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Abstract

In many Western countries tuberculosis (TB) incidence is low and largely
shaped by immigrant populations originating from high-burden countries. A
variable latent period, low rates of evolution and structured social networks,
makes separating repeated import from within-border transmission a major
conundrum to TB-control efforts in many low-incidence countries. This is the
case in Norway, where TB incidence dropped to very low levels during the
second half of the 20th century (6 per 100,000 in 2016) and more than 80
per cent of TB cases are now found among immigrants from high-incidence
countries. Immigrants from the Horn of Africa constitute the largest group of
TB patients in Norway, making up a third of all TB cases in the country over the
last decade. One particular genotype-cluster strongly associated with people
originating in this region has been identified regularly over a 20-year period.
Here we apply transmission modeling methods to whole-genome sequence data
to estimate the times at which individual patients were originally infected. By
contrasting these estimates with time of arrival in Norway, we estimate on a
case-by-case basis whether individual patients were likely to have been infected
before or after arrival. Although import was responsible for the majority of
cases, we find that transmission is also occurring in Norway. Our approach
is very broadly applicable and relevant to many settings where TB control
programs can benefit from an understanding of when (and consequently where)
individuals have acquired a tuberculosis infection.

Introduction

The ‘End TB strategy’ of the World Health Organization aims to reduce the global
incidence of tuberculosis (TB) to 100 cases per million by 2035. Reaching this goal
entails reducing the global TB incidence to the rates currently seen in countries with
the lowest incidence, whereas low-incidence countries must aim for further reduction
in incidence levels.
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As the TB epidemic is fading out of the local population, the TB incidence in Nor-
way now largely reflects the level of immigration from high-TB-incidence countries
[3, 14, 5]. With effective case finding and case management, TB transmission from
immigrant populations to the Norwegian-born population has been found to be very
limited [4], but it does occasionally occur [13]. In low-incidence countries, preventing
transmission within immigrant groups originating from high-incidence countries is of
utmost importance if the overall TB incidence is to be reduced further. However,
detecting transmission within immigrant populations remains a complicated task as
it requires the ability to distinguish between import and transmission post arrival.
Social networks are not randomly formed, and are among other things shaped by
shared cultural and ethnic backgrounds [22]. An immigrant might thus have been
exposed to the same circulating TB strains along the whole spatio-temporal trajec-
tory beginning in the country of origin and ending in a low-incidence country, often
via a lengthy and complex journey.

Genome-level analyses have rapidly become important tools for molecular epi-
demiological studies as they deliver massively improved resolution and detail, rela-
tive to traditional genotyping methods. Fast and large-scale sequencing of pathogen
genomes can provide stronger and more accurate evidence to exlude and sometimes
confirm transmission, and is increasingly applied for disease outbreak management
[15]. However, even when genome sequences are available for analysis, the recon-
struction of detailed transmission histories is far from straightforward. As a result
of a low evolutionary rate and highly variable and stochastic latency periods, this is
especially true for TB [13, 7].

Several approaches have been developed to make use of genomic data to infer
infector/infectee relationships. They differ in their statistical approaches, the com-
plexity of the underlying epidemiological models and the assumptions they make
about unsampled cases, transmission bottlenecks, pathogen evolution, diversity in-
side hosts and the likelihood of transmission events. Key parameters that must be
specified or estimated include the generation time (time from an individual becom-
ing infected until infecting others) and patient + health system delay (time from
symptom onset to diagnosis). In addition, inference requires timing information and
a model of the pathogen’s evolution to connect the acquisition of polymorphisms to
the (variable and uncertain) time that has elapsed.[8, 18, 24, 19, 6].

Didelot et al. developed a method to infer transmission networks from time-
labelled phylogenies assuming a Susceptible-Infectious-Removed epidemiological model
[8] . Building on the same approach, Eldholm et al. implemented a latent state
("Exposed" category) in a similar framework to estimate the probability of pairs
of patients being linked by a transmission event [13]. TransPhylo [7] is a Bayesian
method for inference of transmission trees that also accounts for unsampled cases
and infers transmission events and their timing given mutational events captured in
a time-labelled phylogeny.

Here, we apply a novel approach to tackle a major public health conundrum,
namely whether immigrants diagnosed with TB were infected before or after arrival
in a low-incidence country (imported cases or local transmission, respectively). We
focused on a large genotypicM. tuberculosis cluster (Norwegian-African large Lineage
3 cluster; NAL3C), strongly associated with immigrants from the Horn of Africa, that
has been identified in Norway consistently for almost 20 years [16]. Building on a
temporal phylogeny built on genome-wide SNPs, we infer the posterior distribution
of infection times Tinf using TransPhylo. We then compare these with the time of
arrival of individual patients in Norway, available through the Norwegian Surveillance
System for Communicable Diseases (MSIS) to ascertain probabilistically whether
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they became infected before or after their arrival in Norway. We confirm that most
TB patients were indeed infected prior to arrival, but show that about 25% of the
patients likely contracted TB after arrival in Norway.

Figure 1: Clinical M. tuberculosis isolates and phylogenetic reconstruction. (A)
Histogram illustrating sampling times for NAL3C isolates. (B) NAL3C minimum-
spanning tree based on 24-loci MIRU genotypes. MIRU profiles identified in more
than one isolate were assigned individual colors. (C) Temporal phylogeny constructed
from genome-wide SNPs. The color strip next to the phylogeny indicates MIRU geno-
type, whereas the dSNP column denotes mean pairwise-SNP distances within each
cluster. Clades amenable for TransPhylo transmission reconstruction are highlighted
in orange. The time-axis on the phylogeny corresponds to years before 2015. An
asterisk denotes three samples isolated from the same patient. Grey dots on branches
indicate posterior probability of > 0.8
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Results

Based on Mycobacterial Interspersed Repetitive Unit (MIRU) genotyping, 129 clin-
ical M.tuberculosis NAL3C isolates from 127 patients, collected between 1997 and
2015 (Fig. 1A and 1B) were sequenced at the National Reference Laboratory for
Mycobacteria (NRLM). A total of 1418 variable sites were identified, resulting in a
mean pairwise-SNP distance of 43.22, which is high relative to what we would expect
from an outbreak (see e.g. [11]. A temporal phylogeny was estimated in Beast 1.8.4
[9] utilizing sampling dates for temporal calibration (Fig. 1C).

Comparing the MIRU-based minimum-spanning network and the whole-genome
phylogeny of our samples, it was clear that the true genomic diversity of NAL3C
was not at all captured by MIRU typing. Strikingly, we also find that the micro-
evolution of MIRU loci within the cluster evolved in a way that was not informative
for molecular epidemiological purposes. In fact, a number of homoplasic events led to
the repeated evolution of identical MIRU types across the NAL3C (Fig. 1). Based on
these analyses it is clear that MIRU typing worked rather well for crude grouping of
isolates, but that micro-evolutionary events, such as the mutation of a single MIRU
locus, is not necessarily informative for molecular epidemiological inference. NAL3C
belongs to lineage 3, an understudiedM. tuberculosis lineage. Whether the mode and
rate of MIRU evolution differs between lineages is a question that deserves attention,
as it would clearly affect the interpretation of MIRU data.

The high genetic diversity within the NAL3C cluster, combined with an overall
phylogenetic structure characterized by multiple long terminal branches interspersed
by a handful of tight clusters, suggested that the clinical TB cases in Norway repre-
sented samples drawn from a larger population of mainly unsampled cases presum-
ably circulating in the Horn of Africa. We reasoned that the tight sub-clades could
correspond to clusters of transmission in Norway. As the vast majority of immigrants
from the Horn of Africa came to Norway after 1995, following the withdrawal of UN
from Somalia, we only included clades with an inferred most recent ancestor younger
than 20 years (corresponding to 1995). As a tree must include at least four cases for
meaningful modeling in TransPhylo, this inclusion criterion was also applied. This
resulted in a total of five clades (clades A,B,C,D and E shown in Figure 1, meeting
the criteria for detailed transmission modelling. Most of the cases in these clades
come from countries in the horn of Africa, two from Sudan and one case each from
Ghana, Gambia, Iran, Thailand and Norway.

Figure 2 shows the arrival times of all cases from these clades for whom arrival
times were retrievable (all in clades A, B and E), plotted on top of the posterior
infection time distribution for each individual (see methods section for details). It is
quite clear that some of these patients (cases 30,37,40,47,54,68 and 126) arrived in
Norway before the estimated time Tinf . For all other cases, the estimated range for
the time of infection has at least some overlap with the time of arrival. Using the
posterior densities of infection times alongside the arrival times of the cases, we obtain
probabilities of infection post arrival in Norway (P (tinf after tarrv); see the Methods
section for details), and these are listed in Table S3 (supplementary document). The
cumulative frequency plot of these probabilities (Fig. 3) shows that there are 16 cases
with P (tinf after tarrv) > 0.5 and 12 cases with P (tinf . after tarrv) > 0.9 where tarrv
is the time of arrival.

In clades A,B and E, cases 28 and 29 lacked arrival time information. For case 29
(Somali) we could conclude that the patient likely contracted TB in Norway, as the
inferred infector was also infected in Norway. Case 28 was an immigrant from Ghana
and the isolate was genomically identical to the isolate from case 29, so case 28 was
also probably infected in Norway. Next, we looked into clades C and D for which
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Figure 2: Arrival times (in blue) plotted on top of estimated infection times for all
cases of interest with available data. The case numbers are colored by clade assign-
ment (clade A in green, clade E in orange and clade B in grey). The blue shaded
area covers the time from earliest and latest possible arrival times, whereas a dotted
single line indicates the latest possible arrival time. P-values indicate probability of
infection after arrival in Norway, averaged over 10 different TransPhylo inference
procedures. The country of origin of patients not originating from the Horn of Africa
is annotated in black boxes.

arrival information was lacking for all isolates. For clade C, TransPhylo inferred that
the same unsampled case had infected both a Norwegian, Ethiopian and two Somali
patients, as well as a final Somali patient via another unsampled intermediate (see
Figure S7 in supplementary document), though we note that with long and variable
infectious periods, as is the case for TB, considerable uncertainty remains in the
details of reconstructed transmission events. However, our results suggest that all
five patients contracted TB in Norway. In clade D, all patients were Somali. This,
combined with a lack of arrival information for these patients, makes it impossible to
distinguish between transmission before or after arrival. Finally, in order to obtain a
more complete picture of transmission in Norway, beyond clades that were amenable
to transmission inference using TransPhylo, we manually investigated the temporal
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Yes Undetermined No Clades
TransPhylo inference (with arrival info) 16 0 6 A,B,C

TransPhylo inference (without arrival info) 7 4 0 C,D,E
Smaller clusters 3 6 5 –

Other cases 0 0 80 -
Total (%) 26(20) 10(8) 91(72) -

Table 1: Summary of transmission inference.

phylogeny for pairs and triplets of closely related isolates for evidence of transmission
in Norway. Following the inclusion criteria applied for TransPhylo inference, we only
included pairs and triplets with an estimated most recent common ancestor after
1995. Based on a combination of arrival times, disease manifestation and country of
origin, we were able to identify another three instances of very probable transmission
in Norway. For five cases we could conclude that transmission in Norway was highly
unlikely, whereas no conclusion could be drawn for six of the cases (see Tables S04
and S05 for a summary of the evidence).

Altogether, using our main workflow of contrasting TransPhylo-inferred time of
infection with time of arrival in Norway, we identified 16 cases in clades A, B and
E that had a higher than 0.5 probability of having contracted TB in Norway. Two
additional patients in these clades lacking arrival information were also determined
to have likely contracted TB in Norway, as were all the five patients in clade C
despite a lack of arrival times for these patients. Finally, three additional instances of
probable transmission in Norway, represented by two pairs of closely related isolates
were identified. In total, we conclude that 26 out of 129 NAL3C cases were probably
infected in Norway. For 10 cases we were unable to conclude, whereas the remaining
91 probably represented instances of imported TB (see Table 1).

Retrospectively, we retrieved available contact tracing information and extended
epidemiological data for cases belonging to clades A, B and E. The data were
incomplete, but useful information was available for six of the cases. For five of these
patients the extended data supported our inference, in that cases we estimated were
likely infected in Norway had known TB contacts in Norway (cases 40, 47 and 81)
or in one case our estimated transmission time concurred with an earlier episode of
tuberculosis (case 55). Case 103 had a negative TB screen upon arrival in Norway,
consistent with our inference that case 103 was infected after arrival. However, in
once case (119) we estimated infection in Norway but the patient reported to have
had an episode of symptomatic, untreated TB before arrival; the recent isolate could
reflect a re-infection, or our estimation could be incorrect.

Discussion

This work represents a conceptually novel approach to tackle an important public
health issue in low TB incidence countries. Here we combine whole genome sequenc-
ing with epidemiological modeling to estimate the time of infection for individual
patients. We have applied a Bayesian method of transmission inference, TransPhylo,
to do this analysis for clusters of tuberculosis cases in Norway. We used individual-
level data on arrival time, sputum smear status, time of sampling and whether the
patients’ tuberculosis disease was pulmonary or extra-pulmonary to refine our in-
ference of the transmission process. We compared the posterior estimates of case
infection times to the times when patients arrived in Norway; where arrival time was
uncertain (a range rather than a date) we integrated over this time-range in order
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Figure 3: Probability of infection after arrival in Norway for 22 cases included in
TransPhylo analyses. The lines annotate the number of cases with probabilities equal
to 0.5 and 0.9 in the cumulative distribution plot.

to estimate the probability that cases were infected after arrival. For many patients,
the genetic structure of the isolates and/or a lack of epidemiological information left
considerable uncertainty in their time of infection (see Results section). However, for
some patients, by taking all the available evidence into account we were able to infer
with relative certainty whether they had contracted TB before or after arrival in Nor-
way. Overall, we found that there is substantial evidence of ongoing transmission in
Norway. Our approach and findings highlight the importance of collecting and keep-
ing good epidemiological records on individual patients, as well as the importance of
active contact-tracing in high-risk groups in low-incidence countries..

Even without reconstructing transmission events explicitly, some conclusions
about the timing of transmission are evident in the timed phylogenetic tree. Each tip
of the tree corresponds to a different host, which implies that there must be at least
one transmission event on the path between every pair of tips [8, 7]. Recent branch-
ing in the timed phylogeny therefore indicates recent infection times. The analysis
we have done goes further, by producing probability distributions for infection times
for individual patients.

Five of the patients belonging to potential transmission clusters and for whom
arrival times were known originated from countries other than those in the Horn
of Africa (Fig. 2). Four of these, originating from Thailand, Iran, Sudan and the
Gambia, were inferred to have been infected in Norway (p ≥ 0.5). The fifth patient
was from Sudan, and was inferred to have been infected prior to arrival. The M.
tuberculosis isolates from two additional Sudanese patients (Case 24 and 83) were
found alone on long terminal branches of the phylogeny (Fig. 1), also suggesting that
they were independently imported cases. Two Tanzanian patients also represented
relatively clear import events with clinical isolates situated on long terminal branches
(Case 33 and Case 57). Apart from patients from the Horn of Africa, the only
foreign patients we could conclude had been infected prior to arrival originated from
Tanzania and Sudan. Sudan shares a border with Eritrea and Ethiopia whereas
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Tanzania lies to the south of Somalia and Ethiopia, with Kenya in between. Taken
together, these findings suggest that the original geographic range of the NAL3
cluster stretches beyond the Horn of Africa into neighboring countries including
Sudan, Kenya and Tanzania. However we did not have access to patient travel
records and migration throughout the region is a possible route for exposure.

We find that 26 patients belonging to the NAL3C cluster were most probably
infected in Norway, whereas 91 patients had probably contracted TB prior to arrival
in Norway. For 10 patients, our analyses were inconclusive. In addition, we were
unable to retrieve samples for DNA extraction for three patients, originating from
Norway, the former Yugoslavia and Namibia respectively. Based on their country of
origin alone, these were all probably infected in Norway. Only considering patients
for which a conclusion could be drawn, about a quarter were most likely to have
contracted TB in Norway, a far from trivial proportion. It should be noted that
some patients might also have been infected during travels to the country of origin
after arrival in Norway, but we were not in a position to investigate this possible
order of events. A very recent study from the Netherlands and Denmark identified the
1064-32 MIRU-type among refugees and immigrants with a similar country-profile as
observed in Norway [17]. Whole genome sequencing (WGS) of 40 isolates revealed
a pairwise SNP-distance of 80, almost twice as high as observed here. Although
formal transmission reconstruction was not performed, the high diversity supports
their conclusion that transmission in the Netherlands and Denmark is very limited.
The lower diversity in Norway also suggests that recent transmission in the country
has affected the observed population structure of NAL3C.

Immigrants from high-incidence countries typically make up a significant portion
of TB cases in low-incidence countries such as Norway, but it is difficult to elucidate
whether TB disease among them is a result of import or recent transmission in the
receiving country. This difficulty has multiple roots, including the fact that cultural
and ethnic identity play a role in forming social connections and low institutional
trust in some immigrant groups, which can lead to an unwillingness to share infor-
mation necessary for contact tracing. In Norway, contact tracing is initiated around
all pulmonary TB cases, but the intensity of the effort is higher when recent trans-
mission is suspected. In practical terms, the bar for initiating broad contact tracing
efforts will thus often be higher for TB-cases belonging to high-risk groups such as
immigrants from high-incidence countries. Routine use of WGS for molecular epi-
demiology is expected to provide a more solid evidence-base to inform the intensity
of contact tracing efforts, but even with WGS data, the detailed reconstruction of
transmission events is not trivial [23]. The approach we have presented here, apply-
ing transmission modelling to clinical, epidemiological and genomic data, can assist
public health authorities in understanding where and when patients are infected, and
can aid in the design of appropriate TB control measures.

Methods

Sample collection and inclusion criteria

The NRLM maintains a national culture collection consisting of all culture-positive
TB cases in Norway and is responsible for susceptibility testing and genotyping.
From 1997 till 2010 IS6110 restriction fragment length polymorphism (RFLP) was
the routine method for molecular epidemiological surveillance. In this period, a large
IS6110 -RFLP-cluster associated with patients from the Horn of Africa was identified
[16]. Following the replacement of IS6110 -RFLP typing with 24-loci Mycobacterial
Interspered Repetitive Unit (MIRU) typing at the NRLM, these isolates were re-

8

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2017. ; https://doi.org/10.1101/226662doi: bioRxiv preprint 

https://doi.org/10.1101/226662
http://creativecommons.org/licenses/by-nc/4.0/


typed and the majority of isolates belonged to the MIRU type 1064-32 following on
the MTBC 15-9 nomenclature [2]. All subsequent M. tuberculosis isolates have been
MIRU typed. In order to study the transmission dynamic of this cluster, we included
all isolates sampled between 1997 and 2015 that differed at zero to two loci relative
to the 1064-32 genotype. In total, 133 isolates matched the inclusion criteria, of
which 130 could be retrieved and were submitted to whole-genome sequencing on
the Illumina platform. Initial analyses revealed one of these to be a clear outlier
only distantly related to the other 129 isolates; it was thus excluded. The 129
isolates represented 127 patients (three isolates were from the same patient). The
cluster, as defined by IS6110 -RFLP genotyping, was recently termed "Cluster X"
[16]. However, we coined the more informative term Norwegian-African large lineage
3 cluster (NAL3C) for the current study. In addition, we extracted data from the
Norwegian Surveillance System for Communicable Diseases (MSIS), which stores
clinical and epidemiological data on all TB cases notified by clinicians. The study
protocol was approved by the Regional Ethics Committee (reference 2015/2127).

Variant calling

DNA was extracted from M.tuberculosis grown on Lowenstein-Jensen slants as de-
scribed previously [12]. Paired-end sequences were generated on the Illumina MiSeq
and NextSeq platforms (250 and 150 bp read length respectively). High quality single
nucleotide polymorphisms were identified following the same procedures as described
in [12]. After removal of the single outlier isolate, this resulted in 1418 variable sites
that were used for evolutionary analyses as outlined below. Median sequencing depth
of the 129 genomes ranged from 20x to 161x. All sequence reads are available under
ENA study accession PRJEB23495. Individual run accessions, sampling years and
MIRU data for all NAL3C isolates are listed in dataset S01.

Bayesian Evolutionary analyses

Marginal likelihood estimates in Beast 1.8.4 [9] were performed to identify the opti-
mal substitution, clock and demographic models for Bayesian evolutionary analyses.
We tested the HKY and GTR substitution models combined with either a strict or
uncorrelated relaxed clock and a constant, logistic, exponential or Skyride demo-
graphic model. A GTR model with relaxed clock combined with a Skyride demo-
graphic model was favored (see supplementary material). Three independent Markov
chain Monte Carlo (MCMC) chains consisting of 200 million steps were performed
and the output combined after inspection of convergence within and between chains.
These analyses resulted in an estimated substitution rate of 8.99E-8 (95 per cent
HPD: 5.07E-8, 1.31E-7) substitutions per genome per year. To verify the presence of
sufficient temporal signal in the data, tip-randomization was performed utilizing the
’tipdatingbeast’ R package [21]. Of 20 tip-randomized runs, the 95 % HPD interval
of a single run overlapped with the tree height 95% HPD interval generated in the
combined non-randomized data (see supplementary material), indicating that the
strength of the temporal signal was acceptable [10, 20].

Transmission reconstruction

The maximum credibility tree of the 129 isolates is characterized by long branch
lengths with a few clades that have relatively short branch lengths. As the branch
lengths of a timed phylogenetic tree represent duration of evolution [1], it is intuitive
to assume that these clades represent densely sampled clusters of cases whereas the
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long branches represent cases with unsampled infectors. We thus reasoned that pu-
tative transmission clusters in Norway would be represented by sub-clades of closely
related isolates within the larger NAL3C cluster. Based on a previous comprehen-
sive study [23] and the overall structure of the phylogeny, we selected clades with
a minimum of four cases, and with a maximal mean pairwise SNP-distance of five
or fewer SNPs within the clade for transmission inference. Five clades matched this
criteria (clades A,B,C,D and E shown in Figure 1). There are a total of 33 cases in
the selected clades, with times of arrival into Norway available for 22 of them.

We used the R package TransPhylo [7] to reconstruct the outbreaks. TransPhylo
allows for in-host diversity; individuals may harbour more than one pathogen vari-
ant (though they may not). TransPhylo uses a branching process model to compute
the likelihood of a set of transmission events based on the likelihoods of the times
between individuals becoming infected and infecting others (generation times) and
times between infection and sampling (becoming known to public health authori-
ties/TB sample taken), alongside a negative binomial distribution for the number
of secondary cases an individual will cause. The epidemiological model requires the
user to specify a gamma distribution for the generation time, and similarly, a gamma
distribution for the sampling time. Estimating these parameters is challenging, es-
pecially when the sampling density is unknown. However, for the five sub-clades
identified above, we can assume a high sampling density based on the extremely
limited observed diversity within each clade. We estimated the parameters of the
sampling and generation time distributions from the subtree of the least diverse clade
(clade A; mean pairwise SNP-distance = 0), assuming 95% sampling. A gamma dis-
tribution is used for the prior generation time distribution in order to reflect the
variable progression of tuberculosis, which could either be rapid with short time in-
terval from the time of infection to the onset of infectiousness, or very long with
infection leading to long latent periods before the onset of infectiousness. We chose
shape and scale parameters of the gamma distribution that give a mean of 4−5 years
for the generation time distribution. Case finding and management of tuberculosis
is quite effective in Norway, and as such, we chose a gamma sampling distribution
with mean between 2.5− 3 years. Altogether, we chose ten different shape and scale
parameters that meet these criteria (Table S1a, supplementary document). We start
off with clade A, run the inference procedure using these different choices for the
priors of the sampling and generation times, whilst assuming a very high sampling
proportion. We thus obtain ten different posterior sampling and generation time
distributions whose shape and scale parameters (obtained by fitting a gamma distri-
bution to the posterior generation and sampling times respectively using the function
fitdistr in the MASS package in R; these are shown in Table S1 of the supplemen-
tary document) are then used as inputs for the inference of transmission events on
the other clades. The results reported here are the output from the first run except
where otherwise stated.

Smear negative patients are less infectious than smear positive patients, and it is
reasonable to assume that they transmit tuberculosis with less efficiency. We applied
a penalty to transmission events that have smear negative infectors by multiplying
the probability of the transmission tree by 0.75. As such the inferred transmission
trees are pulled away from maximum likelihood estimates (in the baseline model
without smear status), and pulled towards estimates that have fewer transmission
events from smear-negative patients. We assume that patients with extra-pulmonary
tuberculosis are only 1% as likely to transmit the disease as pulmonary tuberculosis
patients, and also apply this penalization to the likelihood of a transmission tree.

A key feature of TransPhylo is that it infers transmission events using a two-step
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procedure: obtaining a timed phylogenetic tree and inferring transmission events
given this phylogenetic tree. This approach therefore makes it difficult to pass the
uncertainty in the phylogenetic reconstruction to transmission inference especially
when a posterior distribution of phylogenetic trees are produced in the first step.
In order to account for this, the transmission inference was applied to a random
sample of phylogenetic trees obtained in the tree reconstruction step. Also there is
uncertainty in the choice of prior parameters for the generation and sampling time
distributions. These were therefore chosen over a wide range of combinations that
depict a tuberculosis outbreak.

Probability of infection prior to arrival

We can quantify the probability that an individual was exposed to their TB strain
prior to their arrival in Norway, using the posterior times of infection. If we know
the arrival time tiarr for case i, and we let the posterior time of infection density be
called Li(τ), then the probability that i was infected after arrival is just the portion
of the posterior that lies above tiarr:

P (tiinf after tiarr) =
∫ tmax

tiarr

Li(τ)dτ. (1)

If the arrival is uncertain, and we only know that case j arrived between minimum
time mj and maximum time Mj , then we can integrate out the unknown time of
arrival to find the marginal probability that j was infected after arrival in Norway:

P (tjinf after tjarr) =
∫ Mj

mj

P (tarr = s)P (tiinf after s)ds

and we use (1) to obtain P (tiinf after s), and a uniform distribution (blue rectangles
in the Figures) for P (tarr = s). These probabilities are averaged over 10 inference
procedures using different prior distribution parameters.
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