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Abstract 27 

Several human pathogens exhibit distinct patterns of seasonality and circulate as pairs of 28 

discrete strains. For instance, the activity of the two co-circulating influenza A virus 29 

subtypes oscillates and peaks during winter seasons of the world’s temperate climate zones. 30 

These periods of increased activity are usually caused by a single dominant subtype. 31 

Alternation of dominant strains in successive influenza seasons makes epidemic forecasting 32 

a major challenge. From the start of the 2009 influenza pandemic we enrolled influenza A 33 

virus infected patients (n = 2,980) in a global prospective clinical study. Complete 34 

hemagglutinin (HA) sequences were obtained from 1,078 A/H1N1 and 1,033 A/H3N2 35 

viruses and were linked to patient data. We then used phylodynamics to construct high 36 

resolution spatio-temporal phylogenetic HA trees and estimated global influenza A 37 

effective reproductive numbers (R) over time (2009-2013). We demonstrate that R, a 38 

parameter to define host immunity, oscillates around R = 1 with a clear opposed 39 

alternation pattern between phases of the A/H1N1 and A/H3N2 subtypes. Moreover, we 40 

find a similar alternation pattern for the number of global virus migration events between 41 

the sampled geographical locations. Both observations suggest a between-strain 42 

competition for susceptible hosts on a global level. Extrinsic factors that affect person-to-43 

person transmission are a major driver of influenza seasonality, which forces influenza 44 

epidemics to coincide with winter seasons. The data presented here indicate that also cross-45 

reactive host immunity is a key intrinsic driver of global influenza seasonality, which 46 

determines the outcome of competition between influenza A virus strains at the onset of 47 

each epidemic season.   48 
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Significance statement  49 

Annual influenza epidemics coincide with winter seasons in many parts of the world. 50 

Environmental factors, such as air humidity variation or temperature change, are commonly 51 

believed to drive these seasonality patterns. Interestingly, three out of the four latest pandemics 52 

(1918, 1968 and 2009) did not spread in winter initially, but during summer. This questions to 53 

what extent other factors could also impact virus spread among humans. We demonstrate that 54 

cross-reactive host immunity is a key factor. It drives the well-known seasonal patterns of virus 55 

activity oscillation and alternation of the dominant influenza virus subtype in successive seasons. 56 

Furthermore, this factor may also explain the efficient spread of pandemic viruses during 57 

summer when cross-reactive host immunity is relatively low.    58 
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Introduction 59 

Several human respiratory viruses circulate as groups of discrete pathogenic entities exhibiting 60 

distinct patterns of seasonality (1, 2). For influenza virus such patterns have been studied 61 

extensively (3-5). In the world’s temperate climate zones influenza activity oscillates and 62 

synchronizes with winter periods, while in tropical regions activity appears to be year-around or 63 

split into different seasons (4). They have been attributed largely to ‘extrinsic’ factors driving 64 

efficient virus spread (6), like air humidity variations (7), seasonal influences on host 65 

susceptibility (8), and societal structure and behavioural patterns (9). Susceptible-Infection-66 

Recovery (SIR) epidemiological modelling predicted that also cross-reactive immunity between 67 

subtypes plays a role (10-13). Such ‘intrinsic’ factor may also be attributed to other aspects of 68 

influenza epidemiology, like the replacement of a seasonal strain by a pandemic virus. This 69 

occurred for the last time during the 2009 influenza pandemic when the seasonal A/H1N1 was 70 

replaced by the pandemic A/H1N1 virus. Interestingly, like the 1918 and 1968 pandemics this 71 

virus did not spread in winter, but during the 2009 northern hemisphere (NH) summer.  72 

To date, the newly introduced pandemic 2009 A/H1N1 virus continues to co-circulate with 73 

the A/H3N2 subtype causing seasonal epidemics in humans. Both influenza A viruses are under 74 

intense selective pressure by the host immune system and they continuously evolve to persist in 75 

humans. Viruses escape from pre-existing immunity through mutation at antigenic sites at the 76 

globular head of the hemagglutinin (HA). This is a major virus surface glycoprotein and primary 77 

target of host neutralizing antibodies. Continual viral presence in the population on the other 78 

hand results in a ‘landscape of immunity’ (11, 14), which new ‘antigenic drift’ viruses need to 79 

overcome to fuel new epidemics. A typical phylogenetic tree of HA is shaped, as a result of this 80 

cat-and-mouse game, into a single trunk tree with short-lived branches (15) (Fig. 1). Virus strains 81 
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that are antigenically similar cluster along the trunk of the tree with only a limited number of 82 

amino acid positions involved in the jump from an existing into a new antigenic cluster (16). 83 

These positions were previously identified with data obtained from the hemagglutination 84 

inhibition (HAI) assay, a serological test to assess neutralizing antibody responses to HA.  85 

 Besides these long-lived and predominantly strain-specific antibody-mediated immune 86 

responses, a shorter-lived, non-specific component has been proposed in particular to explain the 87 

limited virus genealogical diversity (single trunk) and lifespan (short-lived branches) of the vast 88 

majority of circulating dead-end virus lineages (11). Evidence for such component has first come 89 

from in vitro and animal studies showing that pre-infection with one subtype induces partial 90 

cross-protection from infection with another subtype (17). Observational studies addressing the 91 

potential role of cross-reactive immunity in global influenza seasonality has so far failed to show 92 

a clear pattern (18, 19). However, recent and marked observations to support a major role of 93 

cross-immunity were related to the fast disappearance of the A/H1N1 subtype from 1977, shortly 94 

after the introduction of the pandemic influenza A/H1N1 virus in 2009, while the A/H3N2 95 

subtype managed to continue its circulation (13).   96 

Results 97 

In search for the existence of such component we first followed a phylodynamic approach to 98 

jointly resolve spatio-temporal phylogenetic HA trees of A/H1N1 and A/H3N2 subtypes and to 99 

infer underlying host population dynamics (20, 21) (Fig. 1; Table S1 and S2). The dataset used 100 

here had been collected globally during the first 5 years after the onset of the 2009 influenza 101 

pandemic. It enrolled patients year-around (>1 year of age), the vast majority (>97%) with 102 

uncomplicated and PCR-confirmed influenza, who had been admitted - within 48 hours after 103 

symptom onset - to primary care centres and hospitals in Asia (Hong Kong; n = 6), Europe (n = 104 
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37), the US (n = 36) and the Pacific (Australia; n = 8) (Fig. S1). From these samples 2,111 105 

influenza A viruses were isolated, which allowed us to obtain complete HA sequences from 106 

1,078 A/H1N1 and 1,033 A/H3N2 viruses. The extent of sampling, directly after the pandemic 107 

outbreak, in combination with an unprecedented resolution regarding quality-controlled Sanger 108 

sequencing linked to patient data, resulted in a high-resolution dataset. This offered us a unique 109 

window of opportunity to study the dynamics of the estimated effective reproductive number (R) 110 

over time (R-skylines). R is a parameter of host immunity (22), and is computed here as the rate 111 

at which an infected individual gives rise to a new infection in a defined period of time.  112 

We observed that R-skylines estimated from the A/H1N1 and A/H3N2 trees showed 113 

alternate phases of increasing and declining R, with R <1 and R >1 respectively (Fig.2). There 114 

was a significant negative correlation between phases (Pearson’s ρ = -0.511, P = 3.0e-07; D = 115 

0.202,  P  = 0.052) with an average endogenous oscillation period estimated to be approximately 116 

1.67 ± 0.01 years for A/H1N1 and 1.13 ± 0.02 years for A/H3N2 (6) (Fig. S2). Of note, these 117 

periods were similar to the average lifespan of the dead-end virus lineages on the HA trees (1.7 ± 118 

0.4 for A/H1N1 and 2.2 ± 0.5 for A/H3N2) (Fig. 1).    119 

Given the finite nature of susceptible hosts, virus persistence relies on the availability of 120 

new susceptible ones, which forces viruses to migrate between geographical locations (23). The 121 

interplay between antigenic drift and pre-existing immunity may then determine the outcome of 122 

the competition between these viruses at the onset of each influenza season (24). As the observed 123 

pattern of R-skylines indicates that a relatively short-lived cross-reactive immunity component 124 

exists, we wondered whether this competition also could determine the dynamics of global 125 

migration. To build on existing global migration data and to study its patterns for the A/H1N1 126 

virus after 2009 we expanded our dataset with complete HA sequences deposited in the Influenza 127 
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Resource Database (IRD) from viruses isolated prior to (2008-2009) and after (2013-2015) our 128 

study period (Dataset S1). We then inferred the number of geographical location changes at each 129 

internal node of these trees to identify all virus movements from one geographical location 130 

(source) to another location (sink). Again, and similar to the R-skylines, influenza A/H1N1 and 131 

A/H3N2 virus migration events alternated globally within our study period (Fig. 3). Global 132 

influenza A/H1N1 virus migration dominated in the first half of the study period, while A/H3N2 133 

virus migration events were more prevalent between 2012 and 2013. This observation supports 134 

the evidence that inter-subtype competition presented here, contributes to influenza seasonality 135 

and may determine the virus that will dominate in a given influenza season.  136 

Finally, previous work on global circulation had shown that East and South-East Asia (E-137 

SEA) played a pivotal role in global dissemination of A/H3N2 viruses. Here, A/H3N2 virus 138 

activity was found year-round (between 2000 and 2012), from where new antigenic drift variants 139 

fuelled in the temperate climate zone epidemics (9, 25). In contrast, E-SEA did not seem to have 140 

a major role in the dissemination of pre-pandemic A/H1N1 viruses (9). To study global virus 141 

migration after 2009 we constructed the networks of migration trajectories between the sampled 142 

geographical locations using a 1-year time window (Fig. 3 and 4; Fig. S3) and found that, in 143 

contrast to the pre-pandemic period (9), E-SEA was equally important for the dissemination of 144 

both influenza A viruses. Within our dataset we counted 56 A/H1N1 and 58 A/H3N2 145 

dissemination events from E-SEA to the other sampled regions in the world (Fig. S4) In addition, 146 

global virus migration patterns showed a similar degree of global network complexity (Fig. S3, 147 

max. graph density/diameter of 1.08/12.09 for A/H1N1 and 1.16/10.64 for A/H3N2) and similar 148 

patterns of virus circulation across the sampled geographic regions (Fig. S3, max. number of 149 

islands and graph reciprocity of 2 and 0.75 for A/H1N1 and 2 and 0.86 for A/H3N2).   150 
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Discussion 151 

Extrinsic factors probably play a role in forcing influenza epidemics into the winter seasons in 152 

the global temperate climate zones (3-5, 7). The oscillating and alternating pattern of the global 153 

skylines of R we present here indicate that cross-reactive host immunity is an important intrinsic 154 

driver of influenza seasonality (Fig. 2). Global influenza dissemination dynamics also reveals 155 

alternation of global virus migration events and complexity of migration trajectories between 156 

subtypes with two phases (Fig. 3 and 4). In the first phase (2009-2011) we observe that these 157 

parameters are high for the A/H1N1 and low for the A/H3N2 subtype (Fig. 3 and 4), but low for 158 

A/H3N2. This pattern is reversed during the second phase (2011-2013). These parameters are 159 

indicators of virus persistence and depend, therefore, on the availability of susceptible hosts 160 

within a defined geographical location (23). This implies that an intrinsic correlation exists 161 

between change of cross-reactive host immunity landscapes and global virus migration.  162 

The observed short endogenous oscillation periods observed (1.7 years for A/H1N and 163 

1.1 years for A/H3N2) suggest that this is most likely the result of short-lived inter-subtypic 164 

immune responses rather than antibody-mediated immunity from which major antigenic drift 165 

variants arise every few years (Figure 2 and S2) (9, 11, 16). Inter-subtypic immunity mediated by 166 

(CD4+ and CD8+) T-cells, and B-cells that generate or that trigger antibody-dependent cell-167 

mediated cytotoxicity (ADCC) are proposed short-lived cross-reactive mechanisms (26-28). 168 

Taking into account the strong cross-reactive immune responses previously observed between 169 

the seasonal and pandemic A/H1N1 virus subtypes, cross-reactive immunity may well have 170 

forced the 2009 pandemic into the NH-summer and mitigated the disease burden associated with 171 

this virus (27, 28).  172 
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Further studies elucidating the contribution of host immunity to seasonality of influenza 173 

and other multi-strain viruses, such as the paramyxoviruses RSV and HMPV are warranted (29). 174 

This would further support the establishment and exploitation of global virus and serum banks 175 

(30), which will lead to a better understanding of the contribution of host immunity landscapes to 176 

the dynamic epidemiological circulation patterns of (multi-strain) pathogens. 177 

 178 

Materials and Methods 179 

Study conduct. IRIS (NCT00884117) is a prospective, multicentre, global observational study 180 

offering unprecedented resolution with regard to quality-controlled Sanger sequencing linked to 181 

patient data (31, 32). This report summarizes the results from 87 centers in, Australia (n = 8), 182 

China (Hong Kong, n = 6), Europe (n = 37; France, Germany, Norway) and the United States (n 183 

= 36) from December 2008 to March 2013, comprising five Northern and four Southern 184 

Hemisphere seasons, and including the 2009–2010 pandemic. Centers were selected to achieve 185 

the widest geographic coverage possible within each country (Fig. S1). The study was performed 186 

in compliance with the principles of the Declaration of Helsinki and its amendments, and in 187 

accordance with Good Clinical Practice. Independent ethics committees and institutional review 188 

boards at each centre approved the study protocol and amendments.  189 

 190 

Patient selection. Adults and children aged ≥1 year were included year-round (n = 2980; 191 

excluding 21 patients (1%) with mixed influenza A and B virus infections) in the study if they 192 

were influenza-positive by rapid test (QuickVue Influenza A + B Test; Quidel Corp) at 193 

presentation and/or had predefined clinical signs and symptoms of influenza for ≤48 hours for 194 

hospitalized adults; (≤ 96 hours for hospitalized adults; no time limit for hospitalized children). 195 
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The vast majority (> 97%) had uncomplicated influenza. All patients or legal guardians provided 196 

written informed consent at the time of enrolment.   197 

 198 

Assessments. Throat and posterior nasal swab specimens were obtained on day 1, 3, 6 and 10 199 

and shipped on dry ice to a central laboratory for analysis (Erasmus MC, Rotterdam, the 200 

Netherlands). Influenza A subtypes types were identified using semi-quantitative real-time 201 

reverse transcription polymerase chain reaction (RT-PCR) (33). Day 1 samples with cycle 202 

threshold (Ct) values of < 32 were cultured on Madin-Darby canine kidney cells as described4. 203 

Virus-containing supernatants were cleared from cell debris by centrifugation (10 minutes at 204 

1000 x g) and stored at -80˚C until further processing. For this study, A/H1N1 (n = 1,078) and 205 

A/H3N2 (n = 1,033) virus isolates were included, which were obtained at patient admission (day 206 

1).  207 

 208 

Datasets and nucleotide sequence accession numbers. Sanger sequencing of hemagglutinin 209 

(HA) genes was done for all isolated viruses. Complete HA sequences were obtained for 210 

influenza A/H3N2 (n = 1,033; gi:XX12345-XX12345) and A/H1N1 (n =1,078; gi:XX12345-211 

XX12345) subtypes. To build on existing data on global influenza migration we expanded the 212 

IRIS dataset with all available complete HA and NA sequences from the NIAID Influenza 213 

Research Database (IRD) collected between 2008-2009 and 2013-2015 in countries included in 214 

the IRIS study (34). Numbers of additional HA sequences were 443 for A/H1N1 and 462 for 215 

A/H3N2 respectively. The complete list of IRD sequences is provided (Table S1).  216 
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Data pre-processing and alignments. Each expanded dataset was aligned using ProGraphMSA 217 

using default parameters (35). Sequences were renamed to include sampled geographical 218 

locations, sampling dates (continuous values) and corresponding influenza season (when 219 

available).  220 

Phylodynamics inference. The BDSKY phylodynamics model implemented in BEAST v.2.3.1 221 

was applied to the IRIS and expanded datasets to infer spatio-temporal resolved phylogenies and 222 

epidemiological parameters (20, 23, 36). Phylogenetic trees were estimated under the general-223 

time-reversible model (GTR+Γ4) with Γ-distribution to model among-site rate variation (37) 224 

(Fig.1). A molecular clock rate prior was set to follow an uncorrelated log-normal distribution 225 

(38). Internal node calibration was performed using tip sampling dates (39, 40). The BDSKY-226 

model was set with the following parameter: The sampling rate prior for the influenza infected 227 

population/the real sampled population followed a Beta (1, 999) distribution; the prior 228 

probability of sampling an individual upon becoming non-infectious followed a LogNorm (4.5, 229 

1.0) distribution. In addition, tree dating was performed using tip dates while an uncorrelated 230 

log-normal clock rate prior was applied to handle uncertainties in the sample collection dates. 231 

Finally, the analysis was run long enough to obtain a sufficient effective sample size ESS > 200 232 

for all parameters. The converged parameters of the BDSKY-model are listed in supporting 233 

information table S1 and S2. To assess global model robustness, we performed two independent 234 

runs of each analysis (for a total of 20 runs). MCMC parameter convergences were diagnosed 235 

with Tracer 1.6. Thinning of BEAST2 output files (tree files and parameter files) was done using 236 

in-house bash scripts. After accurate MCMC trace monitoring, the first 10% of MCMC steps 237 

were discarded as burn-in resulting in around 6000 trees per each dataset. TreeAnnotator v2.3.1 238 

was used to produce Maximum Clade Credibility (MCC) trees (20).  239 
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Statistical analyses Effective reproductive number. We estimated the effective reproductive 240 

number R using phylodynamics modelling as described above. The estimates of R allowed us to 241 

study the dynamics of virus spread within the population (41). Values R < 1 indicate a decline of 242 

infections, while R > 1 indicates that the infection has increased its spreading in a more 243 

susceptible population. The skyline of R is used here to picture the underlying dynamics 244 

‘shaping’ a phylogenetic tree (20, 21, 23). The univariate distributions of R values, estimated 245 

with independent sampling frequency from each dataset, were grouped and smoothed via 246 

interpolation to compensate for intermediate missing values. The dataset was set to start from a 247 

sampled common date (2009.24508). First, Wald-Wolfowiz, and Bartel Rank non-randomness 248 

tests were applied on each R median time-series as well as its permuted version (42). The same 249 

test was then applied on the pairwise intersection of R median time-series, and the statistical 250 

support was evaluated by re-computing the test on permuted R median time-series. Secondly, the 251 

pairwise maximum difference between � median time-series was computed applying the 252 

Kolmogorov-Smirnov test (KS-test). The two-sample Kolmogorov-Smirnov test was used to 253 

compare the cumulative distributions of two data sets (43). The KS-test reports the maximum 254 

difference between two cumulative distributions (D) and it returns a P computing the KS 255 

statistics from all the possible permutation of the original data. The significance level was set at 256 

0.001, so that two distinct � median time-series were considered to be drawn from different 257 

distributions when D � 0.45. Next, the pairwise-correlation between � median estimates was 258 

evaluated by the Pearson's product moment correlation coefficient (�). Pearson’s product 259 

moment correlation coefficient (�) was tested using the Fisher’s Z transform with 95% 260 

confidence interval and significance level set at 0.005 (44). Exploratory analyses on the R 261 

median time-series were applied to qualitatively identify oscillation periods and amplitude. The 262 
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oscillation period of each R median time-series was then computed from the highest frequency 263 

value shown by the smoothed periodogram using the IRIS dataset. Statistical uncertainty on the 264 

inferred period was assessed from cumulative periodograms computed on 100 permutations of 265 

the original R median time-series. Finally, the overlap of HPD intervals of the pairwise R was 266 

computed for each R median time-series. The obtained value was then compared with the 267 

overlap of the HPD interval of R obtained with 100 permutations of the true HPD intervals.  268 

Migration routes and evolutionary rates. Datasets were partitioned according to the 269 

geographical sampling locations pooled by continent (North America, Europe, Asia, Pacific 270 

area). Migration rates were estimated using a discrete phylogeographic trait model with the Γ-271 

distribution as substitution rate prior between geographical demes (45, 46). The influenza virus 272 

dissemination process was fitted to a discrete trait model using the Bayesian Stochastic Search 273 

Variable Selection (BSSVS) method, by inferring the most parsimonious description of the 274 

phylogeographic diffusion process (47-50). Counts of migration events were quantified by 275 

traversing the fully spatio-temporal resolved phylogenetic trees in post-order and by counting the 276 

number of most probable Markov chain jumps along the branches of the posterior set of trees 277 

(PSTs) (51, 52).  278 

Branch geographical persistence Geographical persistence was quantified by summing the 279 

phylogenetic branch lengths (measured in expected substitutions per site) grouped by their 280 

inferred geographical location on the phylogenetic tree trunk (inferred traversing the 281 

phylogenetic tree from ‘leaf-to-root’ and summing the number of branch traversals. The tree 282 

trunk was defined as the path on the phylogenetic tree that has been traversed more than 10 283 

times. Number of seeding events was defined as the number of switches on the phylogenetic tree 284 

trunk per season.  285 
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Migration graphs. Trajectory networks were reconstructed per each strain variant, pooling 286 

migration events occurred within a one-year time window (Fig. 4). Trajectory complexity was 287 

computed estimating graph density, number of islands (nodes), diameter, and reciprocity (53, 288 

54). In addition, geographical location connections were estimated by computing the graph 289 

centrality measures (specifically: degree centrality and betweenness centrality) (Fig. S3 and S4) 290 

(55-57). The Quade and correspondent post-hoc procedures were applied to test whether 291 

migration trends were significantly different between strains and whether preferred migration 292 

trajectories were selected (58). The significance level was set at 5%.   293 

Data availability. Full-length HA sequences obtained as part of the IRIS study have been 294 

deposited in Genbank with the primary accession codes mentioned above. All other HA 295 

sequences downloaded for this study are listed in the Supportive information.  296 

Code availability. All source codes and BEAST .xml files are available on GitHub 297 

(http://www.github.com/gattil/IRIS-Influenza-Dynamics). 298 
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Figure legends 450 

 451 
Fig. 1. Spatio-temporal resolved phylogenies reveal intrinsic evolutionary influenza dynamics.   452 
Influenza hemagglutinin tree inferred by birth-death skyline (BDSKY) phylodynamic modelling 453 
using 1,078 (A/H1N1) (A) and 1,033 (A/H3N2) (B) complete gene sequences. Distribution of 454 
average trunk-to-tips branch lengths of A/H1N1 (C) and A/H3N2 (D) phylogenetic trees.  455 
 456 
Fig. 2.  Oscillation of R-skylines estimated from influenza A virus phylogenies with opposed 457 
alternation of phases between subtypes. Time-series (2009-2013) for influenza A/H1N1 (blue, n 458 
= 1,078) and A/H3N2 (red, n = 1,033) viruses. Pre-pandemic period is indicated with dashed 459 
lines. Shaded regions represent 95% HPD interval. 460 
 461 
Fig. 3. Opposed alternation of influenza A virus migration events. Total number of migration 462 
events between different geographical locations of influenza A/H1N1 (blue, n = 190) and 463 
A/H3N2 (red, n = 146) viruses were pooled by 1-year intervals from the start of the 2009 464 
pandemic. Migration counts were performed by traversing the fully-spatiotemporal-resolved 465 
phylogenetic trees in post-order.  466 
 467 
Fig. 4.  Network reconstruction of virus migration between the sampled geographic locations. 468 
Inferred migration networks between geographic locations. Centers located in Asia (red), Europe 469 
(orange), North America (blue) and Pacific (purple). Migration events during a 1-year time 470 
window were pooled. The diameter of the nodes is proportional to the number of sink migration 471 
events, while the arrow width is proportional to the number of source migration events. The 472 
Quade test and correspondent post-hoc procedures were applied to test significant differences 473 
between migration trends and preferred migration trajectories. Significance level was set to 5%.   474 

Fig.S1 Distribution of IRIS centres over the world. IRIS (NCT00884117) is a prospective, 475 
multicentre, observational study. This report summarizes the results from 87 centres in, 476 
Australia, China (Hong Kong), France, Germany, Poland, Norway, and the United States from 477 
December 2008 to March 2013, comprising five Northern and four Southern Hemisphere 478 
seasons, and including the 2009–2010 pandemic.  479 
 480 
Fig. S2 Periodograms computed for the R-skylines to estimate oscillation periods and inferred 481 
uncertainties. Estimated periods for the A/H1N1 (A) and A/H3N2 (C) R-skyline plots. 482 
Uncertainty quantification on estimated periods for A/H1N1 (C) and A/H3N2 (D) virus was 483 
done using cumulative periodograms computed on 100 permutations of the original R median 484 
time-series.  485 
 486 
Fig. S3. Migration network measures and clustering analyses of reconstructed migration 487 
networks Complexity of network connections was quantified for A/H3N2/HA (red) and 488 
A/pH1N1/HA (blue) using the following measures: (A) Network density. (B) Graph diameter.  489 
(C) Number of islands. (D) Global cluster coefficient.(E) Reciprocity of the graph. Comparison 490 
of the connectivity between different geographical locations was done within a 1-year-time-491 
window frame using the following measures: (F) Degree of centrality. (G) Closeness centrality.  492 
(H) Betweenness centrality. 493 
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Fig. S4. Distribution of migration events between geographical locations. Influenza A/H3N2 (A) 494 
and A/H1N1 (B) virus migration events were pooled by 1-year intervals. Counts of geographic 495 
location switches on the tree were identified and classified using fully-spatiotemporal-resolved 496 
HA phylogenies by a discrete source/sink model between centers located in Asia (red), Europe 497 
(orange), North America (blue) and Pacific (purple) and are presented in white boxes.  498 
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