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Abstract 

Breaking the neural code requires the characterization of physiological and behavioral 

correlates of neuronal ensemble activity. To understand how the emergent properties of 

neuronal ensembles allow an internal representation of the external world, it is necessary 

to generate empirically grounded models that fully capture ensemble dynamics. We used 

machine learning techniques, often applied in big data pattern recognition, to identify and 

target cortical ensembles from mouse primary visual cortex in vivo leveraging recent 

developments in optical techniques that allowed the simultaneous recording and 

manipulation of neuronal ensembles with single-cell precision. Conditional random fields 

(CRFs) allowed us not only to identify cortical ensembles representing visual stimuli, but 

also to individually target neurons that are functionally key for pattern completion. These 

results represent the proof-of-principle that machine learning techniques could be used to 

design close-loop behavioral experiments that involve the precise manipulation of 

functional cortical ensembles.  
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Introduction 

The coordinated firing of neuronal populations is considered to be the substrate of 

sensory, behavioral and cognitive functions. Coactive neuronal groups, defined as 

neuronal ensembles, are assumed to generate complex circuit functions (Buzsaki, 2010; 

Cossart et al., 2003; Hebb, 1949; Luczak et al., 2009; Luczak et al., 2007; Mao et al., 

2001; Miller et al., 2014). Recent advances in two-photon calcium imaging and two-

photon optogenetics have made possible the simultaneous reading and writing of cortical 

ensemble activity with single cell resolution in awake animals (Carrillo-Reid et al., 

2016). However, how the activation of specific groups of neurons relates to functional or 

behavioral changes has been difficult to elucidate, because it requires online 

identification of individual neurons that can be targeted during optogenetic experiments.  

Cortical ensembles in primary visual cortex consist of coactive neurons (Carrillo-Reid et 

al., 2016; Cossart et al., 2003; Ko et al., 2011; Mao et al., 2001; Miller et al., 2014), 

forming a network structure that can be intuitively characterized with probabilistic 

graphical models, where nodes and edges are biologically meaningful, representing 

neurons and their functional connections respectively. Here, we exploit probabilistic 

graphical models to analyze two-photon calcium imaging recordings of mouse primary 

visual cortex. More specifically, we consider CRFs (Koller and Friedman, 2009), a 

combination of graph theory and probabilistic modeling. CRFs use graphs to simplify and 

express the conditional independence structure between a collection of random variables. 

Graph theory techniques have been used in neuroscience to describe the structural and 

functional organization of entire brains (Bullmore and Sporns, 2009). However, such 
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graphs are usually constructed with nodes representing brain regions (He et al., 2007), 

and edges representing information flow (Iturria-Medina et al., 2008). For functional 

analysis, many studies have constructed graphs with data from fMRI, EEG and electrode 

arrays, taking brain regions (Achard and Bullmore, 2007; Fair et al., 2008; Hagmann et 

al., 2008), voxels (Eguiluz et al., 2005; van den Heuvel et al., 2008; Zuo et al., 2012) or 

electrode position (Downes et al., 2012) as nodes, and activity associations such as cross 

correlation, mutual information and Granger causality as edges (Bullmore and Sporns, 

2009; Fair et al., 2008; Khazaee et al., 2015; Micheloyannis et al., 2009; Wang et al., 

2010). In addition, at the single cell level, graphs have been used to describe organizing 

principles of artificial neural networks (Iturria-Medina et al., 2008; Sporns, 2000). Such 

graphs are usually associated with a restricted set of parameters that describe the weight 

and direction of edges obtained by pairwise metrics, therefore have limitations for 

characterizing changes in overall network dynamics and properties underlying population 

activity. Finally, a few studies have applied graph theory to describe network 

organization in calcium imaging data with single cell resolution in cultures or brain slices 

(Bonifazi et al., 2009; Gururangan et al., 2014; Yatsenko et al., 2015). Nevertheless, 

these methods have been applied only as a descriptive tool that lacks for a model that can 

be used to identify and manipulate with high spatial precision neurons that could have a 

potential role orchestrating the overall network activity in awake animals.  

We demonstrate that CRF models allow not only the identification of cortical ensembles 

associated with different experimental and physiological conditions but also the 

prediction of the neurons that are most efficient at pattern completion. This method opens 

the possibility of targeting, with single cell precision, neurons from specific populations, 
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to specifically alter microcircuit function. Importantly, different from previously used 

methods for neuronal ensemble identification, CRFs generate a functional model of the 

circuit that can be used to design and explore close-loop behavioral experiments. 
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Results 

CRF models can encode population responses of visual cortex to oriented stimuli 

CRFs model the conditional distribution p(y|x) of a network, where  x represents 

observations and y represents true labels associated with a graphical structure (Sutton and 

McCallum, 2012). Since no assumptions are made on x, CRFs can accurately describe the 

conditional distribution with complex dependencies in observation variables associated 

with a graphical structure that is used to constrain the interdependencies between labels. 

Therefore, CRFs have been successfully applied in diverse areas of machine learning 

such as analysis of texts (Peng et al., 2011), bioinformatics (Li et al., 2008; Liu et al., 

2006; Sato and Sakakibara, 2005), computer vision (He et al., 2004; Sminchisescu et al., 

2006) and natural language processing (Choi et al., 2005; Lafferty et al., 2001). 

In order to study the network dynamics of cortical ensembles we constructed CRF 

models using population responses to visual stimuli from layer 2/3 neurons of primary 

visual cortex in awake head-fixed mice (Figure 1A). Population vectors representing the 

coordinated activity of neuronal groups were inferred from calcium imaging recordings 

(Carrillo-Reid et al., 2015b) and used as training data (Figure 1B). We defined activity 

events from each neuron as nodes in an undirected graph, where each node can have two 

values: ‘0’ corresponding to non-activity, and ‘1’ corresponding to neuronal activity. In 

this way nodes representing neurons interact with each other through connecting edges, 

which have four possible configurations ‘00’, ‘01’, ‘10’, and ‘11’, depending on the 

values of two adjacent nodes. The two values associated with nodes and the four values 

associated with edges are characterized by a set of parameters called node potentials 
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(𝜙0, 𝜙1)  and edge potentials (𝜙00, 𝜙01, 𝜙10, 𝜙11)  respectively (Figure 1C). These 

parameters are also known as potential functions and reflect the scores of individual 

values on each node and edge. Using part of the observation data (e.g. training data), we 

estimated the model’s structure (e.g. graph connectivity) and parameters (e.g. the 

potentials) and then performed cross-validation on held-out data (Experimental 

Procedures). Once the model is learned from the data, the normalized product of the 

corresponding nodes and edge potentials describes the probability distribution of a 

neuronal population that represents a specific activation pattern.  

To integrate information about the external stimulus along with the observed neuronal 

data, we added an additional node for each type of stimulus that was presented to the 

animal. This node was set to ‘1’ when the corresponding stimulus was on and ‘0’ when 

the stimulus was off (Figure 1C). The general and mathematical properties of CRF 

models obtained with added nodes did not significantly differ from CRF models obtained 

without added nodes (Figure S1). In both conditions, CRFs modeled the conditional 

probability of network states given the observations. Therefore, by treating visual stimuli 

as added nodes and comparing the output likelihood of observing each stimulus, CRFs 

were able to model visual stimuli from observed data. In this way, the neurons directly 

connected to the added nodes represent a specific model for different visual stimuli 

(Figure 1D). Given two different visual stimuli (e.g. horizontal or vertical drifting 

gratings) and assuming that the probability (a priori) of visual stimuli is uniform, the 

ratio of the probability to observe each stimulus, taken from the model, can be used to 

classify presented stimuli (Figure 1E). These results demonstrated the ability of CRFs to 
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accurately model different orientations of drifting-gratings from calcium imaging 

population recordings.  

Identification of core ensembles from CRF models 

To identify core ensembles defined as groups of neurons that can efficiently represent 

different physiological functions (Carrillo-Reid et al., 2015b; Sadovsky and MacLean, 

2014) we used the whole model obtained from CRFs and pruned the neurons that didn't 

contribute to the efficient identification of visual stimuli. In order to do that we set the 

activity of each neuron to be either ‘1’ or ‘0’ in all population activity vectors of the 

dataset, and compared the probability ratio (logarithm probability difference) from the 

inferred CRF models (Figure 2A). Then, we calculated single neuron performance by 

binarizing the logarithm probability difference (Figure 2B) and calculating the area under 

the curve (AUC) from the receiver operating characteristic curve (ROC). Since cortical 

core ensembles have concomitant activity, we computed the node strength as the 

summation of edge potentials from active adjacent nodes (𝜙11 terms). In this way, high 

node strengths revealed recurrent coactive groups of neurons whereas low node strengths 

represent functionally weakly connected neurons (Figure 2C). Finally, we defined each 

cortical core ensemble as a group of neurons that can be used to predict each visual 

stimulus with higher performance (AUC) and have high node strength (Figure 2D).  

To demonstrate the neurophysiological meaning of cortical core ensembles we analyzed 

publically open datasets (Allen Brain Observatory Release 2016) that contain data from 

layer 2/3 of primary visual cortex consisting in several visual stimuli types with different 

experimental settings. Cortical core ensembles extracted from CRF models were able to 
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predict several different orientations from visual stimuli in layer 2/3 of primary visual 

cortex (Figure 3A). Even more, cortical core ensembles revealed that classification 

performance to different drifting-gratings was significantly better for lower temporal 

frequencies, as measured by ROC curves and AUC values (Figures 3B-D; classification 

AUC: AUCTF=1 = 0.9129 ± 0.0134, AUCTF=2 = 0.8973 ± 0.0141, AUCTF=4 = 0.8063 ± 

0.0226, AUCTF=8 = 0.7045 ± 0.0262, AUCTF=15 = 0.6517 ± 0.0171; p1,4<0.01, p1,8, 

p1,15<0.001; n = 5 animals, 20 ensembles; Wilcoxon rank sum test).  

Efficiency of cortical core ensembles 

We next investigated whether core ensembles were optimal for predicting visual stimuli. 

To do so, we randomly shuffled population vectors containing the core neurons by adding 

or removing elements from the group, and examined the stimulus prediction 

performance. The similarity function and prediction performance had a maximum value 

when the size of core ensembles was unchanged (Figures 4A-C; similarity: 0.2887 ± 

0.0926 [S.D.]; prediction: AUC 0.9383 ± 0.0333). We also calculated three standard 

measurements from the number of true positives (TP), true negatives (TN), false positives 

(FP) and false negatives (FN): accuracy, defined as (TP+TN)/(TP+TN+FP+FN); 

precision, defined as TP/(TP+FP); and recall, defined as TP/(TP+FN). Using these 

metrics, we demonstrated that core ensembles achieve the best accuracy, precision and 

recall when predicting visual stimuli, compared with resized ensembles (Figures S2A-C; 

accuracy: 0.8367 ± 0.0623, precision: 0.6175 ± 0.1752, recall: 0.9067 ± 0.0717). 

These results showed that cortical core ensembles extracted from CRFs represent an 

efficient population to predict external visual stimuli. This raises the question of whether 
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such core ensembles are a specific non-random subgroup. To answer this, we randomly 

sampled a subset from all the population of neurons ranging from 10% to 190% of the 

total size of core ensembles. We observed that the prediction performance from random 

groups of neurons was significantly lower than the core ensembles extracted from CRF 

models (Figures 4A-C, black; Figures S2A-C, black; similarity: 0.1985 ± 0.0590 [S.D.], 

AUC: 0.5029 ± 0.0616, accuracy: 0.6906 ± 0.0671, precision: 0.2570 ± 0.1756, recall: 

0.3617 ± 0.1027), indicating that cortical core ensembles achieved higher classification 

performance than random sets of neurons. 

Identification of neurons with pattern completion capability using CRFs models 

One major advantage of CRFs is their ability to construct graphical models that capture 

network properties that could be used to target individual neurons. We therefore decided 

to exploit this advantage by targeting neurons with optogenetics in order to alter circuit 

function. It has been recently shown that the repetitive activation of an identified 

neuronal population with two-photon optogenetics imprints an artificial cortical ensemble 

that can be recalled later on by activating specific members of the ensemble (Carrillo-

Reid et al., 2016). Since CRFs can be used to identify core neurons from cortical 

ensembles evoked by visual stimuli, we hypothesize that in the case of artificially 

imprinted cortical ensembles core neurons extracted from CRFs would represent neurons 

with pattern completion capability. In order to investigate that, we used simultaneous 

two-photon imaging and two-photon optogenetic experiments with single cell resolution 

(Figure S3A) to identify neurons with high node strength and high AUC values (Figure 

S3B). Our approach demonstrated as proof-of-principle that single-cell two-photon 
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optogenetic stimulation of identified neurons (AUC: 0.8397 ± 0.0361; node strength: -

0.1405 ± 0.0770) was able to evoke pattern completion of artificially imprinted 

ensembles, whereas single cell stimulation of neurons with low node strength or low 

AUC values (AUC: 0.5680 ± 0.0292; node strength: -1.0332 ± 0.0573) was unable to 

recall artificially imprinted cortical ensembles (Figures S3C-D). These experiments 

support the hypothesis that neurons with pattern completion capability have high 

functional connectivity with other members of artificially imprinted cortical ensembles 

(Carrillo-Reid et al., 2016). 

CRFs models reveal the reconfiguration of cortical microcircuits 

Another advantage of CRF models could be the ability to capture network changes in 

cortical ensembles under different experimental conditions. To test this we compared 

CRF models estimated from data before and after two-photon population manipulation of 

a given set of neurons for several times (Figure 5A), an experimental protocol that 

reconfigures network activity building new coactive ensembles (Carrillo-Reid et al., 

2016). To visualize network changes in neurons with pattern completion capability we 

constructed isomorphic graphs from the CRF models and arranged them in a circular 

visualization before and after optogenetic manipulation (Figure 5B). After the artificial 

ensemble was imprinted, we observed that neurons with pattern completion capability 

increased their predictive performance and node strength (Figure 5C; stimulated neuron: 

node strength increased from: -0.1539 to 0.1609, AUC increased from: 0.5234 to 0.7447). 

This demonstrated as proof-of-principle that CRF models can be used to study network of 

specific neurons and those very CRFs can also be used to target single neurons that play a 
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key role in the computational properties of cortical microcircuits. Interestingly, for non-

photostimulated neurons, the graph properties of CRFs before and after population 

photostimulation remained stable (Figure S4) suggesting that imprinted ensembles have 

been added to cortical microcircuits while preserving a balance with the overall network 

structure.  
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Discussion 

Machine learning analysis of functional connectivity in cortical microcircuits  

In this study, we provide a novel tool for the identification and targeting of key members 

of cortical ensembles from population calcium imaging recordings of mouse primary 

visual cortex in vivo using Conditional Random Fields (CRFs), a probabilistic and 

graphical machine learning method. As opposed to traditional descriptive approaches for 

neuronal ensemble identification and network analyses based on correlations between 

pairs of neurons, machine learning methods represent an empirically grounded approach 

to create models that aim to capture the functional structure of neuronal circuits and also 

provide information about the network properties of individual neurons within a 

population.  

In the past decades, graph theory has been applied to characterize the structure and 

function of neuronal networks (Achard and Bullmore, 2007; Bettencourt et al., 2007; 

Chiang et al., 2016; Downes et al., 2012; Fair et al., 2008; Hagmann et al., 2008; Iturria-

Medina et al., 2008; Oh et al., 2014; Supekar et al., 2008; Yu et al., 2008; Zuo et al., 

2012). While most of these studies operated on functional recordings across multiple 

brain regions (Achard and Bullmore, 2007; Chiang et al., 2016; Fair et al., 2008; Hinne et 

al., 2013; Zuo et al., 2012), only a few have focused on the general network properties of 

cortical circuits with recordings from single neurons (Bonifazi et al., 2009; Sadovsky and 

MacLean, 2014; Stetter et al., 2012; Yatsenko et al., 2015). The majority of methods 

applied to infer network properties in brain slices (Cossart et al., 2003; Ikegaya et al., 

2004; Mao et al., 2001; Sadovsky and MacLean, 2014; Stetter et al., 2012) or in vivo 
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(Yatsenko et al., 2015) operate on the correlation matrix, and aim to recover the 

functional dependencies between observed neurons. However, these methods are model-

free, therefore are incapable of describing the overall network dynamics based on the 

probability distribution of neuronal ensembles. Our method provides an alternative by 

directly modeling the statistical dependencies of each neuron. The generation of a 

graphical model of the circuit has obvious advantages, since it provides a direct link to its 

functional connectivity structure, enabling the design of close-loop experiments to target 

core neurons during behavioral tasks.  

CRFs graphical models identify neuronal ensembles 

Compared with fully generative models such as Markov Random Fields and Bayesian 

Networks that make assumptions on the dependencies between all the observed variables 

from the model, CRFs only model the hidden system states dependent on observed 

features. Since no independence assumptions are made between observed variables, 

CRFs avoid potential errors introduced by unobserved common inputs. Additionally, 

given the finite number of network states described by population activity, the 

conditional distribution is sufficient for making predictions, both for the population state 

and for identifying core neurons in each state. Compared with other discriminative finite-

state models such as Maximum Entropy Markov Models (MEMM), CRFs use global 

normalizers to overcome the local bias in MEMM induced by local normalizers, and have 

been shown to achieve higher accuracy in diverse applications (Lafferty et al., 2001). 

Therefore, CRFs appear to be promising for modeling cortical functional connectivity 
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and for identifying core ensembles that could be easily manipulated by two-photon 

optogenetics. 

The computational difficulty in constructing CRFs lies in recovering the global 

normalizer (the partition function) and gradients of global normalizer. With an arbitrary 

graph structure, this problem is often intractable. But recent advances that combines 

Bethe free energy approximation and Frank-Wolfe methods for inference and learning 

model parameters allow fast and relatively accurate construction of cyclic CRFs (Tang et 

al., 2016). Thus, CRFs can in principle be applied to datasets with thousands of 

interconnected neurons. However, for datasets with more neurons (and therefore more 

random variables and larger networks), CRFs (like most machine learning approaches) 

would require an increasingly large number of samples in the training dataset.  

Advantages and limitations 

The key advantage of CRF models is their ability to model the circuit explicitly, in a 

manner than can be used for targeted manipulation. In visual cortex, non-targeted 

electrical stimulation has been used for decades as an attempt to provide useful visual 

sensations to patients that have lost the functionality of their eyes (Brindley and Lewin, 

1986). The sensations produced by electrical stimulation of the visual cortex were termed 

phosphenes since they represented bright spots. To improve prostheses, one could in 

principle train patients using devices with a large number of electrodes (Shepherd et al., 

2013). Our results suggest that after a given network have been imprinted (Carrillo-Reid 

et al., 2016), the identification of neurons with pattern completion capability could be 

used to reduce the number of active points that require stimulation and pinpoint them 
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with surgical accuracy. The further development of network models based on population 

activity that can predict a given set of features embedded in visual stimuli will be crucial 

for the efficient manipulation of cortical ensembles.  

We previously showed that population vectors defining a group (i.e. a cortical ensemble) 

can be extracted from multidimensional arrays by performing singular value 

decomposition (SVD) (Carrillo-Reid et al., 2015a; Carrillo-Reid et al., 2015b). Even 

though SVD can identify cortical ensembles reliably, it lacks a structured graphical 

model that allows the systematic study of changes in network properties.  

One limitation for the current CRF learning algorithms is the computation of a sparse 

graph structure which is less prone to over-fitting of the data. Certainly, due to some 

modeling assumptions, computational considerations and the finiteness of training data, 

the learned graphical structure and parameters may not be the globally best probabilistic 

model of the data. However, it is recovered efficiently rather than requiring an exhaustive 

and unrealistic exploration of all possible structures and parameter combinations. 

Additionally, approximations during the parameter learning step can sometimes 

compromise the global optimality guarantees.  

Finally, it has been shown that the connectivity of diverse systems described by graphs 

with complex topologies follow a scale-free power-law distribution (Barabasi and Albert, 

1999). Scale-free networks are characterized by the existence of a small subset of nodes 

with high connectivity (Carrillo-Reid et al., 2015a). Similarly, cortical core ensembles 

described by CRFs could be characterized by a subset of neurons with strong synaptic 

connections. The existence of neurons with pattern completion capability has been 
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demonstrated in previous studies where perturbing the activity of single neurons was able 

to change the overall network dynamics (Bonifazi et al., 2009; Carrillo-Reid et al., 2016; 

Hagmann et al., 2008). However, the efficient identification of such neurons from 

network models that capture the overall properties of neuronal microcircuits was lacking.  

Our results suggest that the structural and predictive parameters defined by CRFs models 

could be used in the design of closed-loop experiments with single cell resolution to 

investigate the role of a specific subpopulation of neurons in a given cortical microcircuit 

during different behavioral events. 
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Experimental Procedures 

Animals and surgery 

All experimental procedures were carried out in accordance with the US National 

Institutes of Health and Columbia University Institutional Animal Care and Use 

Committee and have been described previously (Carrillo-Reid et al., 2016). Briefly, 

simultaneous two-photon imaging and two-photon optogenetic experiments were 

performed on C57BL/6 male mice. Virus AAV1-syn-GCaMP6s-WPRE-SV40 and 

AVVdj-CaMKIIa-C1V1(E162T)-TS-P2A-mCherry-WPRE were injected simultaneously 

into layer 2/3 of left primary visual cortex (2.5 mm lateral and 0.3 mm anterior from the 

lambda, 200 μm from pia). After 3 weeks mice were anesthetized with isoflurane (1-2%) 

and a titanium head plate was attached to the skull using dental cement. Dexamethasone 

sodium phosphate (2 mg/kg) and enrofloxacin (4.47 mg/kg) were administered 

subcutaneously. Carprofen (5 mg/kg) was administered intraperitoneally. After surgery 

animals received carprofen injections for 2 days as post-operative pain medication. A 

reinforced thinned skull window for chronic imaging (2 mm in diameter) was made 

above the injection site using a dental drill. A 3-mm circular glass coverslip was placed 

and sealed using a cyanoacrylate adhesive (Drew et al., 2010). Imaging experiments were 

performed 7~28 days after head plate fixation. During recording sessions mouse is awake 

(head fixed) and can move freely on a circular treadmill.  

Visual Stimulation 
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Visual stimuli were generated using MATLAB Psychophysics Toolbox and displayed on 

a LCD monitor positioned 15 cm from the right eye at 45° to the long axis of the animal. 

Population activity corresponding to two-photon stimulation of targeted neurons in layer 

2/3 of visual cortex was recorded with the monitor displaying a gray screen with mean 

luminescence similar to drifting-gratings. The imaging setup and the objective were 

completely enclosed with blackout fabric and a black electrical tape. Visual stimuli 

consisted of full-field sine wave drifting-gratings (100% contrast, 0.035 cycles/°, 2 

cycles/sec) drifting in two orthogonal directions presented for 4 sec, followed by 6 sec of 

mean luminescence. 

Simultaneous two-photon calcium imaging and photostimulation 

Two-photon imaging and optogenetic photostimulation were performed with two 

different femtosecond-pulsed lasers attached to a commercial microscope. An imaging 

laser (λ = 940 nm) was used to excite a genetically encoded calcium indicator 

(GCaMP6s) while a photostimulation laser (λ = 1064 nm) was used to excite a red shifted 

opsin (C1V1) that preferentially responds to longer wavelengths (Packer et al., 2012). 

The two laser beams on the sample are individually controlled by two independent sets of 

galvanometric scanning mirrors. The imaged field of view was ~240X240 μm (25X NA 

1.05 XLPlan N objective), comprising 60-100 neurons.  

We adjusted the power and duration of photostimulation such that the amplitude of 

calcium transients evoked by C1V1 activation mimic the amplitude of calcium transients 

evoked by visual stimulation with drifting-gratings. Single cell photostimulation was 
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performed with a spiral pattern delivered from the center of the cell to the boundaries of 

(Carrillo-Reid et al., 2016).   

Image processing 

Image processing was performed with Image J (v.1.42q, National Institutes of Health) 

and custom made programs written in MATLAB as previously described. Acquired 

images were processed to correct motion artifacts using TurboReg . Neuronal contours 

were automatically identified using independent component analysis and image 

segmentation (Mukamel et al., 2009). Calcium transients were computed as changes in 

fluorescence: (Fi – Fo)/Fo, where Fi denotes the fluorescence intensity at any frame and Fo 

denotes the basal fluorescence of each neuron. Spikes were inferred from the gradient 

(first time derivative) of calcium signals with a threshold of 3 S.D. above noise level. We 

constructed an N x F binary matrix, where N denotes the number of active neurons and F 

represents the total number of frames for each movie. Peaks of synchronous activity 

describe population vectors (Carrillo-Reid et al., 2008).  

Population vectors 

We constructed multidimensional population vectors that represent the simultaneous 

activation of different neurons., only high-activity frames were used. An activity 

threshold was determined by generating 1000 shuffled raster plots and comparing the 

distribution of the random peaks against the peaks of synchrony observed in the real data 

(Shmiel et al., 2006). We tested the significance of population vectors against the null 

hypothesis that the synchronous firing of neuronal pools is given by a random process 
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(Carrillo-Reid et al., 2015a; Carrillo-Reid et al., 2015b; Shmiel et al., 2006). Such 

population vectors can be used to describe the network activity as a function of time 

(Brown et al., 2005; Carrillo-Reid et al., 2008; Sasaki et al., 2007; Schreiber et al., 2003; 

Stopfer et al., 2003). The number of dimensions for each experiment is given by the total 

number of active cells. The similarity index between a pair of vectors is then defined by 

their normalized inner product (Carrillo-Reid et al., 2008; Sasaki et al., 2007; Schreiber et 

al., 2003), which represents the cosine of the angle between two vectors. Neuronal 

ensembles are defined by the concomitant firing of neuronal groups at different times.  

Allen Institute Brain Observatory dataset 

To demonstrate the general applicability of our approach we analyzed a publicly 

available dataset from the Allen Brain Observatory (http://observatory.brain-

map.org/visualcoding) along with the SDK for extracting fluorescence and dF/F 

(http://alleninstitute.github.io/AllenSDK/) by Allen Institute of Brain Science. Spikes 

were detected by first low-pass filtering the dF/F traces, then a threshold of 5 S.D. above 

noise level on the first derivative of filtered dF/F. The experiments IDs used are: 

511507650, 511509529, 511510650, 511510670, and 511510855.  

Conditional Random Fields 

We constructed conditional random fields (CRFs) as previously published (Tang et al., 

2016), using indicator feature vectors 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑀], where 𝑥𝑚 ∈ 𝒳, for each edge 

and node, and target binary population activity vectors 𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑀], where 𝑦𝑚 ∈
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𝒴 , for 𝑀  samples (time points). For each sample, the conditional probability can be 

expressed as: 

𝑝(𝑦𝑚|𝑥𝑚; 𝜃) =  
exp (〈𝜙(𝑥𝑚, 𝑦𝑚), 𝜃〉)

𝑍(𝑥𝑚; 𝜃)
 

where 𝜙 is a vector of sufficient statistics of the distribution expressed in log-linear form, 

𝜃 is a vector of parameters, and 𝑍 is the partition function: 

𝑍(𝑥𝑚; 𝜃) = ∑ exp (〈𝜙(𝑥𝑚, 𝑦), 𝜃〉)

𝑦∈𝒴

 

The conditional probability can be factored over a graph structure 𝐺 = (𝑉, 𝒜), where 𝑉 

is the collection of nodes representing observation variables and target variables, and 𝒜 

is the collection of subsets of 𝑉. The conditional dependencies can be then written as 

 𝑝(𝑌|𝑋; 𝜃) =
exp (∑ 𝜃𝑖𝜙𝑖(𝑋, 𝑌𝑖)𝑖∈𝑉 + ∑ 𝜃𝛼𝜙𝛼(𝑋, 𝑌𝛼)𝛼∈𝒜

𝑍(𝑋; 𝜃)
 (1) 

This model is a generalized version of Ising models, which have been previously applied 

to model neuronal networks (Yu et al., 2008). The log-likelihood of each observation can 

be then written as: 

 ℓ(𝜃; 𝑋𝑚, 𝑌𝑚) = 〈𝜙(𝑋𝑚, 𝑌𝑚), 𝜃〉 − log 𝑍(𝑋𝑚). (2) 

Given the inferred binary spikes from raw imaging data, we construct a CRF model by 

two steps: (1) structure learning, and (2) parameter learning. For structure learning, we 

learned a graph structure using ℓ1 -regularized neighborhood-based logistic regression 

(Ravikumar et al., 2010): 
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min
𝜃\𝑟

{ℓ(𝜃; 𝑥) + 𝜆𝑠‖𝜃\𝑟‖
1

}, 

where 

ℓ(𝜃; 𝑥) = −
1

𝑛
∑ log

exp(2𝑥𝑟 ∑ 𝜃𝑟𝑡𝑥𝑡𝑡∈𝑉\𝑟 )

exp(2𝑥𝑟 ∑ 𝜃𝑟𝑡𝑥𝑡𝑡∈𝑉\𝑟 ) + 1

𝑛

𝑖=1

  

𝜃\𝑟 = {𝜃𝑟𝑢, 𝑢 ∈ 𝑉\𝑟}. 

Here 𝜆𝑠  is a regularization parameter that controls the sparsity (or conversely, the 

density) of the constructed graph structure. The final graph structure is obtained by 

thresholding the edge potentials with a given density preference 𝑑. Edges with potential 

values within the top 𝑑 quantile are kept as the final structure. It is worth noting that 

although 𝑑 could bias the result, varying 𝑑 does not lead to density values that differ 

much. This is because of the sparsity induced by the ℓ1 regularizer. 

Based on the learned structure, we use the Bethe approximation to approximate the 

partition function, and iterative Frank-Wolfe methods to perform parameter estimation by 

maximizing the log-likelihood of the observations (equation 2) with a quadratic 

regularizer (Tang et al., 2016): 

ℓ(𝜃; 𝑋, 𝑌) = ∑ ℓ(𝜃; 𝑋𝑚, 𝑌𝑚) −
𝜆𝑝

2
‖𝜃‖2

𝑀

𝑚=1

 

Here 𝜆𝑝 is a regularization that controls the learnt parameters and helps preventing over-

fitting. Cross-validation was done to find the best 𝜆𝑠 , 𝑑  and 𝜆𝑝  via held out model 
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likelihood. We varied 𝜆𝑠 with 6 values between 0.002 and 0.5, d with 6 values between 

0.25 and 0.3, and 𝜆𝑝 with 5 values between 10 and 10000, all sampled uniformly. To 

obtain the best model parameters, 90% data were used for training, while 10% data were 

withheld for cross-validation. The best model parameters were determined by calculating 

the likelihood of the withheld data and selecting the parameter set with a locally 

maximum likelihood in the parameter space. 

Node strength 

We define the node strength as the sum of the ‘11’ term of edge potentials from all 

connecting edges: 

𝑠(𝑖) = ∑ 𝜙11(𝑖, 𝑗)

𝑁𝐸(𝑖)

𝑗=1

.  

Here 𝑁𝐸(𝑖) denotes the number of connecting edges for node 𝑖. The defined node 

strength reflects the importance of a given cell in co-activating with other cells. 

Shuffling method 

To generate shuffled models, we first randomize the spike raster matrices while 

preserving the activity per cell and per frame. Then, we trained CRF models using the 

shuffled spike matrices, with the cross-validated 𝜆𝑠, 𝑑 and 𝜆𝑝 from the real model. This 

procedure is repeated 100 times. Random level of node strength is determined by mean ± 

S.D. of mean node strengths from all shuffled models. 

Identifying the most representative cortical ensembles 
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To find the most representative cortical ensembles for each condition, we iterate through 

all the neurons and identify their contribution in predicting the stimulus conditions in the 

population. To this end, for the 𝑖th neuron in population, we set its activity to be ‘1’ and 

‘0’ in turn, in all 𝑀 frames. With the two resulting population vectors in the 𝑚th frame 

among all samples, we calculate the log-probability of them coming from the trained 

CRF model using equation (1): 

𝑝𝑖,1
𝑚 = 𝑝(𝑦𝑚|𝑥\𝑖

𝑚 , 𝑥𝑖
𝑚 = 1; 𝜃), 

𝑝𝑖,0
𝑚 = 𝑝(𝑦𝑚|𝑥\𝑖

𝑚 , 𝑥𝑖
𝑚 = 0; 𝜃). 

Then, we computed the log likelihood ratio: 

𝑙𝑖,1−0 = {log (𝑝𝑖,1
𝑚 ) − log (𝑝𝑖,0

𝑚 )}, 𝑚 = 1, … , 𝑀 

and calculated the standard receiver operating characteristic (ROC) curve with the ground 

truth as the timing of each presented visual stimuli. The prediction ability of all nodes for 

all presented stimuli is then represented by an area under curve (AUC) matrix 𝐴, where 

𝐴𝑖,𝑠 represents the AUC value of node 𝑖 predicting stimulus 𝑑. Additionally, we 

calculated the node strength 𝑆 = {𝑠𝑖} of each neuron in the CRF model. 

We then computed prediction AUC 𝐴𝑟 and node strength 𝑆𝑟 of each node from 100 CRF 

models trained on shuffled data. The final core ensemble for stimulus 𝑑 is defined as: 

{𝑖|𝐴𝑖,𝑠 > mean(𝐴𝑠
𝑟) + std(𝐴𝑠

𝑟), 𝑆𝑖 > mean(𝑆𝑟) + std(𝑆𝑟)}. 

Graph properties 
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Given the adjacency matrix 𝐴 = (𝑎𝑣,𝑡) where 𝑎𝑣,𝑡 = 1 if node 𝑣 is linked to node 𝑡, we 

investigated the following graph properties: graph density, node degree, local clustering 

coefficient, and eigenvector centrality.  

Graph density is calculated as the number of existing edges divided by the number of 

total possible edges:  

𝑑 =
∑ 𝑎𝑣,𝑡𝑣𝑡

𝑁𝑉(𝑁𝑉 − 1)/2
 

where NV is the number of vertices in the graph. 

Node degree is defined for node 𝑣 as the number of edges connected to it:  

deg(𝑣) = ∑ 𝑎𝑣,𝑡𝑡 . 

Local clustering coefficient is defined for each node as the fraction edges connected to it 

over the total number of possible edges between the node's neighbors (nodes that have a 

direct connection with it).  

Eigenvector centrality is defined on the relative centrality score matrix 𝑋 = (𝑥𝑣), where 

𝑥𝑣 =
1

𝜆
∑ 𝑎𝑣,𝑡𝑥𝑡

𝑡∈𝐺

 

This can be written in the form of eigenvector equation: 

Ax = 𝜆x 
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Solving the above equation gives a set of eigenvalues 𝜆 and associated eigenvectors. The 

𝑣𝑡ℎ entry of the eigenvector associated with the largest 𝜆 gives the eigenvector centrality 

for the 𝑣𝑡ℎ node. 

Statistical Analysis 

CRF models were trained using the Columbia Yeti shared HPC cluster. MATLAB 

R2016a (MathWorks) was used for data analysis. Statistical details of each specific 

experiment can be found in figure legends. All numbers in the text and figure legends 

denote mean ± S.E.M. unless otherwise indicated. 

Resource Availability 

Code used in this paper can be found at https://github.com/hanshuting/graph_ensemble.  
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Figure Legends 

Figure 1. Classification of visual stimuli from calcium imaging data using CRFs  

A. Experimental setup: simultaneous two-photon imaging and two-photon optogenetics 

were performed in layer 2/3 of primary visual cortex in head fixed freely moving mice. 

B. Schematic representation of population vectors. Each point in a multidimensional 

space represents a population vector defined by a coactive group of neurons. A neuronal 

ensemble is defined by a cluster of population vectors. C. Graphical representation of 

CRFs. Circles represent neurons. Squares represent added nodes depicting visual stimuli. 

Shaded nodes (x) represent observed data. White nodes (y) represent true states of the 

neurons, and are connected by edges that indicate their mutual dependencies. Node 

potentials are defined over the two possible states of each node, and edge potentials are 

defined over the four possible states of each existing edge, depending on the state of 

adjacent nodes. D. Graphical representation of isomorphic graphs highlighting cortical 

ensembles extracted from CRF models. Colors represent ensembles related to different 

stimuli. E. Ratio of log likelihood predicting horizontal (red; top) and vertical (blue; 

bottom) drifting-gratings calculated by CRFs. Colored stripes indicate visual stimuli. 

Scale bar: 10 seconds.  

Figure 2. Identification of core neurons in cortical ensembles from CRFs  

A. Schematic representation of core ensemble extraction from CRF models with added 

nodes for different visual stimuli. The activity of the 𝑖th neuron is set to ‘1’ or ‘0’ at each 

frame, and the log likelihood 𝑝𝑖,1
𝑚  and 𝑝𝑖,0

𝑚  of modified population vectors is calculated. B. 
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Log likelihood inference and prediction for cortical core ensembles representing 

horizontal (top; red) or vertical (bottom; blue) drifting-gratings. C. Graphical 

representation of node strength magnitude. D. Core neurons from cortical ensembles for 

two visual stimuli defined as neurons with high AUC and high node strength (top right 

quadrant). Confidence levels were defined from CRF models of shuffled data (grey bars). 

Related to Figure S1. 

Figure 3. Cortical core ensembles have better predictive performance at low 

temporal frequencies  

A. Temporal course of core ensembles extracted from CRFs. Colored stripes indicate 

different visual stimuli. Scale bar: 200 frames. B. ROC curves of core ensembles 

predicting different temporal frequencies (TF: 1, 2, 4, 8 and 15 Hz). Dashed line 

represents random classification performance. C. AUC for different TFs (classification 

AUC: TF 1 = 0.9129 ± 0.0134, TF 2 = 0.8973 ± 0.0141, TF 4 = 0.8063 ± 0.0226, TF 8 = 

0.7045 ± 0.0262, TF 15 = 0.6517 ± 0.0171; p1,2=0.4249 n.s; p1,4=0.0003***; 

p1,8=2.9598e-07***; p1,15=6.7956e-08***). Note that cortical ensembles have better 

prediction performance for low TFs. D. Preferred orientation selectivity of core cortical 

ensembles for TF=1Hz. The radius of each circle depicts AUC values from zero (center) 

to 1 (border). Dotted inner circles represent random performance (AUC=0.5). Data 

presented as box and whisker plots displaying median and interquartile ranges (n = 5 

mice, 20 ensembles; Wilcoxon rank sum test). 
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Figure 4. Efficacy of cortical core ensembles  

A. Cosine similarity and B. AUC values from core ensembles extracted from CRFs that 

have been randomly down-sampled or up-sampled (orange). Randomly chosen neuronal 

groups are depicted in black. Black triangle indicates the original core ensemble size. 

Note that randomly removing or adding elements from the core ensemble decreases the 

ability to predict visual stimuli. C. ROC curves of randomly down-sampled or up-

sampled core ensembles, and randomly chosen neuronal groups. Line color represents the 

size of ensembles as a ratio with the original core ensemble size. (n=6 mice, 20 

ensembles; Wilcoxon rank sum test). Related to Figure S2. 

Figure 5. Reconfiguration of cortical microcircuits by two-photon optogenetic 

stimulation  

A. Graphical models obtained using CRFs from simultaneous two-photon imaging and 

two-photon optogenetic stimulation of a neuron with pattern completion capability 

(Related to Figure S3) before (left) and after (right) two-photon optogenetic ensemble 

imprinting. Square on bottom left represents added node for optogenetic stimuli. Edge 

color tone represents edge potential strength (𝜙11); node color represents node strength. 

Node size represents node degree. Scale bar: 50μm. B. Isomorphic graphs of CRFs 

models before (pre) and after (post) ensemble imprinting. Blue neurons were stimulated 

with two-photon optogenetics (60 trials; 4Hz). Connections between photostimulated 

neurons are shown in blue. Red dot represents stimulated neuron (arrow). C. Node 

strength and AUC values showed network changes of neurons with pattern completion 

capability. The stimulated neuron is represented in red before (left) and after (right) 
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ensemble imprinting. Confidence levels calculated from random data are depicted by 

grey bars. Related to Figures S3 and S4. 
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