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Here we describe a C-SWAT library for high-throughput tagging of Saccharomyces 
cerevisiae ORFs. It consists of 5661 strains with an acceptor module inserted after each 
ORF, which can be efficiently replaced with tags or regulatory elements. We validate the 
library with targeted sequencing and demonstrate its use by tagging the yeast proteome 
with bright fluorescent proteins, determining how sequences downstream of ORFs 
influence protein expression and localizing previously undetected proteins. 

Genome-wide libraries of strains where every open reading frame (ORF) is fused to a constant tag 
are valuable resources for proteome-wide studies in Saccharomyces cerevisiae. Different libraries 
are available to assess properties such as protein localization, abundance, turnover and protein-
protein interactions for a large fraction of the yeast proteome1-6. However, construction of such 
libraries is costly and time-consuming, which hampers genome-wide endeavors with improved tags 
such as novel fluorescent proteins, tags bearing sequences for RNA detection7 or regulation of 
gene expression8. 

To overcome these limitations, we recently developed the SWAp-Tag (SWAT) approach for high-
throughput tagging of yeast ORFs and used it to N-terminally tag proteins of the endomembrane 
system9. This approach requires a one-time construction of SWAT strains where individual ORFs 
are marked with an acceptor module (Fig. 1a). New strains can be rapidly derived from SWAT 
strains using automated procedures to replace the acceptor module with practically any tag or 
regulatory element provided on a donor plasmid9 (Fig. 1a). 

To apply the SWAT approach to the whole yeast proteome, here we introduce a genome-wide 
C-SWAT library. This library enables high-throughput genome engineering at 3’ ends of yeast 
ORFs and can be used for high-throughput C-terminal protein tagging. We constructed C-SWAT 
strains using conventional PCR targeting10,11 to insert a C-SWAT acceptor module before the stop 
codon of individual ORFs at endogenous chromosomal loci (Fig. 1a). The acceptor module 
consists of homology arms (L3 and L4, for subsequent recombination with the desired tag), a 
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heterologous transcription terminator (T), a restriction site for the I-SceI endonuclease (◆ ︎), a 
selection/counter-selection marker (URA3) and a second truncated selection marker (hphΔN) 
(Fig. 1a, Supplementary Information). 

To verify correct integration of the acceptor module in each C-SWAT strain, we developed a high-
throughput targeted sequencing approach (Anchor-Seq) to sequence the junctions between the 
3’ end of each tagged ORF and the 5’ end of the acceptor module (Fig. 1b). In Anchor-Seq, 
genomic DNA is isolated from a pooled library of strains, where a different ORF is modified in each 
strain. The junctions of interest are then selectively amplified using vectorette PCR12 and subjected 
to high-throughput sequencing (Fig. 1b, S1, Supplementary Information). We performed Anchor-
Seq on pools of six replicates of the C-SWAT library, corresponding to six independent 
transformants for each ORF. In total, we obtained validated C-SWAT strains for 94% of verified or 
uncharacterized S. cerevisiae ORFs and for 238 dubious ORFs (Fig. 1c, Table S1). 

To tag ORFs with the C-SWAT library, a construct for conditional expression of the I-SceI 
endonuclease and a donor plasmid carrying the desired tag can be introduced into C-SWAT 
strains in high-throughput by automated genetic crossing with a donor strain9 (Fig. 1a, 
Supplementary Information). Three types of donor plasmids with different selection strategies can 
be used: type I for seamless replacement of the acceptor module with the tag and counter-
selection for the loss of the acceptor module, type II for selection of tagging events via 
reconstitution of the hygromycin resistance marker (hph) and type III, which introduces the tag 
together with a new selection marker (Fig. S2a). We estimated the tagging efficiency with these 
strategies using C-SWAT strains for 20 highly expressed genes. We observed an average tagging 
efficiency of ~98% with a type I donor and > 99% with the other two donor types (Fig. S2b). This 
demonstrates that the C-SWAT library can be used for high-throughput strain construction without 
the need for subsequent clonal selection. We note that for 1-4% of ORFs, endogenous repetitive 
sequences surrounding the tag integration site could interfere with seamless tagging using the 
C-SWAT approach13. 

The yeast GFP library1, in which 4159 ORFs are tagged with GFP(S65T)14, has been widely used 
to study the yeast proteome. However, since the construction of this library, various fluorescent 
proteins with improved properties have been developed. The C-SWAT library provides a platform 
to profit from these developments. We found that in yeast the green fluorescent protein 
mNeonGreen15 and the red fluorescent protein mScarlet-I16 are up to three times brighter than 
fluorescent proteins used in previous libraries1,4,9 (Fig. S3). Using the C-SWAT library, we tagged 
the yeast proteome with mNeonGreen and mScarlet-I, generating three new libraries: mNG-I 
(seamless tagging with mNeonGreen), mNG-II and mSC-II (where mNeonGreen and mScarlet-I 
are followed by a heterologous terminator) (Fig. 2a). We determined the expression levels of 
proteins tagged in these libraries using fluorescence measurements of colonies4. Over 4300 
proteins were expressed at detectable levels (> 1.2 fold above background) in each library (Fig. 2b, 
Table S2). This is consistent with the number of proteins detected with mass spectrometry in yeast 
grown under standard laboratory conditions17. Protein expression levels correlated well between 
the three libraries (Fig. S4a) and with independent estimates of protein abundance17 (Fig. S4b), 
demonstrating the reproducible and reliable nature of proteome-wide tagging with the C-SWAT 
library. 

Having libraries with seamless and non-seamless protein tags allowed us to examine how 
regulatory elements downstream of each ORF contribute to protein expression. We observed that 
protein levels were on average ~20% higher in mNG-II strains (non-seamless tagging) compared 
to mNG-I strains (seamless tagging) (Fig. 2c). Protein levels differed by more than two fold for 
~11% of the proteome, with 466 and 10 proteins exhibiting lower and higher expression in mNG-I 
strains, respectively. Moreover, the difference between mNG-I and mNG-II strains correlated with 
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the strength of the endogenous transcription terminator for each ORF18 (Spearman's rank 
correlation coefficient = 0.509, Fig. 2d). Consistent with these observations, the heterologous 
ADH1 terminator used in mNG-II and mSC-II libraries is stronger than terminator sequences of 
most yeast ORFs18. Together these results demonstrate that tagging modules with heterologous 
terminators, commonly used for C-terminal protein tagging in yeast19,20, can measurably impact 
protein expression and suggest applications of the C-SWAT library to study regulation of gene 
expression. 

We observed expression of 208 proteins in the mNG-I and mNG-II libraries that were previously 
undetected with various independent approaches17 (Fig. 3a). Compared to the entire C-SWAT 
library (Fig. 1c), this group is enriched in ORFs annotated as uncharacterized (62 ORFs) or 
dubious (i.e., unlikely to encode functional proteins based on available data, 133 ORFs). We used 
fluorescence microscopy to examine the localization of 60 such proteins. Notably, for 9 of them (5 
uncharacterized and 4 dubious ORFs) we could detect expression and a specific non-cytosolic 
localization even in mNG-I strains, where transcription is not influenced by a heterologous 
terminator (Fig. 3b, c, Table S2), suggesting that these are indeed functional proteins. With 
updates to the yeast genome annotation, 80 of 238 dubious ORFs in the C-SWAT library were 
recently reclassified as verified or uncharacterized (Table S2). We note that the reclassified and 
the remaining dubious ORFs exhibit similar expression levels when tagged with mNeonGreen 
(Fig. S4c), raising the possibility that more dubious ORFs actually encode functional proteins21. 

In conclusion, the C-SWAT library is a versatile resource for exploring the yeast genome and 
proteome. With this tool at hand, the ORFeome can be efficiently manipulated to generate libraries 
with a variety of tags for protein or RNA detection, to study regulation of gene expression or to 
explore genomic position effects. It is our hope that the simplicity and cost-effectiveness of 
C-SWAT will make construction of custom genome-wide libraries routine and facilitate systematic 
studies. 

Supplementary Information 

Supplementary Information contains Methods, Supplementary Figures and Supplementary Tables. 
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Figure 1.  Design, construction and validation of the C-SWAT library. 

(a) Outline of the C-SWAT approach. A C-SWAT acceptor module is inserted into the genome 
before the stop codon of yeast ORFs. A construct for conditional expression of the I-SceI 
endonuclease (not shown) and a donor plasmid carrying the desired tag are then introduced into 
the C-SWAT strains by transformation or genetic crossing. Upon expression, I-SceI induces double 
strand breaks (DSBs) at the indicated positions (◆) in the acceptor module and the donor plasmid. 
DSB repair by homologous recombination leads to replacement of the acceptor module by the tag. 
(b) Outline of the Anchor-Seq targeted sequencing approach. A library of strains with different 
ORFs (red) modified with a constant tag (green, e.g. C-SWAT acceptor module) is pooled. 
Vectorette adaptors are ligated to sheared genomic DNA (Fig. S1a). A primer annealing to the tag 
sequence initiates a first cycle of DNA synthesis. Synthesis extends into the adaptor, which 
creates an antisense strand complementary to the vectorette primer (Fig. S1b) and allows 
selective amplification of ORF-tag junctions. 
(c) Composition of the C-SWAT library. ORFs are classified as verified, uncharacterized or 
dubious (unlikely to encode a functional protein) according to the July 2016 annotation of the 
S. cerevisiae genome. 
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Figure 2.  High-throughput protein tagging with the C-SWAT library. 

(a) Donor plasmids used to tag the yeast proteome with mNeonGreen and mScarlet-I fluorescent 
proteins using the C-SWAT library. 
(b) Number of protein fusions detected in each library with fluorescence measurements of 
colonies. 4312, 4537 and 4301 strains in the mNG-I, mNG-II and mSC-II libraries, respectively, 
had a fluorescence signal at least 1.2 fold above background (red dashed line). 
(c) Distribution of differences in protein expression levels (strain fluorescence corrected for 
background) between mNG-I and mNG-II libraries. Median, 0.83 (red dashed line). 
(d) Correlation of endogenous transcription terminator activity for each ORF, measured in ref. 18, 
and differences in protein expression levels between mNG-I and mNG-II strains. 
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Figure 3.  Localization of previously undetected proteins. 

(a) Fluorescence levels of mNG-I strains (fold over background) expressing previously undetected 
proteins. Fluorescence measurements of the entire mNG-I library are shown for comparison. Only 
strains with fluorescence at least 1.2 fold above background were considered. 
(b, c) Fluorescence microscopy of strains from mNG-I and mNG-II libraries expressing 60 
previously undetected proteins tagged with mNeonGreen. (b) Examples of fusions with different 
subcellular localizations. The two images for each protein were acquired and processed identically. 
Scale bar, 5 µm. (c) Summary of observed subcellular localizations. ER (endoplasmic reticulum), 
cyto (cytosol), mito (mitochondria), vac (vacuole), peri (cell periphery) and nd (expression not 
detected). 
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Methods 

1. Construction of the C-SWAT library 

Acceptor module 

The acceptor module used to construct the C-SWAT library (plasmid pMaM471, Table S3) is 
composed of the following elements: 

- linker L3 (5′-cgtacgctgcaggtcgacggtggcggttctggcggtggcggatcc-3′), which contains the S3 
primer annealing site for gene tagging by PCR targeting; 

- STOP codon; 
- terminator sequence of the CYC1 gene from Saccharomyces paradoxus; 
- the recognition sequence for the I-SceI endonuclease; 
- the URA3 gene with its endogenous promoter and terminator from Saccharomyces cerevisiae; 
- hphΔN sequence coding for a C-terminal fragment (amino acids 146-342) of the hph 

(hygromycin resistance-encoding gene) marker; 
- terminator sequence of the ALG9 gene from Saccharomyces paradoxus; 
- linker L4 (5’-agttcttctttgagatatcgattgaacgagctcgaattcatcgat-3’), which contains the S2 primer 

annealing site for gene tagging by PCR targeting. 

Library background strain 

The strain BY4741 (ref. 1, Table S4), used to construct the most popular collections of yeast 
strains such as the knockout and GFP libraries2,3, was chosen as the background strain for the 
C-SWAT library. All additional elements required for the SWAT procedure (a donor plasmid and a 
construct for inducible expression of the I-SceI endonuclease) can be introduced into C-SWAT 
acceptor strains by direct transformation or by genetic crossing with the donor strain YMaM639 
(Table S4) carrying the desired donor plasmid. 

Donor strain and plasmids 

The donor strain YMaM639 was constructed using the strain Y8205 (ref. 4, Table S4). In this strain 
the leu2Δ0 locus carries the GAL1pr-NLS-I-SceI-natNT2 construct for galactose-inducible 
expression of the I-SceI endonuclease with a nuclear localization signal (NLS), which increases 
the efficiency of tag swapping. In addition, this strain also contains the can1Δ::STE2pr-SpHIS5 and 
lyp1Δ::STE3pr-LEU2 markers for selection of MATa or MATalpha haploids at the end of the 
automated genetic crossing procedure using synthetic genetic array (SGA) methodology. 

Three different template plasmids were used to construct donor plasmids (Table S3): 

- pMaM482 – type I donor template (for seamless tag swap); 
- pMaM484 – type II donor template (for tag swap with reconstitution of the hph marker); 
- pMaM496 – type III donor template (for tag swap with introduction of the kanMX6 marker). 

The backbone of donors type I and II is pRS41K (ref. 5) and pRS41 (ref. 6) for donor type III. Tags 
can be cloned into these templates e.g. via BamHI + SpeI restriction enzyme cut sites. Here we 
constructed three donors for tagging with the mNeonGreen fluorescent protein (type I/II/III: 
pYD10/11/14) and one donor for tagging with the mScarlet-I fluorescent protein (pYD13, type II 
donor) (Table S3). All plasmids and sequences are available upon request. 

Selection of ORFs and primer design 

We selected 6071 yeast open reading frames (ORFs) for tagging with the acceptor module: all 
5797 verified or uncharacterized ORFs and 274 dubious ORFs that do not overlap with any verified 
or uncharacterized ORFs (retrieved from the Saccharomyces Genome Database on July 2016). 
ORFs from the mitochondrial genome and the 2µ plasmid were not included. 

For each ORF, S2/S3 primers for PCR amplification of the tagging module were designed as 
previously described7. For 4081 ORFs, primers synthesized based on the yeast genome sequence 
from December 2009 (Saccharomyces Genome Database) were available from a previous study8. 
For the remaining 1990 ORFs, primers were designed based on the yeast genome sequence from 
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July 2016. In this second set, ORFs with identical S2 and S3 primer sequences were identified 
(e.g., HXT15 and HXT16). For such cases, only one set of primers was synthesized and assigned 
to the first ORF by alphabetical order of systematic names. This reduced the set of 1990 ORFs to 
1933. The 6014 pairs of S2/S3 primers (Table S1) were obtained from IDT (Integrated DNA 
Technologies) in 96-well format, such that each well contained a mixture of S2/S3 primers for a 
different ORF at 5 µM concentration. 

Strain construction 

The acceptor module was amplified by PCR in 96-well format using plasmid pMaM471 as template 
and ORF-specific S2/S3 primers in each well, as follows. Cooled 96-well PCR plates (4titude, 4ti-
0960) were filled with 40 µl/well of a PCR mix using a Liquidator 96 channel manual pipettor 
(Mettler Toledo): 

• 5 µl of 10x HiFi-buffer (200 mM Tris-HCl, pH 8.8; 100 mM (NH4)2SO4; 100 mM KCl; 1% (v/v) 
Triton X-100; 1 mg/ml BSA); 

• 0.5 µl of 100 mM stock of dNTPs (Bioline, BIO-39026); 
• 0.15 µl of 1 M stock MgCl2; 
• 5 µl of 5 M stock of betaine (Sigma-Aldrich, 61962); 
• 0.5 µl of template DNA (200 ng/µl stock); 
• 27.85 µl of H2O; 
• 1 µl of a high fidelity DNA polymerase (self-made)). 

A mixture of ORF-specific S2/S3 primers (10 µl of 5 µM stock) was added to each well from 96-well 
primer source plates using the 96 channel manual pipettor. The plates were sealed with aluminum 
seals (Steinbrenner Laborsysteme, SL-AM0550). PCR was then carried out in a Biometra 
TAdvance or TProfessional (Analytik Jena) using the following program: 

• 2 min at 95°C; 
• 30 cycles of 20 s at 95°C/30 s at 66°C/2 min 30 s at 72°C; 
• 5 min at 72°C; 
• incubation at 4°C. 

Frozen BY4741 competent yeast cells were prepared and transformed with PCR-amplified 
acceptor modules in 96-well plates as previously described7,8. Transformation mixtures were 
manually plated onto 9 cm petri dishes with SC-Ura agar medium (synthetic complete medium 
lacking uracil and with 2% (w/v) glucose as carbon source). After 2-3 days of incubation at 30°C, 
six clones from each transformation were manually streaked for single colonies. Single colonies 
were then grown in 96-well format in SC-Ura medium with 15% (v/v) of glycerol. The resulting six 
replicates of the C-SWAT library, one for each clone, were stored at -80°C. 

2. Library validation by targeted sequencing (Anchor-Seq) 

We developed and used Anchor-Seq to verify correct integration of the acceptor module in each 
C-SWAT strain. The validation procedure involved pooling of each replicate of the C-SWAT library, 
extraction of genomic DNA from each pool, DNA fragmentation and size selection, ligation of 
vectorette adaptors, selective amplification of junctions between the C-SWAT acceptor module and 
upstream genomic sequences, and Illumina sequencing, as detailed below. 

Each of the six C-SWAT library replicates was grown to saturation in 384-well plates (50 µl of YPD 
medium per well). For each replicate, all strains were pooled, cells were harvested by 
centrifugation, washed once and re-suspended in 10 ml ddH2O, aliquoted and stored at -80°C 
before further processing. 

Genomic DNA was extracted from each pool (300 µl sample) with YeaStar Genomic DNA 
extraction kit (Zymo-Research, #D2002) according to manufacturer’s protocol using chloroform. 
The yield and quality of extracted DNA (typically 7-10 µg) were assessed by absorbance at 260 
and 280 nm wavelengths, measured with a NanoDrop ND-1000 spectrophotometer. Genomic DNA 
(5 µg in 125 µl of 10 mM Tris-HCl, pH 8.0) was fragmented in microTUBEs (Covaris, #520045) 
using a focused ultrasonicator (Covaris, E220x) with shearing parameters set for a fragment size 
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of 800 bp (shearing time of 50 sec per tube, peak incident power of 105 watts, duty factor of 5% 
and 200 cycles per burst). 

Vectorette adaptors were then ligated to the sheared genomic DNA as follows. Single-stranded 
adaptor oligonucleotides (356-vectorette and 355-vectorette, Table S5) were individually re-
suspended in annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH pH 7.5) to 
100 µM, mixed in equal amounts in a 1.5 ml Eppendorf tube and annealed (5 min incubation at 
98°C, cooling to ~23°C in a water bath over a period of 3 h). Annealed vectorette adaptors were 
then ligated to sheared genomic DNA (1 µg) using NEBNext Ultra™ II DNA Library Prep Kit for 
Illumina (New England Biolabs, #E7645S). Ends preparation and A-T ligation were performed 
according to manufacturer’s protocol using 15 µM of vectorette adaptors. Fragment sizes of 300-
800 bp were selected by agarose gel electrophoresis (3.5% Nusieve 3:1 agarose, Lonza #50090) 
and extracted with Qiaquick gel extraction kit (Qiagen #28704) in 25 µl of 10mM Tris-HCl solution 
pH 8. 

DNA fragments containing the SWAT acceptor module were selectively amplified as follows. First, 
20 µl of purified adaptor-ligated fragments were used as input for 15 cycles of PCR with primers 
503-Tag_primer and 357-VC_primer (Table S5). The PCR product was purified with Qiaquick PCR 
purification kit (Qiagen #28104) and used as input for 15 cycles of PCR with primers 382-P5 and 
529-BC_P7 (Table S5). This set of primers added the P5 and P7 Illumina sequences and a 6 
nucleotide barcode for multiplexed sequencing. Fragment sizes were analyzed on a TapeStation 
2200 (Agilent HS D1000 ScreenTape, #5067- 5584) and typically followed a normal distribution 
peaking at 550-650 bp. In case fragments outside of 300-800 bp were present, samples underwent 
further size selection by agarose gel electrophoresis and gel extraction before Illumina sequencing. 
The outcome of selective amplification was controlled before sequencing, using quantitative PCR 
(qPCR) to compare the abundance of fragments corresponding to ORFs that were tagged in the C-
SWAT library (ERG1, ERG11 and ERV25; amplification with an ORF-specific primer and a reverse 
primer in the acceptor module (Tag-rev), Table S5 – qPCR on-target) and ORFs that were not 
tagged (ACO1, RPL30 and ASC1; amplification with two ORF-specific primers, Table S5 – qPCR 
off-target). 5 ng of each sample (before and after selective amplification) were assayed using fast 
SYBR Green master mix (Thermo Fischer Scientific #4385612). The abundance (cycle threshold 
(CT) values) of on-target and off-target sequences, before and after selective amplification, were 
determined by StepOnePlus Software v2.3 (Thermo Fischer Scientific). Enrichment was defined as 
the difference of CT values (ΔCT) and calculated as 2^(A+B), where A is the ΔCT between off- 
and on-target sequences before selective amplification, and B is the ΔΔCT for these sequences 
after selective amplification. We observed enrichments typically in the ~105-106 fold range. 

Samples were normalized to 10 nM final concentration and subjected to sequencing (Illumina 
MiSeq PE300_V3 flowcell). All six libraries were sequenced simultaneously. For demultiplexing, 
the barcodes added during the second PCR step (using primers 382-P5 and 529-BC_P7) were 
used. In order to infer which genes were tagged correctly or incorrectly, we constructed expected 
reads using the 140 bp upstream of the stop codon for each ORF. Sequencing reads were then 
searched for matches to expected reads using custom Perl scripts. Given an ORF i, the search 
detected strict matches as well as six possible frameshifts (-3, -2, -1, +1, +2, +3) and we denote 
the corresponding counts as Mi, F-3

i, F-2
i, F-1

i, F+1
i, F+2

i, F+3
i. We also recorded cases where a strict 

match was found only for the first (1-70 bp upstream of the stop codon) or second half (71-140 bp 
upstream of the stop codon) of the sequence, presumably due to mutations that occurred in the 
half not matched. The corresponding counts are X1

i (first half) and X2
i (second half). We used three 

criteria to identify correct clones: 

1 – the number of strict matches had to be above 5; 
2 – the number of strict matches had to exceed the total number of erroneous reads; 
3 – the number of partial matches could not exceed strict matches by more than 5-fold. 

That is, ORF i was considered correctly tagged if Mi > 5, Mi > (F-3
i + F-2

i + F-1
i + F+1

i + F+2
i + F+3

i), 
5*Mi > X1

i and 5*Mi > X2
i. 

In total we identified at least one correct clone for 5661 ORFs (Fig. 1c, Table S1). These clones, 
one for each ORF, were arrayed in 96-well plates forming the C-SWAT library v1.0.  
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3. Tag swap with the C-SWAT library 

Donor plasmids pMaM482, pMaM484, pYD10, pYD11, pYD13 and pYD14 (Table S3) were 
transformed into the YMaM639 donor strain. 

To test the efficiency of tag swapping (Fig. S2b), we selected 20 C-SWAT strains for highly 
expressed proteins to facilitate single-cell fluorescence measurements with flow cytometry. The 
strains were randomly selected from the first plate of the C-SWAT library, which mostly contains 
C-SWAT strains for highly expressed proteins. Strains with tagged ribosomal subunits, histones or 
corresponding to proteins expressed at less than 20000 molecules per cell9 were excluded. This 
set of 20 strains was crossed with four donor strains carrying different donor plasmids: YYD2 (type 
I mNeonGreen donor), YYD3 (type II mNeonGreen donor), YYD8 (type III mNeonGreen donor) 
and YYD6 (empty type II donor) (Table S4). 

The full C-SWAT library was crossed with the following four donor strains: YYD2 (type I 
mNeonGreen donor), YYD3 (type II mNeonGreen donor), YYD4 (type II mScarlet-I donor) and 
YYD5 (empty type I donor) (Table S4). 

Crossing and subsequent tag swapping were performed by sequentially pinning the strains on 
appropriate media using a ROTOR HDA pinning robot (Singer Instruments) in 1536-colony format 
according to the synthetic genetic array (SGA) procedure10 as follows: 

• mating of C-SWAT and donor strains on YPD plates (10 g/L yeast extract (BD Biosciences, 
212750), 20 g/L peptone (BD Biosciences, 211677), 20 g/L glucose (Merck, 108337), 20 g/L 
agar (BD Biosciences, 214010)), 1 day at 30°C; 

• selection of diploids on SC(MSG)-Ura + G-418 plates (1.7 g/L yeast nitrogen base without 
amino acids and ammonium sulfate (BD Biosciences, 233520), 1 g/L monosodium glutamic 
acid (MSG) (Sigma-Aldrich, G1626), 2 g/L amino acid mix SC(MSG)-Ura (glutamic acid 
replaced by MSG), G-418 (200 mg/L, Biochrom, A291-25), 20 g/L glucose, 20 g/L agar), 1 day 
at 30°C; 

• sporulation on SPO plates (20 g/L potassium acetate (Sigma-Aldrich, 25059), 20 g/L agar), 
5 days at 23°C; 

• selection of haploids, step 1, on SC(MSG)-Ura/His/Arg/Lys + canavanine/thialysine plates 
(50 mg/L canavanine (Sigma-Aldrich, C1625), 50 mg/L thialysine (Sigma-Aldrich, A2636)), 
2 days at 30°C; 

• selection of haploids, step 2, on SC(MSG)-Ura/His/Arg/Lys + canavanine/thialysine/G-418 
plates (50 mg/L canavanine, 50 mg/L thialysine, 200 mg/L G-418), 2 days at 30°C; 

• selection of haploids, step 3, on SC(MSG)-Ura/His/Arg/Lys + canavanine/thialysine/G-
418/clonNAT plates (50 mg/L canavanine, 50 mg/L thialysine, 200 mg/L G-418, 100 mg/L 
clonNAT (Werner BioAgents, 5.0)), 2 days at 30°C; 

• induction of tag swapping on SC-His Gal/Raf plates (6.7 g/L yeast nitrogen base without amino 
acids (BD Biosciences, 291940), 2 g/L amino acid mix SC-His, 20 g/L galactose (Serva, 
22020), 20 g/L raffinose (Sigma-Aldrich, R0250), 20 g/L agar), 2 days at 30°C (done twice); 

• selection against the acceptor module on SC-His + 5-FOA plates (6.7 g/L yeast nitrogen base 
without amino acids, 2 g/L amino acid mix SC-His, 20 g/L glucose, 1 g/L 5-FOA (Apollo 
Scientific, PC4054), 2 days at 30 °C. 

Finally, strains resulting from the swap of the full C-SWAT library were pinned on SC-His and 
grown for 1 day at 30°C prior to fluorescence measurements of colonies. 

Strains swapped to test the efficiency of tag swapping were pinned from SC-His + 5-FOA plates 
either to SC(MSG)-His plates for all three donor types or to SC(MSG)-His + hygromycin plates 
(200 mg/L Hygromycin B Gold, Invivogen, ant-hg-5) for the type II donor or to SC(MSG)-His + G-
418 plates (200 mg/L G-418) for the type III donor. Finally, all strains were pinned on SC-His plates 
and grown for 1 day at 30°C prior to fluorescence measurements with flow cytometry. 

4. Flow cytometry 

Strains were grown to saturation in 96-well plates (150 µl of SC-His medium per well) at 30°C, 
diluted into fresh SC-His medium and grown for 8 h at 30°C to 2-8x107 cells/ml. Fluorescence 
measurements were performed on a BD FACSCanto RUO (BD Biosciences) equipped with a high-
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throughput sampler loader, a 488 nm laser and a combination of 505 nm long-pass and 530/30 nm 
band pass emission filters for mNeonGreen detection. Populations were gated for single cells in 
the G1 phase of the cell cycle using the first peak in the side scatter width (SSC-W) histogram and 
20000 cells were measured for each strain. 

5. Colony fluorescence measurements 

Strains resulting from the swap of the full C-SWAT library with mNeonGreen and mScarlet-I donors 
in three technical replicates were arranged next to each other and three technical replicates of a 
negative control (tag swap using the empty donor plasmid pMaM482). Strains were pinned on SC-
His agar plates using a ROTOR HDA pinning robot (Singer Instruments) and grown at 30°C for 
24 h. Fluorescence measurements were performed at 30°C with Infinite M1000 or Infinite M1000 
Pro plate readers (Tecan) equipped with stackers for automated plate loading and custom 
temperature control chambers. Detector gain was set manually to avoid saturation and 
measurements were performed at 400 Hz frequency of the flash lamp, with ten flashes averaged 
for each measurement, in two channels: mScarlet-I (569/10 nm excitation, 593/10 nm emission) 
and mNeonGreen (506/5 nm excitation, 517/5 nm emission). Measurements were filtered for 
potentially failed crosses based on colony size after haploid selection. Colony area measurements 
for each individual plate were median-centered prior to calculation of median colony size for the 
entire data set. Scaled median absolute deviation (MAD) served as a robust estimate of standard 
deviation, and colonies within the 0.5th percentile of a normal distribution centered at the median 
with a spread of scaled MAD were defined as failed crosses. Tag swaps with less than two 
successfully crossed replicates were removed from the analysis. Fluorescence intensities for each 
plate were normalized to the median fluorescence of a reference strain set that was present on 
every plate. Intensities of sample colonies were either corrected for background by subtracting the 
average intensity of negative control colonies or expressed in background units, i.e. divided by the 
average intensity of negative control colonies (Table S2a). 

6. Fluorescence microscopy 

Strains were inoculated in 96-well plates in synthetic complete (SC) low-fluorescence medium (SC 
medium prepared with yeast nitrogen base lacking folic acid and riboflavin11) and grown at 30°C to 
mid log phase for 7-8 h. 150 µl of each culture were used for microscopy in glass-bottom 96-well 
plates (MGB096-1-2-LG-L; Matrical) coated with concanavalin A, as described12. Imaging was 
performed on a Nikon Ti-E widefield epifluorescence microscope with a 60x ApoTIRF oil 
immersion objective (1.49 NA, Nikon), an LED light engine (SpectraX, Lumencor), an sCMOS 
camera (Flash4, Hamamatsu) and an autofocus system (Perfect Focus System, Nikon) with either 
bright field, 469/35 excitation and 525/50 emission filters or 542/27 excitation and 600/52 emission 
filters (all from Semrock except 525/50, which was from Chroma). Z-stacks of 11 planes with 
0.5 µm spacing were recorded with two different exposure times for mNeonGreen and mScarlet-I. 

7. Availability of resources 

The C-SWAT library, the derived mNG-I, mNG-II and mSC-II libraries, all reagents necessary to 
use the C-SWAT library for high-throughput strain construction and custom scripts for analysis of 
Anchor-Seq data are available upon request. 
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Supplementary Figures 
 

 
 

Figure S1. Anchor-Seq workflow. 

(a) Genomic DNA is extracted from a pooled library, where a different ORF is modified (e.g., 
tagged with the C-SWAT acceptor module) in each strain. The DNA is sheared and the fragment 
ends are processed to allow A-T ligation of vectorette adaptors. Selective amplification of 
fragments containing the library tag is achieved with two primers: a tag primer (green) that anneals 
to the tag sequence and a vectorette primer (red) that has the same sequence as the vectorette 
adaptor and thus cannot anneal to it. The sequence complementary to the vectorette primer is 
produced in the first PCR cycle initiated by the tag primer. Exponential amplification only of 
fragments containing the library tag can subsequently occur (15 PCR cycles in total). The PCR 
product is purified and subjected to another 15 PCR cycles to add the P5 and P7 Illumina 
sequences to the amplified fragments. 
(b) Sequence of the vectorette primer (blue) in relation to the central portion of the vectorette 
adaptor and the product of the priming cycle with the tag primer (selective amplification step in (a)). 
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Figure S2.  Efficiency of tag swapping with different donors. 

(a) Three types of donor plasmids for tag swapping with C-SWAT strains. The type I donor is used 
for seamless tagging. In this donor the tag is placed between short homology arms (gray) and 
flanked by I-SceI cut sites (black squares). Tag swapping events are selected by resistance to 5-
fluoroorotic acid (5-FOA), which indicates loss of the URA3 selection marker. The type II donor is 
used for non-seamless tagging. In this donor the left homology arm (light gray) is followed by the 
tag, the terminator sequence of the ADH1 gene from Saccharomyces cerevisiae, the promoter 
sequence of the TEF gene from Ashbya gossypii and the hphΔC sequence coding for an N-
terminal fragment (amino acids 1-192) of the hph (hygromycin resistance-encoding gene) marker. 
Tag swapping events are selected by resistance to 5-FOA and later/alternatively hygromycin, 
which indicates reconstitution of the hph selection marker. The type III donor is used for non-
seamless tagging. In this donor the left homology arm (light gray) is followed by the tag, the ADH1 
terminator sequence and a selection marker (e.g., the kanMX marker (resistance to G-418)). Tag 
swapping events are selected by resistance to 5-FOA and later G-418. 
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(b) Comparison of tagging efficiency using three donors with the mNeonGreen fluorescent protein. 
Protein tagging was performed with 20 C-SWAT strains for the indicated genes. Distributions of 
single-cell mNeonGreen fluorescence intensities measured with flow cytometry (~20000 cells per 
strain). The percentage of cells with fluorescence above background (fluorescence of a wild type 
strain, dashed line) is indicated in the plots. 

 

 

 

 

 
 

Figure S3.  Brightness of different fluorescent proteins in yeast. 

(a) Relative brightness of different green fluorescent proteins (greenFPs) in yeast. Each greenFP 
was fused to mCherry, with Don1 as a spacer protein to minimize Förster resonance energy 
transfer (FRET) between the two fluorescent proteins. The fusions were expressed in yeast from 
the strong constitutive GPD promoter. Whole colony greenFP fluorescence intensities, measured 
with two sets of excitation and emission wavelengths, were normalized for protein expression 
levels using mCherry fluorescence intensities. The resulting relative brightness estimates were 
normalized to sfGFP (mean ± s.d., n = 5 biological replicates each with 4 technical replicates). 
Based on these results and excitation/emission spectra, we estimate that mNeonGreen with 
505/516 nm excitation/emission is ~2 fold brighter than sfGFP with 488/510 nm 
excitation/emission. 
(b) Relative brightness of different red fluorescent proteins (redFPs) in yeast. Each redFP was 
fused to sfGFP with Don1 as a spacer protein. The fusions were expressed from the GPD 
promoter and whole colony redFP fluorescence intensities, measured with two sets of excitation 
and emission wavelengths, were normalized for protein expression levels using sfGFP 
fluorescence intensities. The resulting relative brightness estimates were normalized to mCherry 
(mean ± s.d., n = 3 biological replicates each with 4 technical replicates). Based on these results 
and excitation/emission spectra, we estimate that mScarlet-I with 569/593 nm excitation/emission 
is ~3 fold brighter than mCherry with 587/610 nm excitation/emission. 
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Figure S4.  Measurements of protein abundance with mNeonGreen and mScarlet-I libraries. 

(a) Comparison of relative protein expression levels measured with the mNG-I, mNG-II and mSC-II 
libraries. The libraries were derived from the C-SWAT library by tag swapping with the three donor 
plasmids in Fig. 2a. Fluorescence intensities of colonies were corrected for background 
fluorescence. 
(b) Comparison between relative protein expression levels measured with the mNG-I library and 
estimates of absolute protein abundance from ref. 9. Absolute estimates are based on 
measurements of protein abundance with mass spectrometry of wild type yeast13, fluorescence 
microscopy and flow cytometry of strains expressing GFP fusions14,15 or immunoblotting of TAP-
tagged proteins16. Only strains with fluorescence intensities at least 1.2 fold above background 
were used in (a) and (b). 
(c) Fluorescence levels of mNG-I strains for two groups of ORFs: annotated as dubious as of 
January 2017 (dubious) and reclassified from dubious to verified or uncharacterized between July 
2016 and January 2017 (reclassified). Fluorescence intensities of colonies are expressed in units 
of background fluorescence, not corrected for background fluorescence. 
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Supplementary Tables 

Table S1. C-SWAT library description. 

S2/S3 primers and number of positive clones validated by Anchor-Seq for each ORF. 

 

Table S2. Protein expression levels in mNG-I, mNG-II and mSC-II libraries. 

(a) Fluorescence intensities of colonies, fold over background or background-corrected. 
(b) Expression and localization of previously undetected ORFs. 
(c) Changes in classification of dubious ORFs. 

 

Table S3. Plasmids. 
Plasmid Description Source 
pMaM471 pFA6a-C_SWAT_acceptor (L3-CYC1term-ScURA3-hphΔN-ALG9term-L4) this study 
pMaM482 CEN ARS kanMX (type I donor template) this study 
pMaM484 CEN ARS kanMX (type II donor template) this study 
pMaM496 CEN ARS (type III donor template) this study 
pYD10 pRS41K-mNeonGreen (type I donor) this study 
pYD11 pRS41K-mNeonGreen-ADH1term-TEFpr-hphΔC (type II donor) this study 
pYD14 pRS41-mNeonGreen-ADH1term-KanMX (type III donor)	 this study 
pYD13 pRS41K-mScarlet-I-ADH1term-TEFpr-hphΔC (type II donor) this study  

 

Table S4. Yeast strains. 
Strain Background Genotype Source 
BY4741 S288c MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ref. 1 
Y8205 S288c MATalpha can1Δ::STE2pr-SpHIS5 and lyp1Δ::STE3pr-LEU2 his3Δ1 

leu2Δ0 ura3Δ0 
ref. 4 

YMaM639 Y8205 leu2Δ0::GAL1pr-NLS-I-SceI-natNT2 this study 
YYD2 YMaM639 pYD10 (type I mNeonGreen donor) this study 
YYD3 YMaM639 pYD11 (type II mNeonGreen donor) this study 
YYD8 YMaM639 pYD14 (type III mNeonGreen donor) this study 
YYD4 YMaM639 pYD13 (type II mScarlet-I donor) this study 
YYD5 YMaM639 pMaM482 (empty type I donor) this study 
YYD6 YMaM639 pMaM484 (empty type II donor) this study 

 

Table S5. Oligonucleotides. 
Oligo Sequence Use 
356-vectorette CCGAGAGGGAAGAGAGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGA

TCTGAGCAGGAGAGGACGT 
Vectorette 

355-vectorette Phos/CGTCCTCTCCTGCTCTGTAGCCTTCTCGTGTGCAGACTTGAGGTG
AGTGGCTCTCTTCCCTCT/3ddC 

Vectorette (1) 

503-Tag_primer ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGGGAGGG
CGTGAATGTAAGC 

Selective amplification (2) 

357-VC_primer GTTCAGACGTGTGCTCTTCCG Selective amplification 
382-P5 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC Addition of P5 sequence 
529-BC_P7 CAAGCAGAAGACGGCATACGAGATGTTAGGCGTGACTGGAGTTCAGAC

GTGTGCTCTTCCGATC 
Addition of P7 sequence (3) 

ERG1-fwd TTTTCTTCGCTGTCGCTTTTTACACC qPCR (on-target forward) 
ERG11-fwd GGGTAAGACCGTTCCACCTCC qPCR (on-target forward) 
ERV25-fwd GAAAAACAGAGAGGAGAGATTAAGAGACACC qPCR (on-target forward) 
Tag-rev GGGAGGGCGTGAATGTAAGC qPCR (on-target reverse) 
ACO1-fwd CCCAGCTGACTATGACAAGATCAACC qPCR (off-target forward) 
ACO1-rev GGTCAACACAGCATCCCATGG qPCR (off-target reverse) 
RPL30-fwd GTTATCAAGTCTGGTAAGTACACCTTAGG qPCR (off-target forward) 
RPL30-rev CTGAATAACTTACCGACAGCAGTACC qPCR (off-target reverse) 
ASC1-fwd TGATTGCTTCCGCTGGTAAGG qPCR (off-target forward) 
ASC1-rev CCAAAGAAAAGACCTTAATACCGGTAGC qPCR (off-target reverse) 

(1) modified with a phosphoryl group on the 5’ end and 2,3-dideoxycytidine on the 3’ end 
(2) contains a string of 8 randomized positions (bold) to quench read errors originating from high 
uniformity at the beginning of the sequencing process 
(3) carries a six-base barcode (bold) to allow multiplexing of different samples  
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