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Abstract 

 

Probing the dynamic control features of biological networks represents a new 

frontier in capturing the dysregulated pathways in complex diseases. Here, using 

patient samples obtained from a pancreatic islet transplantation program, we 

constructed a tissue-specific gene regulatory network and used the control 

centrality (Cc) concept to identify the high control centrality (HiCc) pathways, which 

might serve as key pathobiological pathways for Type 2 Diabetes (T2D). We found 

that HiCc pathway genes were significantly enriched with modest GWAS p-values in 

the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) study. We 

identified variants regulating gene expression (expression quantitative loci, eQTL) 

of  HiCc pathway genes in islet samples. These eQTL genes showed higher levels of 

differential expression compared to non-eQTL genes in low, medium and high 

glucose concentrations in rat islets. Among genes with highly significant eQTL 

evidence, NFATC4 belonged to four HiCc pathways. We asked if the expressions of 

T2D-associated candidate genes from GWAS and literature are regulated by Nfatc4 

in rat islets. Extensive in vitro silencing of Nfatc4 in rat islet cells displayed reduced 

expression of 16, and increased expression of 4 putative downstream T2D genes. 

Overall, our approach uncovers the mechanistic connection of NFATC4 with 

downstream targets including a previously unknown one, TCF7L2, and establishes 

the HiCc pathways’ relationship to T2D.  
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Introduction 

The pathobiological changes leading to a complex disease are most likely to be 

influenced by the disease genes that perturb the underlying biological networks in 

specific tissue types. Recent evidence suggests that these perturbations are not 

scattered randomly in the interactome; instead, they are localized in specific 

neighborhoods, or ‘disease modules’ (1,2). In order to identify this disease-specific 

interactome neighborhood, we previously integrated human islet gene expression 

data, genetics, and protein interaction data to build a localized map of genes 

associated with islet cell dysfunction in T2D (3). Recently, we identified an asthma 

disease module by a connectivity-based model and validated it for functional and 

pathophysiological relevance to the disease (2). Several tools based on the ‘guilt-by-

association principle’ predict potential candidate genes using networks (4-6).  

Furthermore, inference tools such as ANAT identify the highest-confidence paths 

between pairs of proteins by viewing the local neighborhood of a set of proteins (7). 

Other methods such as HotNet2 use the heat diffusion process to analyze a gene’s 

mutation score and its local topology together to find the subnetworks in cancer (8). 

Similarly, the NetQTL approach combines eQTL and network flow to identify genes 

and dysregulated pathways (9).   

Despite extensive interest in using topological features to interpret the biological 

networks in human disease, an important aspect that has been largely overlooked so 

far is the controllability of these subcellular networks. In general, controllability can 

be achieved by changing the state of a small set of driver nodes that govern the 

dynamics of the entire network (10). Liu et al. proposed an analytical framework to 

identify the minimum set of driver nodes (MDS) of any complex network, whose 

time-dependent control can guide the whole network to any desired final state. 

They found that driver nodes tend to avoid hubs, i.e., highly connected nodes(11). 

Furthermore, Milenkovic et al. suggested the notion of domination and found 

dominating sets (DSs) in the undirected protein interaction network(12). Wuchty 

identified the minimum dominating sets (MDSets) that play a role in the control of 

the underlying protein interaction network9. It was observed that MDSet proteins 
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were enriched with cancer-related and virus-targeted genes (13).  We recently 

showed that the application of network controllability analysis helps in identifying 

new disease genes and drug targets.(14).  

Progress towards a robust network-based controllability approach will ultimately 

lead to the identification of potential key regulatory nodes that govern network 

function in health and disease. As a first step in this direction, here, we asked 

whether the set of genes that are predicted to control a biological directed network 

would affect the functional pathophenotype. To assess the controllability of the 

network, we used the control centrality (Cc) measure (15), which quantifies the 

ability of a single node to control an entire directed weighted network (see 

Methods).  Our disease of interest, T2D, is a complex disease and therefore has the 

potential to lend itself to this approach where controllability in a regulatory 

network specific to it might reveal new knowledge about the disease. T2D is 

characterized by insufficient insulin secretion from the β-cells of islets in the 

pancreas(3). We hypothesize that the high control centrality (HiCc) pathways, 

representing specific gene sets in a T2D-regulatory network in human pancreatic 

islets, might control other downstream pathways involved in disease manifestation 

(see Figure 1).  To test our hypothesis we construct a pancreatic islet-specific 

extended gene-regulatory network, and use control centrality to identify HiCc 

pathways in the KEGG database. We validate the disease relevance of these HiCc 

pathways using T2D-specific -omics data. Next, we test whether the SNPs located in 

non-coding regions of HiCc pathway genes in islet samples would influence RNA-seq 

expression (eQTL). Finally, we perform extensive in vitro silencing experiments on 

NFATC4, an eQTL-implicated gene found in four HiCc pathways, and probe whether 

T2D-associated genes from GWAS and literature are downstream targets of 

NFATC4.  Overall, our study provides a unique framework for integrating control 

principles towards distinguishing pathways and genes that are likely to contribute 

to T2D pathogenesis.   
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Results  

Extended Gene regulatory network (EGRN) from human islet cells  

We start by building a gene-regulatory network (GRN) using gene expression data 

from pancreatic islet samples of diabetic and non-diabetic cadaver donors obtained 

through the Nordic Islet Transplantation Programme 

(http://www.nordicislets.org). The GRN consists of differentially expressed genes in 

diabetic and high glycated hemoglobin (HbA1c) donors, highly varying genes in all 

donor islets, and established T2D genes from genome-wide association studies 

(GWAS). Directed edges in the GRN are inferred using a combination of linear 

regression and prior knowledge from the TRANSFAC database (http://www.gene-

regulation.com/). The GRN specific to islet cells consists of 896 genes with 1,164 

links between them. We next include most of the signaling events by extending the 

GRN with the addition of kinase and signaling pathways (see Methods for further 

details on the construction of the networks). The largest connected component 

(LCC) of the extended GRN (EGRN) with kinase-substrate and signaling links 

consists of N=3,084 genes and M=7,935 edges. The average number of neighbors in 

the network is 5.14. Compared to randomized networks constructed using degree-

preserving randomization, the EGRN has a significantly higher average shortest path 

length <l> = 4.65 (z-score=56) (Figure 2a) and a significantly higher clustering 

coefficient C = 0.055 (z-score=6.86) (Figure 2b). Interestingly, irrespective of the 

difference in network size and the degree distributions of GRN and EGRN 

(Supplementary Figure 1a), their normalized control centrality (cc=Cc/N) 

distributions do not differ significantly (Supplementary Figure 1b).  This indicates 

the robustness of the control centrality measure to changes in the size of the 

network. Moreover, EGRN’s normalized control centrality is significantly higher 

compared to randomized networks. The p-values between randomized networks 

and EGRN using Mann-Whitney U (100 p-values) are between 2.77e-15 and 9.76e-

12 (Figure 2c). This suggests that the overall structure of the EGRN is more 

controllable than its randomized counterparts. 

Identifying the high control centrality (HiCc) pathways in the EGRN 
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A complex disease such as T2D is likely to be the result of multiple gene 

perturbations within pathways in a biological network, where changes in one 

pathway might trigger alterations in other downstream pathways. Hence, 

identification of ‘key driver pathways’ in the islet-specific EGRN should give us 

insights about the molecular processes responsible for the disease.  Here, we 

compared the control centrality distribution of the genes in each pathway in the 

KEGG database with the control centrality distribution of all other genes in the 

EGRN, and observed 66 significant HiCc pathways with a p-value <0.05 (Mann-

Whitney test) (Supplementary Table 2) (for details see Methods). Overall, the genes 

representing T2D pathways in the EGRN had higher Cc values compared to the 

random distribution (Supplementary Figure 2), indicating that control centrality is 

able to capture the important pathways associated with T2D in KEGG. To ensure 

that our observations regarding the role of control centrality on EGRN in teasing out 

biologically relevant pathway information cannot be reproduced from randomized 

data, we repeated the control centrality calculations on degree-preserved 

randomized networks. We found that the control centrality (Cc) values of the 

significant pathways are higher on average for EGRN than randomized networks. 

The average of the means of the Cc distributions for randomized networks was 

72.49, whereas the mean of the Cc distribution for the EGRN network was 121.32. 

The Mann-Whitney U p-values were between 9.54e-24 and 6.78e-11 (Figure 2d). 

This both proves the utility of using the EGRN in conjunction with control centrality 

and establishes control centrality as an effective metric for prioritizing pathways. 

We next asked whether the genes with the high Cc genes were also hubs., i.e. highly 

connected genes.  We, therefore, compared the degree distributions of: 1) all genes 

in the EGRN, 2) all genes that are in any of the 66 significant HiCc pathways, and 3) 

all genes that are in any of the remaining 120 non-significant Cc pathways. Overall, 

we did not observe any significant differences between the three types of degree 

distributions as shown in Figure 3a. Thus, both the significant and the non-

significant pathways based on Cc values contain genes that have similar degree 
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distribution in the EGRN, indicating an absence of bias towards hubs as high Cc 

genes.  

To test the reliability and performance of the control centrality approach as a means 

to glean key drivers of T2D, we compared it to other methods that identify the 

dysregulated subnetworks associated with a specific phenotype. We found that 

control centrality is comparable to or higher performing than a number of 

established methods to find the dysregulated pathways, such as HotNet2(8) in 

capturing “T2D-related” pathways, which are pathways significantly enriched in 

literature-mined T2D disease genes with experimental evidence from the DISEASES 

database(16), both on the EGRN and on generic networks (see Supplementary 

Information for details on comparisons with other methods).  

To further assess the performance of control centrality as a network centrality 

measure, we carried out the T2D diabetes “T2D-related” pathway assessment on 

other centrality measures applied on the EGRN. We found that control centrality is 

superior to all of the tested centrality measures in terms of the significance of 

overlap with T2D-related pathways, i.e. the high control centrality pathways have a 

higher enrichment of T2D-related pathways than pathways with high centrality 

according to other centrality measures (Supplementary Table 1). The fact that 

control centrality outperforms degree centrality also confirms our observation that 

control centrality, which is not biased towards highly connected nodes, uncovers 

disease-related information that is independent of the “hubness” of a node. 

T2D relevance of the HiCc pathways in the EGRN 

We hypothesized that if HiCc pathways contribute to the control of disease-related 

processes in T2D, they should be significantly enriched within T2D-specific -omics 

data. To test this hypothesis, we separated the HiCc pathways, i.e. pathways whose 

genes have significantly higher Cc values than the rest of the genes in EGRN, from 

those that are not HiCc. For both groups of pathways, as well as for the reference set 

of all KEGG pathways, we calculated how many of them are significantly enriched 

within (i) T2D (GOLD) genes from the type 2 diabetes genetic association database 
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(T2DGADB)(17) and (ii) a more recent and extended T2D GWAS dataset from a 

genome-wide meta-analysis (see Methods). We observed a significant enrichment of 

HiCc pathways in the two datasets. In particular, the fraction of enriched pathways 

in GOLD data (50 pathways overall) was significantly higher for HiCc pathways (24 

out of 66 pathways) than for non-HiCc pathways (26 out of 120 pathways), with a 

two-tailed Fisher’s exact p-value of 0.038. Similarly, the fraction of enriched 

pathways in the GWAS dataset (49 pathways overall) was significantly higher for 

HiCc (28 out of 66 pathways) than for non-HiCc pathways (21 out of 120 pathways), 

with a two-tailed Fisher’s exact p-value of 0.00042 (Figure 3b). Overall, 55 HiCc 

pathways were enriched in T2D relevant omics data (Figure 3c). Among the 

pathways that were the most significantly enriched in the -omics data were several 

whose relevance to T2D is well established, such as Type II diabetes mellitus, PPAR 

signaling, insulin signaling, calcium signaling and chemokine signaling pathways 

(Supplementary Table 2).  The role of chemokine signaling is known in T2D, as islet 

inflammation is involved in the regulation of β-cell function and survival in T2D (18). 

This indicates that our approach captures pathways that have T2D relevance in an 

unbiased way.  

Validation of HiCc pathway genes 

 

Among the genes in the significant HiCc pathways, we found 51 eQTLs that pass the 

FDR<1% threshold and 10k permutation, as shown in Table 1, using an extended 

follow-up study to our original islet data, which consists of 89 pancreatic islet 

donors(19). In total, we observed a SNP within 250 kb up or downstream of the 

genes in 33 pathways. The enrichment of 33 pathways with the background 

distribution was significant (p- 6.618e-13, odds ratio: 7.49), which indicates that we 

were able to capture the genomic signals among the HiCc pathways. We next tested 

the fold-change difference of eQTL genes vs. non-eQTL genes in the transcriptome 

data of rat islets pre-cultured with 2, 5, 10, and 30 mM glucose levels (GSE12817) 

(20).  We found that the eQTL genes have significantly higher fold change compared 

to non-eQTL genes in 5 mM (Mann-Whitney test p=0.009), 10 mM (p=6.72e-05), and 
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30 mM (p=8.63e-06) glucose levels (Figure 4a).   This indicates the potential role of 

eQTL genes in β-cell function as these cells are regulated both acutely and 

chronically by the extracellular glucose concentration. By applying a greedy 

algorithm (Steiner tree) in an integrated network of EGRN and protein interaction 

network, we observed a single connected component of eQTL genes with few linkers 

(grey nodes) (Figure 4b). This signifies that in reality a network environment is 

better characterized by the local impact hypothesis (1), indicating that perturbations 

are localized to the immediate vicinity of the perturbed genes that carry the eQTLs. 

New mechanistic connections in T2D 

To find the connection between the HiCc pathways and T2D-associated genes, we 

focused on the eQTL gene (q-value=1.78E-04), NFATC4 (rs79584546), which is 

associated with four HiCc pathways: Wnt signaling, B-cell receptor signaling, MAPK 

signaling, and T-cell receptor signaling pathways (Figure 5a).  We asked whether the 

T2D-associated genes from GWAS and literature are downstream targets of 

NFATC4. This might help in explaining their role in four HiCc pathways.  The 

NFATC4 gene interacts with PPARG, and different MAP kinases (MAPK1, MAPK3, 

MAPK8, MAPK9, MAPK14) (Supplementary Figure 4).  It is known that ablation of 

NFATC4 increases insulin sensitivity, in part, by sustained activation of the insulin-

signaling pathway(21). We, therefore, next explored the downstream effect of 

transcriptional targets of NFATC4. 

NFATC4 has been reported to be a possible target for up-regulated transcription by 

TGF-alpha(22).  Therefore, we used TGF-alpha to augment or induce Nfatc4 mRNA 

transcription during a glucose challenge in functional rat pancreatic beta islet cells 

in vitro.  Nfatc4 was effectively silenced (see Methods for details on the in vitro 

silencing experiments) as seen in real time qPCR with 4 different rat-specific Nfatc4 

probes (Supplementary Figure 5a-d). In order to assess the downstream effect of 

Nfatc4, we gathered putative T2D candidate genes regulated by the NFAT family 

members from GWAS and literature23. In particular, we selected 13 highly up- and 

down-regulated transcriptional targets of Nfatc1 and Nfatc2, namely Etv1, Jazf1, 

Pparg, Vegfa, Arl15, Pex5l, Rbm38, Rbms1, Slc44a3, Spry2, St6gal1, Tcf7l2 and Wfs1, 
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based on a recent report23 that they inhibit the expression of the first four genes 

while promoting the expression of the latter nine genes. We supplemented this list 

with seven putative transcriptional targets of Nfatc4, namely Cox2 (Ptgs2), Egr2, 

Igf2, Opn (Spp1), Ppp3ca, Sox9 and Wnt7a, through literature search via the 

MetaCore platform [https://portal.genego.com/]. The silencing of Nfatc4 in rat islet 

cell lines resulted in increased expression of, Etv1, Igf2, Jazf1 and Vegfa mRNA, 

compared to control siRNA treatment. In contrast, Arl15, Cox2, Egr2, Opn, Pexl5, 

Pparg, Ppp3ca, Rbm38, Rbms1, Slc44a3, Sox9, Spry2, St6gal1, Tcf7l2, Wfs1 and 

Wnt7a, all resulted in decreased mRNA expression post Nfatc4 silencing (Figure 5b). 

The silencing of Nfatc4 in rat islet cell lines, thus displays reduced expression of 16 

downstream T2D candidate genes and increased expression of 4 downstream T2D 

candidate genes. To complete the circle, we went back to the human islet data and 

assessed correlation of Nfatc4 expression with the aforementioned genes. We found 

that NFATC4 expression was positively correlated with ETV1, VEGFA, EGR2, RBM38, 

SOX9, ST6GAL1, TCF7L2, WFS1 and WNT7A and negatively correlated with SPRY2 

(Supplementary Figure 6 and Supplementary Table 6). This indicated the potential 

influence of NFATC4 expression on the expression of the above genes in human 

pancreatic islets as well. NFATC4 expression also positively correlated with HbA1C 

levels, indicative of some effect on glycemic status. The mechanistic connection 

between NFATC4 and TCF7L2 is particularly of interest as TCF7L2 has been 

established as a major T2D susceptibility gene (23,24). TCF7L2 is also a member of 

two of our HiCc pathways, namely B-cell receptor signaling and Wnt signaling 

pathways.  This indicates the possibility of finding further unexplored connections 

between the members of HiCc pathways within the context of specific diseases.  

Overall, the approach helps not only in identifying the potential dysregulated 

pathways, but also establishes the downstream regulation by NFATC4 in four 

important T2D pathways (Figure 5).  
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Discussion 

By exploiting the topological measures of cellular re-wiring associated with disease 

progression, it is possible to identify new disease genes and pathways (1,2,6).  With 

the advances in control theory, and control principles becoming an important 

consideration in many disciplines, including disease biology and biological network 

analysis (25-27), network dynamics and regulation also provide opportunities to 

identify key regulatory genes in health and disease. Here, we exploited the control 

centrality measure to identify key pathways that could drive the islet regulatory 

network in T2D. We established a framework to find the pathways that might be 

related to the underlying hierarchical structure of disease regulation and is able to 

add a new dimension compared to the number of established methods like 

HotNet2(8).  We identified 66 pathways as statistically significant in the analysis 

and were able to identify known T2D pathways (p=5.76E-05) among the top gene 

list in our analysis, which validates the approach as a means to capture disease 

relevant pathways. The pathways captured in our analysis were also enriched in 

T2D relevant omics sources. Furthermore, eQTL analysis helped in pruning the HiCc 

pathways genes by identifying the variants actually affecting the gene expression 

levels of these genes (i.e. cis-eQTLs).  These eQTL genes showed glucose-induced 

changes in the islets.  

Finally, we experimentally validated the process by which a particular eQTL gene 

(NFATC4) regulates the expression of numerous putative downstream T2D 

candidate genes of two other genes of the same family, NFATC1 and NFATC2, which 

were also shown to regulate T2D related genes by previous studies23. In particular, 

Nfatc4 silencing results confirmed similar transcription regulation pattern for these 

genes except for Igf2, which showed an opposite effect relative to the siControl 

condition. Results also demonstrated that Nfatc4 increases gene expression of 

Pparg, Tcf7l2, and Wfs1 which are genes already reported to be associated with type 

2 diabetes as well as activation of the Wnt pathway as predicted by systems genetics 

approach that is subsequently validated in vitro (28). However, silencing Nfatc4 also 

appears to have a tendency to inhibit osteopontin (Opn). We have previously 
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demonstrated that glucose dependent insulinotropic polypeptide  (GIP) stimulates 

expression of OPN in human islets where OPN exerts protection against cytokine-

induced apoptosis(29). The connection between NFATC4 and TCF7L2, which has 

not been reported previously in the literature, is particularly important as it adds to 

the mechanistic information on two pathways (Wnt signaling and B-cell signaling 

pathways) that were found to have high control centrality in the T2D pathobiologic 

context. Owing to this new connection, NFATC4 and TCF7L2 also emerge as 

potential players in the pathway communication between the T-cell receptor 

signaling, MAPK signaling, Wnt signaling, and B-cell signaling pathways. Overall, the 

positive experimental validation of our model shows the utility of the control 

centrality approach in pathway prioritization. In particular, it may pave the way for 

discovering hitherto uncovered cross-talk between pathways.  

 

These results might help us understand better the controllability of complex 

networks and provide a basis for designing an efficient strategy for optimizing 

(normal) network control. There are, however, outstanding annotation and 

methodological challenges remaining, including low-resolution pathway-based 

knowledge, limited cell type-specific information, and incomplete annotation of 

next-generation pathways. Despite these hurdles, as the number and type of 

functional annotations increase, coupled with technological advances in analytical 

methods that provide better guidance for the utility of pathway analysis, confidence 

in the results will likely improve. Although the approach has been demonstrated 

using pancreatic islet gene-expression data, it can be used to interpret pathways for 

other complex diseases. Overall, controllability-based network analysis may be of 

broad use in dissecting complex diseases and in discovering novel therapeutics 

targets in this coming era of systems medicine.  

 

Methods 

Construction of gene regulatory network (GRN) 
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We constructed a disease gene-regulatory network (GRN) by integrating gene 

expression data from human pancreatic islets together with known information 

about transcription factor binding sites. We used gene expression data from islets 

from 63 cadaver donors provided by the Nordic Islet Transplantation Programme 

(http://www.nordicislets.org) (Supplementary Table 3). Islets were obtained from 

54 nondiabetic donors (25 females, 29 males, age 59 ± 9, BMI 25.9 ± 3.5, HbA1c 5.5 

± 1.1) and 9 T2D donors (4 females, 5 males, age 57 ± 4, BMI 28.5 ± 4.5, HbA1c 7.2 ± 

1.1). All procedures were approved by the ethics committee at Lund University. 

Purity of islets was assessed by dithizone staining, while measurement of DNA 

content and estimation of the contribution of exocrine and endocrine tissue were 

assessed as previously described (3). Gene expression was assayed using Affymetrix 

Human Gene 1.0 ST arrays. We normalized the data by robust multiarray averaging 

(RMA) and a custom Chip Description File (CDF) from the Michigan Microarray Lab 

(http://brainarray.mbni.med.umich.edu, Version 13) which helps estimate gene-

level expression more accurately by summarizing probe sequences using up-to-date 

gene annotations. 

To construct the GRN, we first used the LIMMA package in R(30) to select the most 

disease-relevant genes. For each gene, we computed the B-statistic for differential 

expression between the following phenotypic groups: 1) diabetic vs. non-diabetic, 

and 2) low vs. high levels of glycated hemoglobin (HbA1c). Expression analysis was 

carried out between 63 patients with and without T2D for (1) and donors with 

HbA1c < 6% and > 6% from the human islets mRNA data set for (2). A nominal p-

value of < 0.05 was used to identify differentially expressed (DE) genes, yielding a 

set of 506 genes. We used a liberal threshold to obtain the signature genes that 

could be used for identifying the signature of disease as has been done previously 

(2). All genes were then ranked according to the average of the two B-statistics. We 

also added 48 genes that have been associated with T2D through GWAS 

(Supplementary Table 4) and that were also represented on the array to create a list 

of 554 total disease-relevant genes. Next, we computed the variance of the 

expression of each gene on the array across all 63 samples, and selected the top 
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2,000 most variable genes to add tissue-specific genes that are expressed and active 

in human islets.  

The final list of 2,554 genes, together with the corresponding gene expression 

values over all 63 patients, was used as input to build the GRN. We applied 

Predictive Networks (PN) (31)  a tool that gathers a comprehensive set of known 

gene interactions from a variety of publicly available sources as prior evidence, and 

then uses these known interactions together with gene expression data to infer gene 

regulatory networks via linear regression modeling(31). As prior evidence, we used 

known regulatory interactions from the TRANSFAC database and applied a 

weighting parameter of 0.75 to combine the regression and prior-based edges.  

Extended- gene-regulatory network (EGRN)  

A gene can be involved in various interactions, and its role, and consequently its 

centrality, can vary across different biological networks. In order to obtain a higher 

resolution understanding of the signaling relationship in the GRN, we added kinase 

(http://www.phosphosite.org) and signaling events to the model (Signalink 

database) (32) . This addition was done in order to add potential downstream 

signaling events by the nodes in the GRN. We call the full network, including 

transcriptional edges and signaling edges, the extended gene-regulatory network 

(EGRN). 

Ranking the KEGG pathways using the control centrality measure –HiCc pathways 

We started with an un-weighted directed EGRN G=(V, E) with N=|V| nodes and L=|E| 

links. The control centrality of node i, denoted as Cc(i), is defined to be the generic 

dimension of controllable subspace or the size of controllable subsystems if we 

control node i only (15). Hence, Cc(i) captures the “power” of  node i
 

in controlling 

the whole network.  For example, a simple network of N=7 nodes is shown in Fig.1B. 

When we control node x1 only, the controlled network is represented by a directed 

network with an input node u1 connected to x1. The dimension of the controllable 

subspace by controlling nodes x1 is six, corresponding to the largest number of 
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edges in all stem-cycle disjoint subgraphs (an example is shown in red in Figure 1), 

where “stem” is defined as a directed path starting from an input node, so that no 

nodes appear more than once in it. Hence, the control centrality of node x1 is 

Cc(1)=6. In general, the control centrality of any node in a directed network can be 

calculated by solving a linear programming problem (15,33,34).  The assumption 

was that if a pathway or module includes genes with high Cc values, it might be 

higher in the hierarchy and must regulate other downstream pathways with on 

average, lower Cc values. To test this hypothesis, for each pathway in the KEGG 

database, we identify the pathways with significantly greater Cc values compared to 

others. To calculate the statistical significance based on the Cc values of the genes 

representing the particular pathway, we use the Mann–Whitney U test with a cutoff 

p-value <0.05. A typical problem with pathway analysis methods is bias toward the 

enrichment of cancer-related pathways as these pathways have been studied more 

intensively.  We, therefore, focus only on the non-cancer HiCc pathways. 

T2D relevance of the HiCc pathways in the EGRN 

We next evaluated the relative enrichment of HiCc pathways genes across three 

T2D-specific datasets: 

i. Disease gene set: T2D genetic association database (T2DGADB) aims to provide 

specialized information on the genetic risk factors involved in the development 

of T2D. 701 publications in the type 2 diabetes case-control genetic studies for 

the development of the disease were extracted (35), which was defined as the 

gold standard gene set. Overall, this dataset contained 143 genes. 

ii. Genomics: This genome-wide meta-analysis (“DIAGRAMv3”) includes data from 

12,171 cases and 56,862 controls of European descent imputed up to 2.5 million 

autosomal SNPs(36). We computed a single p-value for each gene in the 

interactome by the VEGAS method using the whole GWAS data set (37). We 

considered the genes with uncorrected p-value < 0.01 in our analysis, resulting 

in 1308 genes.  There was little overlap between (i) and (ii) gene sets. Moreover, 

to avoid circularity, we exclude the 48 GWAS genes used in the construction of 
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EGRN from this dataset. 

The enrichment of HiCc, non-HiCc and all pathway genes with the above gene sets 

was calculated through Fisher’s Exact test. 

eQTL analysis of HiCc pathway genes 

One of the major findings from the T2D GWAS is that most of the trait-associated 

SNPs are located in intronic, intergenic, or other non-coding regions of the genome 

(38). As many SNPs are located in noncoding regions, suggesting they may influence 

gene expression, we analyzed whether any SNP within 250 kb of HiCc pathway 

genes (cis) would influence their gene expression (eQTL).   We used a linear model 

adjusting for age and sex as implemented in the R Matrix eQTL package. Genotyping 

was performed on the Illumina HumanOmniExpress 12v1C chips, and all the 

samples passed standard genotype QC metrics. Genotypes were imputed to 1000 

Genomes data, using IMPUTE2 and SHAPEIT. 

The transcriptomic data from rat pancreatic islet after culture in low, intermediate 

and high glucose was retrieved from Gene Expression Omnibus (GEO-GSE12817). 

We performed differential expression analysis between 2 and 10, 2 and 30, 5 and 10, 

5 and 30 or 10 and 30 mmol/l glucose.  We used the limma R package (ver 3.10.1) 

for the differential expression analysis. We compared the fold change (absolute log) 

of eQTL genes to all other differentially expressed genes and computed the p-values 

by applying Mann-Whitney U test.  

Functional network and eQTL-HiCc pathway genes 

To evaluate the impact of genes in the vicinity of eQTL in different sources of 

network data, we used HumanNet gene-interaction data. HumanNet uses a Näive 

Bayesian approach to weight different types of evidence together into a single 

interaction score focusing on data collected in humans, yeast, worms, and flies(39)._  

The hypothesis we tested was that if the gene products (e.g., proteins) linked to the 

same disease phenotype interact with each other more often than randomly linked 

gene products (40-42) and cluster in the same network neighborhood, then eQTL 
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genes must be connected through a single component in the gene interaction 

network. We applied a heuristic Steiner tree algorithm to find the minimum number 

of genes that can connect the eQTL into a connected component in the gene-

interaction network.  

Nfatc4 silencing and stimulation experiments in vitro 

To validate Nfatc4 effect on putative downstream T2D candidate genes, Nfatc4 

mRNA expression was silenced in clonally derived rat pancreatic β-islet cell line 

INS-1 (832/13), a generous contribution from Dr. Rohit Kulkarni.  Cells were 

maintained on RPMI 1640, 10 % fetal calf serum, 10 mM HEPES,  2 mM L-glutamine, 

1 mM sodium pyruvate and 0.05 mM 2-mercaptoethanol (Thermo Fisher) 

supplemented with penicillin (100 Units/ml) and streptomycin (100 μg/ml) 

(Pen/Strep).  We transfected rat specific Nfatc4 siRNA (Rat Nfatc4 ON-TARGET 

Smart Pool siRNA, GE Dharmacon) using Lipofectamine RNAiMAX (Thermo Fisher) 

as per manufacturer’s recommendation.  For controls, we employed ON-

TARGETplus Non-Targeting Control Pool (GE Dharmacon) using the same 

concentration as the test siRNA. Silencing was carried out in each well containing 

60% confluent cells in culture and were exposed to transfecting medium for 48 

hours at 37°C in a humidified atmosphere containing 95% air and 5% CO2 in the 

presence of 20 pmol siRNA per well in 12-well cell culture microplates. 

After silencing, cells were allowed to recover for 16 hours in regular growth media 

followed by stimulation of Nfatc4 signaling by TGF alpha (TGF-a) at 50 ng/ml as 

described in another publication (22) for 6 hours. Subsequently, cells were washed 

with HBSS once, then exposed to 17.3 mM glucose in HBSS for 1.5 hours.  RNA from 

cells were harvested using column isolation (GE Healthcare Life Sciences).   Putative 

genes downstream of Nfatc4 were tested using probes from Taqman Gene 

Expression Assay system (Thermo Fisher) listed in Supplementary Table 5. Real 

time PCR was done with Biomark HD (Fluidigm) thermocycler.  Quadruplicates 

were used per condition. 
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Expression correlation of NFATC4 with putative downstream genes in human 

islet cells 

RNA sequencing was performed on the Hi-seq as described previously (19). 

Alignments were performed using STAR and gene counts were assessed using 

feature counts. Spearman correlation was used to assess the relationships between 

NFATC4 expression and ETV1, IGF2, JAZF1, VEGFA, PTGS2/COX2, EGR2, SPP1 (OPN), 

PPARG, PPP3CA, RBM38, RBMS1, SOX9, SPRY2, ST6GAL1, TCF7L2, WFS1 and 

WNT7A. 
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Figure Legends 

 

Figure 1: Overview of the approach to identify the key pathways in T2D using 

control centrality approach 

a. Gene expression data: Pancreatic islets from cadaver donors (54 nondiabetic and 

9 diabetic) were used to construct the gene regulatory network (GRN) and extended 

by adding kinase and signaling links. The largest connected component of the 

extended GRN (EGRN) consists of N=3,084 genes and M=7,935 edges. 

b.  The control centrality measure is used to quantify the relative importance of each 

gene in EGRN relative to T2D.  

c.  High control centrality (HiCc) pathways are found by comparing the control 

centrality distribution of genes within the pathway versus the control centrality 

distribution of all other genes in EGRN. Pathways with a significantly higher control 

centrality distribution compared to the background are deemed HiCc pathways. For 

example, the Gap junction pathway emerges as a HiCc pathway, whereas the 

Huntington’s Disease pathway is found to be a non-HiCc pathway. 

d. In vitro silencing experiments are performed on genes implicated in a large 

number of HiCc pathways, such as NFATC4, to discover novel mechanistic 

connections with known T2D genes.  
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Figure 2: Topological and control centrality-related properties of EGRN.  

a. The average shortest path length of the EGRN is 4.65, which is significantly higher 

that those of randomized networks (shown in orange) with a z-score of 56.  

b. The average clustering coefficient of the EGRN is 0.055, which is significantly 

higher that those of randomized networks (shown in orange) with a z-score of 6.86. 

c. The normalized control centrality distribution of the EGRN (shown in green) is 

significantly higher than those of randomized networks (shown in orange). 

d. The control centralities of the HiCc pathways derived from the EGRN (shown in 

green) are significantly higher than those of the HiCc pathways derived from 

randomized networks. 

 

Figure 3: Properties and T2D relevance of high control centrality (HiCc) 

pathways.   

a.  Degree distributions P(k) of HiCc pathway genes, non-HiCc pathway genes, and 

all other genes in the EGRN. 

b. The fraction of enriched pathways in the manually curated GOLD T2D gene data, 

T2D differential expression (DE) data, and GWAS data, for HiCc pathways, non-HiCc 

pathways, and all pathways. 

c.  The 66 HiCc pathways and their enrichment in T2D specific data sources. 

 

Figure 4: eQTLs and the  functional network. 

a. eQTL genes and glucose levels: we tested the fold change difference of eQTL genes 

vs. non-eQTL genes in the transcriptomic data of rat islets pre-cultured at 2, 5, 10, 

and 30 mM glucose. eQTL genes are significantly changed in expression compared to 

non-eQTL genes. 
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b. Integrating EGRN and gene interaction networks with the eQTL-gene relationship 

associated with T2D. Most of the genes in the integrated module are up-regulated in 

T2D subjects (nodes in green). 

Figure 5: Nfatc4 in vitro validation 

a. Nfatc4 is at the intersection of four HiCc pathways, namely B-cell receptor 

signaling pathway, T-cell receptor signaling pathway, MAPK signaling pathway, and 

Wnt signaling pathway. 

b. The effect of silencing of Nfatc4 on putative downstream genes. Colors indicate 

the Z-score, which was calculated across all samples per gene and is shown relative 

to the average Z-score of the control samples. P-values were obtained by a two-

sided t-test for two independent samples. 

c. The network of the putative downstream effect of Nfatc4 validated by in vitro 

silencing experiments. 
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Table 1: cis-eQTL in HiCc pathway genes   
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 (II) Calculation of Control centrality (Cc) 
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