.  157 

First, mice were trained to simply distinguish high (3%) versus low (1%) concentration stimuli. 3 mice 158 

were trained with the low concentration stimulus as the CS+ (‘Low go’), and 5 mice were trained with 159 

high concentration as the CS+ (‘High go’). After pre-training (Supplementary Fig. 5A), all mice learned 160 

the distinction within a single training session (Fig. 4D; 85 ± 19 trials to 80% correct, n = 8). Mice also 161 

made rapid decisions based on concentration: analysis of the reaction time of mice based on lick 162 

probability showed that mice could perform the task successfully within as low as 200 ms (Fig. 4E, 163 

median = 300 ms, range = 200 to 1050 ms, see methods). Similarly, using divergence of sniffing 164 

behavior between CS+ and CS- stimuli (see methods), reaction times could be estimated at 214 ± 60 165 

ms, and as low as 160 ms (Fig. 4F) - in every case the first exhalation already showing a significant 166 

difference between CS+ and CS- stimuli. Thus mice can make decisions about concentration on the 167 

timescale of a single inhalation.  168 

Mice were not using flow changes from the olfactometer output to make the discrimination, as our 169 

olfactometer design keeps flow from odor outlet constant (Fig. 4G). Secondly, trigeminal stimulation 170 

was likely not being used since mice subsequently learned to discriminate the same concentrations of 171 

vanillin (an odor which is thought not to stimulate trigeminal afferents – Frasnelli et al., 2011), within 172 

a significantly shorter timeframe (16 ± 14 trials to criterion, p = 0.001, paired t-test, n = 6 mice, Fig. 173 

4H), suggesting they may generalise the ’task rule’ for concentrations across 174 
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Figure 4. Mice rapidly learn to discriminate concentrations on fast timescales.  

(A) Diagram of head-fixed behaviour (B) Average PID traces for concentration go/no-go stimuli. Shaded 

area shows standard deviation. (C) Concentration go/no-go task sequence. (D) Left: average learning curve 

for 8 mice.  Percentage correct is calculated as a moving average over 5 CS+ and 5 CS- trials. Shaded area 

indicates SD. Right: distribution of learning times to criterion (4 successive learning curve points at or above 

80% correct). (E) Left: example to show calculation of reaction time from lick behaviour. Rasters of licking 

during criterion performance are shown for CS+ and CS-. A difference in mean lick count over time is then 

calculated (bottom) and lick reaction time (RT) is determined where this difference first exceeds 2 SDs of 

the baseline difference. Red dotted line indicates RT calculated for this mouse. Right: distribution of lick 

RTs calculated in this way. (F) Left: example sniff traces for CS+ and CS- during driterion performance. Prior 

to licking mice show rapid sniff bouts such that RT may be determined earlier using divergence of sniff 

waveforms (see methods). Red dotted line indicates RT calculated for this mouse. Right: distribution of RTs 

calculated using sniff time divergence. (G) Mean flow change recorded 1 mm from olfactometer output 

for high concentration stimulus (red) and low concentration stimulus (blue). Average of 10 trials; shaded 

area shows standard deviation. Y scale bar is compared to that of nasal flow traces recorded in the same 

manner to demonstrate the negligible nature of flow change from the olfactometer. (H) Learning curves 

for an example mouse for 2-concentration discrimination, first for the odor mixture (in black) and 

subsequently for vanillin (yellow). Right hand plot compares the number of trials to criterion for the initial 

mixture and vanillin for each mouse. (J) Plots to compare RTs as estimated from lick behaviour (right) and 

sniff behaviour (left) for the mixture stimulus and vanillin for all where a reaction time was calculable. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 6, 2017. ; https://doi.org/10.1101/226969doi: bioRxiv preprint 

https://doi.org/10.1101/226969


12 
 

different odors. Moreover, reaction times for vanillin were not significantly different than for the 176 

mixture (licking RT: p = 0.46, paired t-test, n = 6; sniffing RT: 237 ± 45 ms, p = 0.5, unpaired t-test; Fig. 177 

4J).  Finally, learning in the task was likely the result of acquiring the response to the stimulus rather 178 

than learning how to perceive the difference in concentration, since on the very first presentation of 179 

the CS- concentration after pre-training on the CS+ concentration, mice typically displayed a rapid 180 

sniffing response (Supplementary Fig. 5B) classically associated with novel odor identity (Roland et al., 181 

2016; Verhagen et al., 2007; Wesson et al., 2008b). 182 

Thus, mice can very rapidly make decisions based on relatively modest concentration differences 183 

within the timescale of a single sniff, comparing very well to their abilities in odor identity tasks 184 

(Resulaj and Rinberg, 2015; Uchida and Mainen, 2003; Wesson et al., 2008b).  185 

Variance in sniffing has no overt impact on performance in a fine concentration 186 

discrimination task  187 

To determine whether sniff variation impacts the concentration decisions of mice, 7 trained mice were 188 

advanced on to a 5-concentration task.  Here, three new intermediate concentrations between the 189 

two previously learned concentrations were presented (Fig. 5A). The concentration most similar to 190 

the learned CS+ was rewarded as a CS+, while the other two concentrations, including one exactly 191 

halfway between the previously learned concentrations, were treated as CS- (Fig. 5A). 2-3 sessions of 192 

200 trials were performed on this task, over which mice generally performed at a high level of accuracy 193 

(Fig. 5B-C, mean percent correct across session = 75 ± 6%, n = 7 mice). Were mice learning a stable 194 

sniffing strategy to perform the task? This seems unlikely, as variance in inhalation duration of the first 195 

sniff for each mouse did not decrease over the session (if anything, a mild increase in sniff variance 196 

was observed: R = 0.72, p = 8 x 10-4, regression between block number and mean variance, n = 18 197 

blocks; Fig. 5C), and variance was significantly larger compared to passive control mice (behaving 198 

median first inhalation duration SD = 0.16 ms, IQR = 12 to 20 ms, n = 284 mouse-block pairs ; passive 199 

median SD  = 11 ms, IQR = 9 to 15 ms, n = 47 mouse-block pairs; p = 4 x 10-5, Ranksum; Fig. 5C). 200 
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Mice displayed a graded percentage of correct versus error trials across concentrations, indicating 201 

that the discrimination task was not trivial (Fig. 5B). Thus, shifts in perceived concentration should be 202 

overtly seen in the performance curves. To test this, we first separated trials according to whether the 203 

first sniff was fast (<30th percentile inhalation duration) or slow (>70th percentile) (Fig. 5D). This 204 

resulted in a comparison of trials between which the difference in the inhalation duration matched or 205 

exceeded that used in the whole cell recordings when comparing fast and slow sniff trials (Fig. 5E). 206 

Recalculating performance curves for each subset, there were no large or significant differences in the 207 

performance curves for mice performing on either contingency (Fig. 5F; p>0.01 paired t-tests). 208 

Secondly, on a small selection of trials for 5 of the mice, the puff stimulus (as used during the 209 

physiological recordings) was used to evoke fast sniffs, including the first inhalation (Fig. 5G). The 210 

mean changes in first inhalation duration evoked by this puff were again highly comparable to that 211 

used for analysis of fast and slow sniffs in the physiological data (Fig. 5H). While this had a minor but 212 

insignificant effect on error rate likely owing to distraction (percent correct: control trials = 83 ± 8%, 213 

probe trials = 77 ± 9%, p = 0.16 paired t-test, n = 5 mice), there were remarkably no gross differences 214 

in the performance curves compared to control trials (p>0.01, paired t-tests; Fig. 5J). Finally, when 215 

separating trials for each concentration according to the response of the mouse (either ‘go’ or ‘no 216 

go’), there was no overt differences in first inhalation between go and no-go trials ( Supplementary 217 

Fig. 6). 218 

Given that we have only considered the first sniff cycle, it is possible that mice take another sniff prior 219 

to making a decision if the initial sniff was fast and gave rise to ambiguity about concentration. This 220 

would be reflected in longer reaction times for fast compared to slow first sniff trials. Comparing trials 221 
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Figure 5. Variance in inhalation has no overt impact on concentration discrimination performance. 

(A) Diagram to show average PID traces for the 5 different concentrations and contingency schemes. 

Shaded area shows SD. (B) Top:  Mean lick counts averaged across mice for the 5 different concentrations 

(darkest = strongest) for both ‘high go’ and ‘low go’ contingencies. Black bar indicates odor stimulus, and 

blue bar indicates response period. Bottom: average go rate (percentage of trials with a go response) 

across mice for all 5 concentrations. (C) Top: average % correct across all sessions of the 5 concentration 

discrimination task (n = 17 mouse-session pairs). Shaded area shows standard deviation. Bottom: mean 

standard deviation (SD) for first inhalation duration (ms) across 17 mouse-session pairs calculated for each 

10-trial block of a session. Two grey points ‘P’ represent the same data but for 2 blocks in passively exposed 

mice (n = 26 mice).  Error bars = SD.  (D) Example histogram of inhalation durations of the first sniff during 

an odor stimulus across trials for one mouse. Data for each mouse is partitioned into fast inhalations (30th 

percentile, red), slow inhalations (>70th percentile, blue), and other (grey). Example representative nasal 

flow waveforms for a single sniff of each subset are shown. (E) Comparison of changes in the first 

inhalation between physiology and behavioural experiment. Black (‘phys.’) shows distribution of mean 

change used for analysis of odor responses for 20 cell-odor pairs recorded in passive mice (as in Fig. 3). 

Red (‘FvsM’) shows mean difference between red and grey sections of the inhalation distribution as in 

panel D for all mice and concentrations (n = 7 mice x 5 concentrations); Purple ‘FvsS’ shows the same as 

for ‘FvsM’, but shows mean difference between red and blue sections of the inhalation duration 

distribution as in panel D. Continued on next page… 
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with fast and slow inhalations as above (Fig. 5D), reaction times (calculated between highest and 223 

lowest concentration) were not significantly different (Δreaction time fast-slow = -30 ± 105 ms, p = 224 

0.53, paired t-test, n = 7, Fig. 5K). Similarly, reaction times were unaffected by the puff stimulus as 225 

compared to control trials (Δreaction time probe-control = 30 ± 166 ms, p = 0.96, paired t-test, n = 5, 226 

Fig. 5L). This was also the case for finer concentration discrimination (Supplementary Fig. 6D and E). 227 

Thus, mice were not using larger amounts of information to make their decisions when sniffs were 228 

fast.  229 

Reductions of inhalation duration of 10-20 ms rendered 1% and 2.5% concentrations indiscriminable 230 

within MTC responses (Fig. 3E-K). Here we are comparing similar and even larger reductions in 231 

inhalation duration, yet behaviourally the ability to discriminate concentration shows no dramatic 232 

differences, congruent with the recent findings in rats for a different task (Shusterman et al., 2017). 233 

Thus, variable sniffing appears to have no overt negative impact on concentration perception.  234 

Mitral and tufted cells respond to inhalation changes in cell type specific ways 235 

We have so far shown that it is difficult to distinguish the effect of a change in inhalation or a change 236 

in concentration via their effects on MTC responses (Fig. 1-3), yet mice are perfectly capable of fine 237 

concentration discrimination in the face of fluctuating inhalations (Fig. 5). We thus conjecture that the 238 

(F) Go rate as a function of concentration when splitting trials according to duration of first inhalation as in 

D. Dotted line shows mean go rate for sniffs with inhalation between 30th and 70th percentile. (G) Example 

sniff traces for one animal for a puff trial (a trial in which an air puff to the flank was used to evoke fast 

sniffing) and an adjacent control trial of the same odor. (H) Comparison of changes in mean first inhalation 

duration for physiological analysis (Fig. 3, n = 20) and for puff vs control trials during behaviour (n = 7 mice 

x 5 concentrations). (J) Mean go rate as a function of concentration across mice for puff trials (green) vs 

control trials (black). (K) Average difference in lick-histograms between CS+ and CS- (highest vs lowest 

concentration) averaged across all 7 mice for slow sniff trials (blue data) and fast sniff trials (red data) 

partitioned as in panel D. Shaded area indicates SD. Black bar indicates odor stimulus, and blue bar indicates 

response period. Right plot shows difference in reaction times as measured by licking for fast and slow sniff 

trials for all 7 mice. (L) As for panel K, but now comparing lick distributions and reaction times between puff 

trials and control trials.  
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olfactory system requires information about the kind of inhalation that just occurred to infer whether 239 

concentration or sniffing evoked the response change. This could either be achieved through an 240 

efference copy of the sniffing control signal, or reafference (the sensory result of the sniff motor 241 

command). Congruent with the latter idea, OSNs have been demonstrated to respond to pressure 242 

changes (Grosmaitre et al., 2007), giving rise to sniff coupling in the olfactory bulb (Adrian, 1950; Cang 243 

and Isaacson, 2003; Fukunaga et al., 2012; Macrides and Chorover, 1972; Margrie and Schaefer, 2003), 244 

which disappears with naris occlusion (Margrie and Schaefer, 2003). We thus wanted to determine 245 

whether the olfactory bulb reports changes in single sniffs on a short timescale.  246 

We took baseline activity in absence of odor as a proxy for the large portion of mitral and tufted cells 247 

which will not be responsive to an odor, whose activity could instead be used to directly determine 248 

the kind of sniff that took place. To do this we analysed the cellular activity of 45 MTCs recorded in 249 

passive mice across over 1000-2000 sniffs occurring in absence of the odor. Sniffs were categorised 250 

according to inhalation duration, and peristimulus time histograms and average membrane potential 251 

waveforms were calculated over 250 ms triggered by inhalation onset for each subset (Fig. 6A-C). We 252 

found that individual mitral and tufted cells would show linear transformations in their activity 253 

according to the duration of the inhalation just occurring. For example, some cells showed increased 254 

spike count (Fig. 6A1-B1) and depolarising membrane potential (Fig. 6C1) as inhalations became faster, 255 

while others showed decreasing spike count (Fig. 6A2-B2) and more hyperpolarising membrane 256 

potential (Fig. 6C2). 24% of cells showed significant relationships between spike count and inhalation 257 

duration (p<0.01, linear regression; Fig. 6D) compared to only 3% in shuffle controls. R2 for the actual 258 

correlations were also significantly higher than for shuffle controls (actual R2 median = 0.54, IQR=0.17-259 

0.82; shuffled median=0.18, IQR=0.04-0.45, p=1x10-4, Ranksum, n=41 vs 369; Fig. 6D). Similarly, 22% 260 

showed significant correlations with mean membrane potential compared to 2% of shuffle controls 261 

(p<0.0, linear regression; Fig. 6D), with R2 values for the actual data being significantly higher than for 262 

shuffled data (actual R2 median = 0.56, IQR=0.20-0.73; shuffled median=0.18, IQR=0.04-0.41, p=9x10-7, 263 

Ranksum, n=41 vs 369). Timing of activity was also often linearly correlated with inhalation 264 
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Figure 6. Inhalation duration transforms mean baseline MTC activity in a large proportion of cells.  

A1 to C1 refer to one example cell, while A2 to C2 refer to a different example cell. (A) Example nasal flow 

traces and Vm traces in absence of odor. Sniffs are colour coded according to inhalation duration (blue = 

slow, and red = fast). Black ticks indicate inhalation onset. (B) Left: Average spike count triggered by 

inhalations of different durations (denoted on each histogram). Right: mean spike count per sniff as a 

function of inhalation duration. Errorbars = standard error (SE). (C) Left: Inhalation-triggered mean 

membrane potential waveforms for sniffs of different inhalation duration. Right: mean Vm and timing of 

Vm peak for membrane potential waveforms across all sniffs as a function of inhalation duration. 

Errorbars = SE. (D) Left: Histograms of R values for correlations between inhalation duration and different 

activity variables: (from top to bottom) spike count, mean membrane potential, and the timing of peak 

membrane potential. Middle: histograms of R values between the different activity parameters and 

inhalation duration for shuffle controls (n = 10 shuffles x 45 cells). Dark bars show significant correlations. 

Right: Boxplots show comparison of actual R2 values for the correlations as compared to shuffle controls.  

Continued on next page… 
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duration, generally with the peak of the membrane potential shifting to earlier times as inhalation 266 

duration reduced (significant R values in 32% of cells vs 2% in shuffle controls (Fig. 6D); actual R2 267 

median=0.50, IQR=0.22-0.86; shuffled median=0.20, IQR=0.05-0.43, p=2x10-6). Altogether 51% of cells 268 

showed a significant relationship (p<0.01) between inhalation duration and at least one or more of 269 

these activity parameters (Fig. 6E).  270 

It has previously been suggested in anaesthetized animals that MCs and TCs are coupled to different 271 

phases of the sniff cycle, with MCs coupled to inhalation and TCs to exhalation, allowing designation 272 

of putative MC and TC phenotypes based on phase preference (Fukunaga et al., 2012) -  something 273 

which is supported by recent data from the awake mouse (Jordan et al., 2017). This divergent coupling 274 

is thought to be the result of divergent sniff-driven circuit architecture, with TCs largely driven by 275 

direct excitation and MC activity heavily modulated in parallel via feed-forward inhibition (Fukunaga 276 

et al. 2012). Since reduced inhalation duration caused cells to either depolarise (negative R values 277 

between inhalation duration and mean activity – e.g. Fig. 6A1-C1) or hyperpolarise (positive R values, 278 

e.g. Fig. 6A2-C2), we wanted to test whether this could be explained by cell type. Indeed we found 279 

cases where morphologically reconstructed cells showed correlations between certain activity 280 

parameters and inhalation duration, with polarity corresponding to cell type as predicted. For 281 

example, the tufted cell in Fig. 7A1-C1 showed significant depolarisation as inhalation duration gets 282 

shorter (increased spike count and more depolarised Vm waveform), while the mitral cell in Fig. 7A2-283 

(E) Top: Heatmap of R values for correlations between inhalation duration and 3 different activity 

parameters (spike count, mean membrane potential and timing of peak membrane potential, rows 1-3 

respectively), for 45 mitral and tufted cells. Cells are sorted left-right by largest number of significant 

correlations to lowest number. Black squares show where the correlation was insignificant (p>0.01, 

regression analysis). Two lowest heatmaps show the same data but for 2 example shuffle controls, where 

inhalation durations were shuffled with respect to the physiology, and the data re-analysed. This gives 

an indication of false positive rates in this analysis. Bottom: histogram to show proportion of cells with 

0 to 3 significant correlations between the different activity parameters and inhalation duration. Grey 

shows proportion for shuffle controls. 
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284 

D2 showed the opposite correlation, showing increasing inhibition as inhalation duration reduced. We 285 

plotted R values for these correlations as a function of sniff cycle phase preference (calculated from 286 

subthreshold activity) for all cells showing strong correlations (p<0.05, R2>0.6). Indeed, for both 287 

parameters (mean Vm and spike count), there was a significant organisation according to phase for 288 

both mean Vm (p<0.01, bootstrapping, see methods; Fig. 7D) and spike count (p<0.001; bootstrapping, 289 

see methods; Fig. 7E). Moreover, comparing R values between the phase boundaries assigned for 290 

putative MCs and TCs resulted in significant differences between the two groups in each case (mean 291 

 

Figure 7. Cell type specificity of effect of inhalation.  

(A1) Reconstructed morphology of a tufted cell recorded in awake mouse. ‘Bb’ refers to brain border, ‘EPL’ 

refers to external plexiform layer and ‘MCL’ refers to mitral cell layer (these morphologies have been 

previously published in Jordan et al. 2017 for different purposes). (B1) Example nasal flow and Vm trace 

during a rapid sniff bout (blue to purple represents slow to fast inhalation on flow trace. Spikes have been 

cropped. (C1) Mean membrane potential waveform for different bands of inhalation duration: blue = long 

inhalation duration, purple = short. (A2)-(C2) as for A1-C1, but for a filled mitral cell recorded in an awake 

mouse. (D) R values for correlations between inhalation duration and mean Vm as a function of phase 

preference. Only strong correlations have been included (p<0.05 and R2>0.6). Grey line shows mean R 

value for all cells within a 2 radian moving window (centred), to give an idea of the phase modulation 

strength of the data. Boxplots to the right compare all values within the putative MC (red) and putative 

TC (blue) phase boundaries. (E) As for panel D, but for mean spike count per sniff.  
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Vm: pMC: median = 0.93, IQR = 0.84 to 0.95, n = 6; pTC: median = -0.83, IQR = -0.96 to -0.82, n = 10; p 292 

= 0.002, Ranksum; spike count: pMC: median = 0.84, IQR = -0.88 to 0.96,  n = 22; pTC: median = -0.92, 293 

IQR = -0.94 to -0.89, n = 12; p = 0.008, Ranksum).  294 

Thus, phase locking, which likely relates to MC and TC phenotype, determines how a cell will respond 295 

to changing sniff parameters in absence of odor. Thus the large population of cells that are not directly 296 

involved with the encoding of odor information could instead be utilised to encode the parameters of 297 

each inhalation.  298 

Inhalation change can be detected and decoded from MTC spiking on rapid timescales 299 

We next sought to determine whether we could read out changes in inhalation from the spiking 300 

activity of cells in absence of odor, as a proxy for cells that are not responding directly to the odor. 301 

We first wanted to determine how rapidly a change in inhalation could be detected. For all cells with 302 

enough sniff variation (>50 sniffs in each inhalation duration category), we calculated sequences of 303 

spike histograms for different inhalation durations using random subsets of sniffs within each group 304 

(Fig. 8A; see methods). We constructed either a sequence with PSTHs calculated from three 305 

consecutive sniffs of 95 ms inhalation duration, or a sequence with PSTHs calculated from 2 306 

consecutive sniffs of 95 ms, with the last PSTH instead constructed from 55 ms inhalation duration 307 

sniffs (Fig. 8A). Using these, it was possible to determine a change in inhalation duration (95 to 55 ms 308 

inhalation duration) within only 70 ± 12ms by calculating Euclidean distances between constructed 309 

population vectors of the two different sequences (Fig. 8B see methods). Smaller changes in inhalation 310 

duration (95 to 75 ms) could also be detected on similarly rapid timescales (Supplementary Fig. 7). 311 

We next investigated whether the population activity of multiple mitral and tufted cells provides 312 

sufficient information for reliable detection of individual sniff cycles with fast and slow inhalation 313 

speeds. From 42 single-cell recordings of mitral and tufted cell activity, we constructed an emulated 314 

population spiking matrix for respiration cycles for fast (37-80 ms) and slow (96-183 ms) inhalations. 315 

After training synaptic weights from all the 42 neurons and an activation threshold, a single output 316 
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317 

neuron could achieve perfect detection performance of cycles with fast and slow inhalations (Fig. 8C 318 

see methods). Reliable discrimination (Matthews correlation coefficient of 0.90) of individual fast and 319 

slow inhalation cycles could be achieved within 130 ms after inhalation onset (Fig. 8D). 320 

Thus, even for relatively low numbers of neurons, mitral and tufted cell activity - in absence of odor 321 

input - is informative of the inhalation that just occurred, such that non-odor responsive cells could 322 

be utilised by the olfactory system to distinguish sniff changes versus concentration changes.   323 

 

Figure 8. MTC spiking activity is informative of the type of inhalation occurring 

(A) Top: diagram to show construction of sniff sequences of different inhalation duration: either three of 

95 ms inhalation duration, or two of 95 ms with the final sniff of 55 ms duration. Below: two example PSTH 

sequences averages from random subsets of sniffs that show the particular inhalation duration. Blue line 

shows the PSTH sequence for 4 sniffs of 95 ms, and purple show sequence in which the last inhalation is 

of 55ms. (B) Mean Euclidean distance calculated between population vectors constructed from the two 

sniff sequences as in panel A. Plot shows the average of 5 different subsets of data, and shaded area shows 

standard deviation. Dashed red line indicates time of significant detection of change. (C) Classification 

performance of a trained neural network for distinction of fast and slow inhalations from the emulated 

population spiking activity constructed from different numbers of MTCs (see methods for details). (D) 

Classification performance for distinction of fast and slow inhalations for the full 42 MTC spiking dataset 

as a function of the time since inhalation onset.  
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Discussion 324 

For stable perception, sensory systems must find ways of encoding of stimulus features independent 325 

of fluctuating sampling behavior. Here we show that faster sniffs can evoke response changes in the 326 

olfactory bulb that appear indistinguishable from those caused by increasing concentration (Fig. 1-3), 327 

yet mice are highly capable of perceiving concentration on fast timescales, regardless of sniffing 328 

parameters (Fig. 4-5). We reason that the only way the olfactory system can distinguish these two 329 

occurrences is via information about the kind of sniff that just occurred. This could potentially be 330 

achieved through corollary discharge from a motor circuit involved with breathing rhythms (such as 331 

the pre-bötzinger complex). However we find that single MTC activity already correlates with 332 

inhalation duration (Fig. 6), and that this is likely generated from feed-forward input in a cell type 333 

specific way (Fig. 7), allowing inference about the kind of sniff that just occurred on a rapid timescale 334 

(Fig. 8). Thus, the olfactory bulb itself does not appear to be the site where the sniff-invariant percept 335 

of intensity is generated, but does appear to already contain the information needed to generate the 336 

percept elsewhere. 337 

Given the timescale of decision making for concentration (Fig. 4), it seems likely that the information 338 

used by the mouse is the fast timescale temporal shifts in excitation that have been previously 339 

described (Cang and Isaacson, 2003; Fukunaga et al., 2012; Sirotin et al., 2015). Congruently, this 340 

temporal information contributes to the entirety of concentration discriminability on such a timescale 341 

in our dataset (Fig. 3E). It has been suggested that high baseline firing rates of MTCs could obscure 342 

such a latency code for concentration being used (Mainland et al., 2014), however this was based on 343 

a high estimation of baseline FRs from unit recordings. The whole cell recordings we employ here are 344 

thought to be unbiased in terms of baseline FRs (Kollo et al., 2014; Margrie et al., 2002; Shoham et al., 345 

2006), and discriminability of MTC responses based on latency shifts is overt (Fig. 3E). Congruently it 346 

is known that mice can perceive the latency difference in optogenetic glomerular activation on the 347 

order of tens of milliseconds (Rebello et al., 2014; Smear et al., 2013).  348 
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Sniff changes have been hypothesized to alter odor concentration profiles within the nasal cavity 349 

(Shusterman et al., 2017; Teghtsoonian et al., 1978). Here we show for the first time directly that sniff 350 

changes can indeed mimic the effect of concentration change at the level of both firing rates (Fig. 1), 351 

and temporal shifts in spike activity (Fig. 2-3). This is not to say that OSN input is perfectly matched 352 

when we compare faster sniff rates and higher concentration. In fact, since subthreshold inhibition is 353 

greater for the higher concentration (Supplementary Fig. 3), it would appear that the input strength 354 

is higher for the case of increased concentration as compared to faster sniffing. Despite this, overt 355 

changes in the spiking output are very similar for increased sniff frequency as compared to increased 356 

concentration. Potentially, inhibitory circuits are normalising the spiking output across large changes 357 

in input (within a dynamic range), such that while we see differences in subthreshold inhibition, the 358 

excitatory spike outputs look very similar. Such a role has been suggested for periglomerular neurons 359 

(Roland et al., 2016) and parvalbumin positive interneurons in the external plexiform layer (Kato et 360 

al., 2013; Miyamichi et al., 2013). 361 

It has been known for some time that the olfactory bulb is highly modulated by the sniff cycle (Adrian, 362 

1950; Cang and Isaacson, 2003; Fukunaga et al., 2012; Macrides and Chorover, 1972; Margrie and 363 

Schaefer, 2003). Since sniff modulation is more overt in anaesthetized mice and is reduced at higher 364 

sniff frequencies (Bathellier et al., 2008; Carey and Wachowiak, 2011; Kay and Laurent, 1999), the 365 

importance of sniff modulation in the awake animal may come into question. Here we find that sniff 366 

patterning of activity gives rise to linear transformations of baseline activity as inhalation parameters 367 

are changed, a feature which is widespread throughout MTCs (Fig. 6). We thus reason that a primary 368 

function of sniff modulation is to inform the olfactory system of what kind of inhalation took place, 369 

such that a change in concentration and a change in sniffing are distinguishable. Congruently we find 370 

that inhalation parameters can indeed be readily and rapidly inferred from the spiking activity of MTCs 371 

(Fig. 8).  372 
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Encoding of ‘sniff effort’ has been hypothesized previously when psychophysics showed that humans 373 

could categorise concentrations well despite large changes in inhalation flow rate (Teghtsoonian et 374 

al., 1978). Airway resistance is subject to continual changes, and even differs between the two nostrils 375 

(Principato and Ozenberger, 1970; Sobel et al., 1999), which will naturally result in varying nasal flow 376 

rates for identical respiratory motor commands. Previous work has shown that sniff modulation of the 377 

olfactory bulb is generated peripherally rather than centrally, since blocking the naris abolishes sniff 378 

modulation in the olfactory bulb (Margrie and Schaefer 2003). Thus reafference using mechanoceptive 379 

encoding of sniff pressure, rather than efference copy of the motor commands (which would require 380 

constantly updated internal models to calculate the effect on airway flow for each nostril) may be the 381 

optimal strategy for encoding inhalation parameters. This could be the reason that olfactory receptors 382 

evolved to respond to pressure changes as well as olfactory stimuli (Connelly et al., 2015; Grosmaitre 383 

et al., 2007), and indeed may comprise a feature rather than a bug in the olfactory system. 384 

Consistently, concentration perception in humans can be affected when the nostril flow rate was 385 

changed via experimenter-induced changes in airway resistance instead of volitional changes in sniff 386 

pressure (Teghtsoonian and Teghtsoonian, 1984) – i.e. only when flow rate is altered but pressure 387 

stays constant. Moreover, imaging of the olfactory cortex in humans identified a region which 388 

primarily responds to the sensory effect of sniffing in absence of odor (Sobel et al., 1998). 389 

An accompanying study intuitively suggests that the advance of odor-driven excitation as sniff 390 

frequency increases is the result of fluid dynamics in the nasal cavity (Shusterman et al., 2017). A large 391 

fraction of our cells show an advance of their baseline activity peak as the inhalation becomes faster 392 

(Fig. 6D). We could thus hypothesise that non-odor responsive MTCs within a region of the bulb can 393 

provide information about the timing of inspired air reaching the epithelium. If the inhalation becomes 394 

faster, both responsive and the much larger population of unresponsive cells show a latency reduction 395 

in their peak activity, while if concentration has increased, only the sparse odor responsive population 396 

will show this latency shift. Thus, a relative timing code could be used as a sniff-invariant 397 

representation of concentration (Supplementary Fig. 9). Exactly where and how the two kinds of 398 
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information could be integrated to form a sniff invariant representation of concentration should be 399 

the objective of future investigations, though recent evidence from the piriform cortex of awake mice 400 

already suggests that cortical interneurons sharpen the latency shifts evoked by concentration change 401 

and encode concentration via the synchronicity of ensemble firing (Bolding and Franks, 2017). It is also 402 

possible that in a mouse performing a concentration guided task, olfactory bulb physiology could be 403 

altered by top-down circuits in such a way as to generate a sniff invariant representation of 404 

concentration using information about the sniff dynamics.  405 

It is possible that at much larger sample sizes of cells than reported here, a small subpopulation of 406 

neurons capable of reporting concentration invariant across sniffs become detectable. It is also 407 

possible that we have missed activity parameters at the population level, such as spike synchrony, 408 

which could conceivably be more stable reporters of concentration in the face of fluctuating sniffs. 409 

We deem these confounds less likely since a complimentary unit recording study finds that the latency 410 

shift of excitatory response due to sniff change is widespread throughout a larger sample of MTCs 411 

(Shusterman et al., 2017).  412 

In conclusion, concentration changes in the naris can either be self-generated through changes in 413 

sniffing, or the consequence of a true change in environmental concentration, yet mice can perform 414 

sniff-invariant concentration discrimination. The olfactory bulb contains information about both the 415 

odor concentration alongside the inhalation dynamics, which together may allow inference about 416 

whether a sniff change or a concentration change occurred, overall enabling sniff-invariant 417 

concentration perception.  418 
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Methods 550 

All animal experiments were approved by the local ethics panel of the Francis Crick Institute and UK 551 

Home Office under the Animals (Scientific Procedures) Act 1986. All mice used were C57BL/6 Jax males 552 

aged between 5 and 12 weeks and were obtained by in-house breeding. All chemicals were obtained 553 

from Sigma Aldrich (Missouri, USA).  554 

Olfactometry 555 

Odorants were delivered to the animal using a custom made olfactometer as used previously (Kollo et 556 

al., 2014; Jordan et al., 2017). This consisted of 8 different odor channels connecting two manifolds, a 557 

clean air channel, and a final dilution channel carrying clean air. Air was pressure controlled at 1 Mbar 558 

with a pressure regulator (IR 1000, SMC Pneumatics, California, USA). Flow was computer controlled 559 

to each manifold such that the channel supplying the mouse provided a constant flow of 2000 sccm/N2 560 

at all times, meaning that no change in flow accompanied odor pulses. Odor pulses were calibrated to 561 

square pulses of different concentrations using a mini photo-ionisation detector (miniPID, Aurora 562 
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Scientific): briefly, pure odor was presented to the PID from an open bottle, and the maximum 563 

recorded voltage (Vmax) was assumed to represent 100% saturated vapor pressure. The pulse 564 

amplitudes were then calibrated according to this value, such that a given concentration C (% 565 

saturated vapor pressure) could be specified by attaining a square pulse of amplitude equal to 566 

C*Vmax/100.  Valves and flow controllers were controlled using custom-written LabView software. 567 

Odors applied to animals included 2 different odor mixtures (for recordings, either mixture A: Methyl 568 

salicylate, eugenol, cinnamaldehyde, creosol and 1-nonanol; or mixture B: guaiacol, valeric acid, (+)-569 

carvone, 2-phenyl ethanol and 4-allylanisol). The components of each mixture were of similar vapor 570 

pressure and proportions were adjusted according to relative vapor pressure values as previously 571 

described (Jordan et al., 2017). For behavior, either mixture A or pure vanillin odor were applied at 572 

various concentrations (Fig. 4 and 5).  573 

Surgery 574 

Sterile surgical technique was applied during all surgeries. For implantation of the head-plate, mice 575 

were anaesthetized with isoflurane in 95% oxygen (5% for induction, 1.5-3% for maintenance). Local 576 

(mepivicaine, 0.5% s.c.) and general analgesics (carprofen 5 mg/kg s.c.) were applied immediately at 577 

the onset of surgery. An incision was made dorsally above the cranium overlying the cortex and 578 

cerebellum, and periosteal tissue was removed. The surface of the bone was drilled away across the 579 

implantation surface using a dental drill, and cyanoacrylate was applied to the sutures between the 580 

cranial bones to reduce movement. A stainless steel custom head-plate was then glued to the bone 581 

surface with cyanoacrylate, and dental cement was used to reinforce the bond. For mice going on to 582 

whole cell recording, an additional chamber was constructed on the bone overlying the right olfactory 583 

bulb using dental cement. After surgery, the mice were allowed to recover for 48 hours with access to 584 

wet diet. 585 
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Whole cell recordings 586 

On the day of recording, mice were again anaesthetized with isoflurane as above, and carprofen 587 

analgesic injected (5 mg/kg s.c.). A 1 mm craniotomy was made overlying the right olfactory bulb, and 588 

the dura removed. A layer of 4% low melting point agar was then applied to the surface of the bulb, 589 

about 0.5-1 mm deep to reduce brain movement. Cortex buffer (125 mM NaCl, 5 mM KCl, 10 mM 590 

HEPES, 2 mM MgSO4, 2 mM CaCl2, 10 mM glucose) was used to fill the recording chamber. The animal 591 

would then be transferred to the recording rig, and allowed to awake from anaesthesia for 20 minutes. 592 

Whole-cell recordings were then made blindly by descending a 5-7 MΩ borosilicate glass micropipette 593 

(Hilgenberg, Malsfeld, Germany) filled with intracellular solution (130 mM KMeSO4, 10 mM HEPES, 7 594 

mM KCl, 2 mM ATP-Na, 2 mM ATP-Mg, 0.5 mM GTP, 0.05 mM EGTA, and in some cases 10 mM 595 

biocytin; pH adjusted to 7.4 with KOH, osmolarity=280 mOsm) through the agar and 180 µm into the 596 

olfactory bulb with high pressure. Here pressure was reduced, and the micropipette advanced in steps 597 

of 2 µm until a substantial and sudden increase in resistance was observed indicating proximity to a 598 

cell. Pressure was then dropped to zero or below, and a gigaohm seal attained. Whole-cell 599 

configuration was then achieved, and the membrane voltage recording made in current clamp mode. 600 

Identification of mitral and tufted cells was made using electrophysiological parameters, such as in 601 

input resistance below 150 MΩ, a resting membrane potential between -60 and -40 mV, and an after-602 

hyperpolarisation waveform conforming to MTC phenotype in an independent component analysis 603 

performed as previously (Kollo et al., 2014; Jordan et al., 2017).  604 

Altogether 14 cells were recorded in passive mice and presented with 2 different odor concentrations, 605 

as well as puff stimuli to evoke fast sniffing (Fig. 1 and 3). Some cells were presented two different 606 

odor stimuli (two different mixtures), such that there were 20 cell-odor pairs in total. Concentrations 607 

were presented in a pseudorandom order and puff stimuli occurred on a random subset of trials only 608 

for the low concentration. Puff stimuli were applied simultaneous with the odor stimuli with a gentle 609 

clean air stream to the flank. For some analyses, e.g. Fig. 2 and for Fig. 6-8, data was supplemented 610 
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with previously recorded cells from the passive mouse (Jordan et al., 2017) presented the same odor 611 

mixtures at 1% vapor pressure (n = 6 and n = 38 respectively).  612 

Behavioral task and training 613 

On day 0 (48 hours after surgery), mice with head-plates implanted would begin water restriction. On 614 

day 1, mice were habituated to the experimenter and hand-fed 0.5 ml of highly diluted sweetened 615 

condensed milk with a Pasteur pipette. On day 2, mice were habituated to head-fixation: mice were 616 

head-fixed above a treadmill and allowed access to free reward upon licking. On day 3, successfully 617 

habituated mice underwent operant conditioning with repeated presentations of CS+ concentration 618 

of the odor mixture until the mouse learned to lick in the 1 s after odor offset to receive the reward. 619 

On day 5, the CS- concentration was also presented alongside the CS+ concentration in a 620 

pseudorandom order, until the mice learned to refrain from licking to the CS-. Licking to the CS- would 621 

evoke an addition of 6 s to the inter trial interval. 5 mice were trained with high concentration stimuli 622 

as the CS+ (‘high go’), and 3 mice were trained on the reverse contingency (‘low go’). On day 6-8, mice 623 

would be presented with 5 different concentrations (3 additional concentrations spanning the range 624 

between the previously two learned concentrations), and contingencies as depicted in Fig. 5A. On day 625 

9, five mice went on to a final session: after observing criterion performance on the binary odor 626 

concentration task with the mixture as learned previously, the odor would switch to vanillin with the 627 

same contingency between concentrations. Mice were carefully monitored to maintain their body-628 

weights above 80% of their pre-restriction weight and were ensured a minimum of 1 ml water per day 629 

regardless of performance. Any mouse showing signs of distress were immediately returned to water 630 

access.  631 

Data analysis 632 

Statistics 633 

In all cases, 5-95% confidence intervals were used to determine significance unless otherwise stated. 634 

In all figures, a single asterisk denotes p<0.05, double asterisk denotes p<0.01 and a triple asterisk 635 
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denotes p<0.001. Means and error bars showing a single standard deviation either side are used in all 636 

cases for normally distributed data of equal variance. Two-sided Student’s t-tests were used for 637 

comparison of means and Bartlett tests used to compare variances, unless otherwise stated. Boxplots 638 

are used to represent any other data (data comparisons of unequal variance, or non-normally 639 

distributed data), where median is plotted as a line within a box formed from 25th (q1) and 75th (q3) 640 

percentile. Points are drawn as outliers if they are larger than q3 + 1.5 x (q3 - q1) or smaller than q1 – 641 

1.5 x (q3 - q1). For such data, Ranksum tests were used to compare the medians, and Browne-Forsythe 642 

tests used to compare variance, unless otherwise stated.  643 

Sniff parameters 644 

Using the recording of nasal flow, different sniff parameters could be extracted. First, inhalation peaks 645 

were detected using Spike2 algorithms that mark each peak above a certain threshold voltage 646 

manually defined by the user, such that all inhalations were included and no false positives were 647 

present. Inhalation onset was defined as the nearest time-point prior to inhalation peak at which the 648 

flow trace reached zero. Inhalation offset was similarly calculated as the first time point after 649 

inhalation peak where the flow trace reached zero. Inhalation duration was defined as the difference 650 

in time between inhalation onset and offset. Peak inhalation slopes were calculated by detecting the 651 

peak value of the flow waveform differential 50-0 ms prior to inhalation peak. Sniff duration was 652 

calculated as the time between subsequent inhalation onsets. Sniff frequency was calculated by taking 653 

the inverse of the mean sniff duration within the odor time period. 654 

Spike rate responses and onsets 655 

Long timescale (Fig. 1): for each cell, mean spike count was calculated in 250 ms time bins for the full 656 

2 s odor stimulus. These were then averaged across trials to generate PSTHs for low concentration 657 

and fast sniffing (5 trials of lowest mean inhalation duration), low concentration and slow sniffing (5 658 

trials with highest mean inhalation duration) and high concentration and slow sniffing. Values were 659 

quadrupled to estimate FR in Hz.  660 
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Short timescale (Fig. 2-3): for each cell, spike counts were calculated in 10 ms time bins for only the 661 

first 250 ms from odor onset (aligned to first inhalation onset). These spike counts were then averaged 662 

across trials for low concentration and fast inhalation (>70th percentile peak inhalation slope), low 663 

concentration and slow inhalation (<30th percentile inhalation slope) and high concentration and slow 664 

inhalation (<30th percentile). Onset for excitatory responses was defined at the point the mean spike 665 

count exceeded the mean + 2 SDs of the baseline spike rate in the 250 ms prior to odor onset, and 666 

remained there for at least 2 consecutive points.  667 

Vm responses 668 

To analyse subthreshold responses in absence of spiking activity, spikes and their AHPs were 669 

subtracted from the trace. This was done by first using the ‘wavemark’ tool in Spike2 to detect spikes 670 

by thresholding and matching them to a generated spike waveform template. The length of this spike 671 

waveform template was manually adjusted for each cell according to its AHP length, but was usually 672 

around -4ms to 20-30 ms post spike peak. A trace was then generated containing all detected spike 673 

waveforms connected by zero values, and this was subtracted from the original voltage trace.  674 

Correlations between response changes due to sniffing and concentration change 675 

For both long and short timescale mean FR responses, changes in FR response were calculated for 676 

sniff change (fast-slow sniffing, low concentration odor) and concentration change (high-low 677 

concentration, slow sniffing). For all cell-odor pairs across the sample, a single regression was made 678 

between FR changes for sniff change and FR changes for concentration change in the corresponding 679 

time bins, generating an actual R and p value (Fig. 1E and 3C). For shuffle controls, low concentration 680 

trials were shuffled in respect to the sniff behaviour on each trial, and the same analysis was repeated 681 

100 times.  682 

Euclidean distance analysis of concentration discriminabilty 683 

In reference to Fig. 3E and Supplementary Fig. 5G: Euclidean distance was taken across the population 684 

between mean spike counts for high concentration and low concentration (slow inhalation). This 685 
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generated a measure of discriminability between concentrations when the inhalation was slow for 686 

both concentrations. To test how much of the discriminability was due to latency shift of excitation, 687 

responses which underwent a detectable latency shift between high and low concentrations had their 688 

spike count response to low concentration manually shifted forward according to the latency shift 689 

occurring between high and low concentration. Euclidean distance was then recalculated between 690 

spike counts for high concentration and the latency-shifted spike counts at low concentration. Finally, 691 

Euclidean distances were taken between spike counts for high concentration (slow inhalation) and low 692 

concentration (fast inhalation). Time for discrimination was calculated, if possible, as the point at 693 

which the Euclidean distance exceeded the mean + 2 SDs of the baseline Euclidean distance (250 ms 694 

prior to odor onset) for at least 2 consecutive 10 ms time bins.  695 

Baseline activity correlations with inhalation duration 696 

For each cell (n = 48), 1000-2000 sniffs were analysed in absence of odor. Sniffs were categorised 697 

according to their inhalation duration, 35-45 ms, 45-55 ms, 55-65 ms and so forth. For each individual 698 

sniff, different parameters were calculated from the corresponding neural activity. Mean membrane 699 

potential was calculated from the subthreshold membrane potential occurring from 0 to 250 ms from 700 

inhalation onset. Peak membrane potential was designated as the maximum membrane potential 701 

within 30-250ms after inhalation onset, and time of the peak membrane potential was calculated at 702 

the time of this maximum membrane potential relative to inhalation onset. Spike counts were 703 

calculated by summing all action potentials occurring within the same timeframe. To calculate the 704 

correlations for each parameter, each was averaged across all sniffs within the category and regression 705 

analysis was used to generate an R and p value between the resulting average parameters and the 706 

corresponding inhalation duration (minimum of the category). For each cell, inhalation duration 707 

categories were excluded from the correlation if they contained less than 25 sniffs, and cells that had 708 

less than 5 valid categories were additionally excluded. For shuffle controls, inhalation duration was 709 

shuffled throughout the data and the regression analysis repeated 10 times per cell.  710 
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Euclidean distance analysis of detectability of sniff change 711 

For this analysis only cells with more than 50 sniffs during baseline in each category: 55-65 ms, 75-85 712 

ms and 95-105 ms inhalation duration were included. A random subset of 25 sniffs in each group were 713 

selected and spike activity within these samples were used to construct PSTHs. PSTHs were put in 714 

sequence, either 3 consecutive 95 ms inhalation duration sniffs (control sequence), or the same 715 

sequence but with the final sniff of a different inhalation duration, either 75 ms or 55 ms. Each PSTH 716 

was normalised such that the first 30 ms started at zero Hz on average. Euclidean distance across the 717 

population of these sequences were then calculated between the control sequence and sequences 718 

ending in 55 ms or 75 ms inhalation duration sniffs. Detection time for the change in inhalation 719 

duration was calculated where the Euclidean distance in the last sniff exceeded the mean + 2 SDs of 720 

the baseline Euclidean distance from the first 2 sniffs.  721 

Discriminability of slow and fast sniffs from emulated MC/TC population activity 722 

Sniff cycles from 42 recorded neurons (25 MC, 17 TC) were divided into fast (37-80 ms), medium (80-723 

96 ms) and slow (96-183 ms) cohorts. All cycles with sniff duration below the 0.5th percentile (108 724 

ms) and above the 99.5th percentile (597 ms) were discarded. All cycles with inhalation duration 725 

below the 0.5th percentile (37 ms) and above the 99.5th percentile (183 ms) were discarded. From 726 

each cell the spiking activity for 400 ms (except for Fig. 8D, where the length was varied) following the 727 

inhalation onset in a randomly chosen fast or slow inhalation cycle was combined to create emulated 728 

population spike trains (32 slow and 32 fast inhalation cycles). The emulated inhalation cycles split to 729 

a training set (22 slow and 22 fast inhalation cycles) and a test set (10 slow and 10 fast inhalation 730 

cycles). For each MC/TC neuron a postsynaptic EPSPs waveform (one sample per ms) was simulated 731 

by convolving the spike train with a normalised alpha function (amplitude=10, time constant: 10 ms, 732 

see Kollo et al. 2014). The compound EPSP of the read-out neuron was calculated as the weighted 733 

linear sum of the individual EPSP waveforms of each cell (Supplementary Fig. 8). The read-out neuron 734 

was activated if the maximum of the EPSP waveform crossed the threshold value. To find the optimal 735 

values of EPSP weights and threshold, the Nelder-Mead method was used with a logistic activation 736 
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function in the read-out neuron. Discrimination performance of fast and slow inhalation cycles was 737 

assessed on the test set with the Matthews correlation coefficient. 738 

Phase preference and putative MC and TC boundaries 739 

The theta modulation properties of each cell were calculated as previously (Fukunaga et al. 2012; 740 

Jordan et al., 2017).  Due to the high variability of sniff behaviour in awake mice, analysis was restricted 741 

to sniff cycles between 0.25 and 0.3 s in duration, where the preceding sniff cycle was also within this 742 

range. Mean Vm from the spike-subtracted Vm trace was taken as a function of sniff cycle phase for at 743 

least 150 sniffs, and this was plotted as Cartesian coordinates. The angle of the mean vector calculated 744 

by averaging these Cartesian coordinates was taken as the phase preference of the cell. To determine 745 

putative MC or TC type based on phase preference, we used the phase boundaries calculated as 746 

previously (Jordan et al. 2017).  747 

Modulation of sniff-activity relationships across phase preference 748 

In reference to Fig. 7D and E. To determine whether the sign of relationships between inhalation 749 

duration and the various activity parameters is modulated by the sniff phase preference of the cell, R 750 

values for the various correlations were plotted as a function of phase preference. Only correlations 751 

with a significant p value (<0.05) and with an R2>0.6 were included. A sliding window of 2 radians was 752 

then used to calculate the mean R value for all cells with phase preference within the window, 753 

resulting in a mean R value as a function of phase preference. The modulation strength of mean R 754 

value as a function of phase was then calculated: the plot of mean R value was normalised to the 755 

minimum value across all phases, and the result plotted as Cartesian coordinates. The length of the 756 

mean vector calculated by averaging these Cartesian coordinates was taken as the modulation 757 

strength of the R value across phase space. To determine the significance of this modulation, R values 758 

were shuffled with respect to phase preference 10000 times, and the resulting distribution of shuffled 759 

modulation strength was compared to the value for the unshuffled data.  760 
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 Learning time and reaction time 761 

Learning time: For the generation of learning curves as in Fig. 4, a moving window was used across 5 762 

consecutive CS+ and 5 consecutive CS- trials, advanced by 1 trial on each step, and a percentage 763 

correct calculated. The trial at which this reached 80% correct for 5 consecutive points was deemed 764 

the learning time.  765 

Reaction time calculations were based on 10 or more trials of 80% performance. From lick behavior: 766 

For each CS+ and CS-, lick probability was calculated in a moving time window of 100 ms, aligned to 767 

the first inhalation after final valve opening. The difference between the probability of licking for CS+ 768 

and CS- for each time window was calculated, and the leading edge of the first window at which this 769 

calculated difference significantly deviated from the values calculated from the 2 s window prior to 770 

odor onset was considered the reaction time. From sniff behavior: inhalation and exhalation duration 771 

values were calculated for CS+ and CS- as a function of sniff number from odor onset. These values 772 

were compared between those calculated for CS+ and CS- using a t-test, and the reaction time was 773 

calculated based on the first inhalation or exhalation within the series to show a significant difference. 774 
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